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Photon-mediated coherent interaction determines the decay dynamics of quantum emitters and facilitates
on-chip quantum manipulation for quantum information processing. We derive a general formalism to efficiently
and flexibly simulate the radiative coupling between two two-level quantum emitters in arbitrary dielectric
nanostructures, based on which, the decay dynamics of the two quantum emitters can be obtained. We
demonstrate this formalism to investigate the two quantum dots embedded in the photonic crystal L3 cavity.
The anticrossing behavior in the evolution spectrum and the vacuum Rabi oscillation in the populations of the
two quantum dots can be simulated in both zero and small dot-dot detuning case. Our formalism can serve as a
flexible and efficient theoretical tool and may be further developed to handle the cases for different initial states,
multiple quantum emitters, and arbitrary metallic nanostructures.
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I. INTRODUCTION

On-demand coherent interaction between each arbitrarily
chosen pair of two-level quantum emitters is essential ingre-
dient for controlled gate operations in quantum information
processing [1,2]. The quantum emitters, e.g., atoms, ions,
superconducting qubits, quantum dots and color centers, are
usually spatially localized and distantly separated to allow
selective excitation, control, and read-out [3]. Consequently,
the separated quantum emitters need to be connected via a
quantum bus or, in a more general picture, quantum network
[4]. In solid-state implementation, although the quantum dots
can be coupled via the wave-function overlap and/or elec-
trostatic dipole-dipole interaction (Förster resonant energy
transfer, FRET), the effective coupling distance is only several
nanometers [5,6]. As for long-distance interaction, the most
natural choice of the quantum bus is photons, owing to the
low decoherence rate, high velocity and matured on-chip
photonic technology [2]. The photon emitted by an excited
quantum emitter can be absorbed by the other unexcited one
and the exchange of photons can induce the radiative coupling
between the two quantum emitters [7].

The radiative coupling between two quantum emitters can
be tailored by suitably designing the electromagnetic envi-
ronment [8]. For instance, optical lenses [9] and waveguides
[10–14] can collect and transfer the emitted photon from
one quantum emitter to the other. More importantly, opti-
cal cavities [15] with spectrally peaked density of optical
states and spatially concentrated electric field can enhance
the photon-mediated interaction. The strong coupling of two
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quantum dots to the same cavity mode can be detected in
small optical cavities [16–19] and the coherent nature was
demonstrated [20]. The radiative coupling among few emitters
in the single-mode cavity may form nanolaser beyond the
limitations of conventional laser models for independently
acting quantum emitters [21–23]. The strong coupling and
entanglement of two quantum emitters can occur over longer
distance in the photonic crystal (PC) dimers [24–26] and the
hybrid plasmonic cavities [3].

Due to the radiative coupling, the decay dynamics of an en-
semble of quantum emitters interacting with photonic modes
differ from independent quantum emitters, and also strongly
depend on the initial state and entanglement. When the initial
excitations are distributed symmetrically/antisymmetrically
among the indistinguishable and entangled quantum emitters,
the collective state (Dicke state) is superradiant/subradiant
[27–29], corresponding to an enhanced / suppressed inter-
action with the photonic modes. By adjusting the phase of
the quantum emitters, the system can be tuned from sub-
radiance to superradiance [30], the light field can be tuned
from antibunched to (super-)bunched as well as nonclassi-
cal to classical behavior [31,32]. Furthermore, the radiation
of two atoms in a single-mode cavity coherently [33] or
off-resonantly [34] driven by an external field can consid-
erably exceed the free-space superradiant behavior and re-
sult in hyperradiance. On the contrary, when the emitter-
cavity coupling is much stronger than cavity dissipation rate
and few particular quantum emitters are initially excited,
i.e., the initial state contains no entanglement, the radia-
tion trapping effect [35] appears, since the unexcited quan-
tum emitters in the ensemble block the radiative relaxation
of the excited ones to the cavity, elongate emission time,
and reduce the photon number in the cavity [36]. Further-
more, the superradiance and radiation trapping can coexist
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in the crossover regime of a moderately bad single-mode
cavity [37].

The radiative coupling in simple electromagnetic environ-
ments can be efficiently simulated by the mode-expansion
method [2,38] and the Green-function method [10,14,39,40].
However, as for complex electromagnetic environments, it is
rather complicated to either find the complete eigenmodes or
obtain the exact analytic Green function, which hinders the
feasibility of these two methods. Previously, we have pro-
posed a general classical approach [41] based on the Finite-
Difference Time-Domain (FDTD) method [42] to simulate the
transfer rate �i j (ω) and collective level shift �i j (ω) [43] of
the radiative coupling between ith and jth quantum emitters in
arbitrary dielectric nanostructure. This approach requires two
simulation runs: it first simulates �i j (ω) via radiation power of
dipoles, then calculates �i j (ω) by principal-value integration

�i j (ω) = 1
2π
P

∫ +∞
0 dω′ �i j (ω′ )

ω−ω′ . However, the calculation effi-
ciency of this approach needs to be further improved. Besides,
the decay dynamics of the quantum emitters in arbitrary
dielectric nanostructures still remain a challenge, which is the
main focus of this work.

In this paper, we propose a new formalism to efficiently and
flexibly simulate the radiative coupling between two two-level
quantum emitters in arbitrary dielectric nanostructures. More
importantly, based on the radiative coupling, we propose an
approach to calculate the decay dynamics of these two quan-
tum emitters. As an illustrating application, we investigate the
prototypical case of two quantum dots embedded in the PC L3
cavity [44]. The local coupling strength and level shift can be
reproduced. The anti-crossing behavior among three polariton
branches in the evolution spectrum can be simulated for both
zero and small dot-dot detuning case. Besides, the vacuum
Rabi oscillation in the populations of the two quantum dots
can be observed, although approaching different steady values
at the long-time limit for zero and small dot-dot detuning
cases. Our formalism may serve as a flexible and efficient
theoretical tool for the on-chip quantum manipulation in quan-
tum information processing and may be further developed to
handle the cases for different initial states, multiple quantum
emitters, and arbitrary metallic nanostructures.

II. THEORY AND METHOD

In this section, we adopt quantum electrodynamics ap-
proach to investigate the radiative coupling and decay dy-
namics of two two-level quantum emitters (denoted as A
and B) inside nonmagnetic, nondispersive, and lossless di-
electric nanostructure. By adopting dipole approximation and
rotating-wave approximation, the Hamiltonian of the system
can be expressed as [45,46]

Ĥ = h̄
∑

i=A,B

ωi|ei〉〈ei| + h̄
∑

λ

ωλâ†
λâλ

+ h̄
∑

i=A,B

∑
λ

[giλ(ri )|gi〉〈ei|â†
λ + g∗

iλ(ri )|ei〉〈gi|âλ]. (1)

Here, ωi is the transition frequency between the excited
state |ei〉 and the ground state |gi〉 of the ith quantum emitter.
ωλ, âλ, and â†

λ are the eigenfrequency, annihilation operator
and creation operator of the λth eigenmode of the dielectric

nanostructure, respectively. The coupling coefficient is

giλ(ri ) = iωi(2ε0h̄ωλ)−1/2uid̂i · Eλ(ri ). (2)

Here, ui and d̂i is the magnitude and direction of the
transition dipole moment of the ith quantum emitter located
at ri. Eλ(r) is the electric field of the λth eigenmode of the
dielectric nanostructure.

We denote the system states as |a〉 = |eA, gB, 0〉, |b〉 =
|gA, eB, 0〉, and |cλ〉 = |gA, gB, 1λ〉, with only one excitation
at quantum emitter A, B or the λth eigenmode of the dielectric
nanostructure, respectively. We suppose that the initial state of
the system is |ψ (0)〉 = |a〉. The state of the system evolves as

|ψ (t )〉 = a(t )|a〉 + b(t )|b〉 +
∑

λ

cλ(t )|cλ〉 = Û (t )|a〉. (3)

Obviously, the probability amplitudes of the system states
are the matrix elements of the evolution operator Û (t ), e.g.,
a(t ) = 〈a|Û (t )|a〉 and b(t ) = 〈b|Û (t )|a〉. The evolution oper-
ator can be calculated by [47]

Û (t ) = 1

2π i

∫ +∞

−∞
dωe−iωt [Ĝ−(ω) − Ĝ+(ω)]. (4)

Here, the evolution spectrum Ĝ±(ω) = limη→0+ Ĝ(z =
ω ± iη) is the limit of the resolvent operator defined as

Ĝ(z) = 1

z − Ĥ
h̄

. (5)

As derived in Appendix A, the matrix elements of resolvent
operator Ĝ(z) are

Gba(z) = 〈b|Ĝ(z)|a〉 = WBA(z)


(z)
, (6)

Gaa(z) = 〈a|Ĝ(z)|a〉 = z − ωB − WBB(z)


(z)
. (7)

Here, we define 
(z) = [z − ωA − WAA(z)][z − ωB −
WBB(z)] − WAB(z)WBA(z). The coupling matrix element is

Wi j (z) =
∑

λ

g∗
iλ(ri )g jλ(r j )

z − ωλ

, i, j = A, B. (8)

Obviously, the key to investigate the decay dynamics is
the calculation of the coupling matrix element W ±

i j (ω) =
limη→0+ Wi j (z = ω ± iη). According to Eq. (2), we may ob-
tain

W ±
i j (ω) =

∑
λ

u∗
i u jωiω j

2ε0 h̄ωλ

[d̂i · E∗
λ(ri )][d̂ j · Eλ(r j )]

× [P 1

ω − ωλ

∓ iπδ(ω − ωλ)]. (9)

Here, P denote the principal value. Obviously, W +
i j (ω) is

the complex conjugate of W −
i j (ω). When i 	= j, W ±

i j (ω) =
�i j (ω) ∓ i

2�i j (ω) characterizes the radiative coupling be-
tween the ith and the jth quantum emitter mediated by the
eigenmodes of the dielectric nanostructure, whose imaginary
and real part is related to the transfer rate �i j (ω) and col-
lective level shift �i j (ω), respectively [41,43]. When i =
j, W ±

ii (ω) = �ii(ri, ω) ∓ i
2�ii(ri, ω) characterizes the local

coupling between the ith quantum emitter and the eigenmodes
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of the dielectric nanostructure. The real part of W ±
ii (ω) is

the level shift �ii(ri, ω) = 1
2π
P

∫ +∞
0 dω′ �ii (ri,ω

′ )
ω−ω′ while the

absolute value of the imaginary part of W ±
ii (ω) is half of the lo-

cal coupling strength �ii(ri, ω) = 2π
∑

λ |giλ(ri )|2δ(ω − ωλ)
[48].

The coupling matrix element W −
i j (ω) can be calculated as

W −
i j (ω) = − u∗

i u jωi

h̄d∗
j (ω)ω

d̂i · E∗
j (ri, ω). (10)

The detailed derivation can be found in Appendix B.
Obviously, W −

i j (ω) (i, j = A, B) can be calculated based on
the complex amplitude of the electric field E j (ri, ω), which
is excited by the jth dipole [with complex amplitude dj (ω)]
and detected at the location ri of the ith dipole. E j (ri, ω)
can be simulated directly in frequency domain by, e.g., the
COMSOL Multiphysics. Alternatively, we can first simulate
E j (ri, t ) in time domain by, e.g., the FDTD method, and then
obtain E j (ri, ω) by Fourier transform or Padé approximation
with Baker’s algorithm [49]. The accuracy of this formalism
is mainly limited by the accuracy of the numerical methods
for simulating E j (ri, ω). As for the efficiency, the Padé ap-
proximation is extremely efficient for the nanostructures with
highly localized field distribution, such as nanocavities. Our
test for the PC L3 cavity shows the Padé approximation can
save computation time by about 200 times comparing with the
Fourier transform [48]. Besides, the coupling matrix elements
W ±

i j (ω) including the transfer rate �i j (ω) and collective level
shift �i j (ω) can be simultaneously calculated in a single
simulation run, without principal-value integration �i j (ω) =

1
2π
P

∫ +∞
0 dω′ �i j (ω′ )

ω−ω′ , which is much more efficient than the
previous approach [41].

Conventionally, the local coupling between a single quan-
tum emitter and a cavity mode can be characterized by the
Purcell factor FP = 3

4π2 ( λ
n )3 Q

Vm
[50] or coupling coefficient

g = u
√

h̄ω
2ε0Vm

[51]. These two approaches both assumes a

perfect spectral, spatial, and polarization matching, and re-

quires the effective mode volume Vm =
∫

V εr (r)|Ec (r)|2dr
max[εr (r)|Ec (r)|2]

. To
calculate Vm, the electric field distribution Ec(r) in the whole
space (mainly inside and near the cavity) should be simulated
and then integrated, which consumes massive computational
time and memory. In contrast, our formalism can calculate
the radiative coupling between two quantum emitters at any
location, along any polarization direction, with any transition
frequency, inside arbitrary dielectric nanostructures. Besides,
only the electric fields at the two quantum emitters (rather than
those of the whole space) need to be simulated, which saves
massive computational time and memory.

As for the near-field coupling in small optical cavities,
the coupling matrix elements W ±

i j (ω) of Eq. (8) sum up the
coupling coefficients giλ(ri ) between each quantum emitter
(with transition dipole moment uid̂i) and all the eigenmodes
Eλ(ri ) of the dielectric nanostructure, and can be exactly
calculated via the complex amplitudes of the electric field
E j (ri, ω). Since the E j (ri, ω) including the near field can
be exactly simulated by either the COMSOL Multiphysics
or the FDTD method, the near-field coupling mediated by

any eigenmode of the small optical cavities is taken into
consideration by our formalism.

Nevertheless, for simplicity, in the Hamiltonian of Eq. (1),
we ignore the direct interaction (not mediated by any pho-
ton) between the two quantum emitters, i.e., the electrostatic
dipole-dipole interaction (FRET). FRET is the nonradiative
energy transfer mediated by a (quantum-mechanical) coupling
between the transition dipoles of the donor and acceptor quan-
tum emitter described by a (point)-dipole-dipole interaction
[52]. The FRET rate is dependent on the inverse sixth power of
the inter-emitter separation, so the effective coupling distance
is typically only several nanometers. Obviously, in small
optical cavities, when the interdot separation is comparable
to a visible wavelength, the FRET is negligible.

III. RESULT AND DISCUSSION

To demonstrate and verify our formalism, we apply it to the
prototypical case of two quantum dots embedded in the PC L3
cavity reported in Ref. [2], as shown in Fig. 1. The GaAs PC
slab suspended in air has a triangular lattice of circular air
holes. The refractive index of GaAs is n = 3.41. The lattice
constant is a = 260 nm. The slab thickness is 120 nm. The
air hole radii are r = 65 nm. The PC L3 cavity is made by
missing three air holes in a line. The two air holes at both
cavity edges are shifted outwards by 0.15a and their radii are
decreased to 0.8r in order to increase its quality (Q) factor
[44].

The Ey(r) and Ex(r) components of the electric field Ec(r)
of the fundamental cavity mode [53] are simulated by FDTD
method and shown in Fig. 1. This spatial distribution is typical
among similar PC L3 cavities [54–56]. Most electromagnetic
energy of the cavity mode is localized inside the three missed
air holes due to the two-dimensional photonic bandgap and
is also confined inside the slab by the total internal reflection
[57].

For this high-Q leaky optical cavity, the divergence of the
cavity modes at large distances is slow and not discernible in
practical calculations due to limited numerical accuracy [58],
as validated in Fig. 1. The simulation domain for the PC L3
cavity is 25a, 22a, and 10a along x, y, and z direction, re-
spectively, which is large enough to obtain convergent results
according to our convergence test. Besides, our formalism
simulates the radiative coupling between two quantum emit-
ters via the electric fields at the two quantum emitters, without
the calculation of the effective mode volume.

The two quantum dots (denoted as A and B) are embedded
at the secondary maxima of the Ey(r) component and oriented
along y direction, so the interactions between the cavity mode
and each quantum dot can both reach maxima. The sponta-
neous emission lifetimes of the two quantum dots in GaAs
without PC pattern are both 1 ns.

We assume that at t = 0, quantum dot A and B are in
excited and ground state, respectively, and the PC L3 cavity
has no photon, i.e., the initial state of the system is |ψ (0)〉 =
|a〉 = |eA, gB, 0〉. The two quantum dots are in phase. We
start from the zero dot-dot and dot-cavity detuning case
ωA = ωB = ωc. To investigate the decay dynamics of the two
quantum dots inside the PC L3 cavity, we need to calculate
the coupling matrix elements W ±

i j (ω)(i, j = A, B), whose keys
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FIG. 1. Two quantum dots embedded in the PC L3 cavity. (a, b) Ey(r) and (c, d) Ex (r) component of the normalized electric field Ec(r) of
the PC L3 cavity mode on (a, c) y = 0 and (b, d) z = 0 plane, respectively. The resonant frequency of the cavity is h̄ωc = 1306.11 meV. The
two horizontal black lines in (a, c) denote the top and bottom surfaces of the slab. The black circles in (b, d) denote the air holes. The axes
adopt the unit of lattice constant a. The magenta dots denote the locations rA = (0.85a, 0, 0) and rB = (−0.85a, 0, 0) of the two quantum dots.
The magenta arrows denote their directions d̂A and d̂B.

are E j (ri, ω). As shown in Fig. 1, since both the geometry and
cavity mode are symmetric at rA and rB, the four E j (ri, ω) are
exactly the same. Consequently, based on Eq. (10), the four
W −

i j (ω) in this case are also identical, as shown in Fig. 2(a).
The four W +

i j (ω) are the complex conjugates of the four
W −

i j (ω), respectively, according to Eq. (9).
Based on the calculated W −

i j (ω), we can compare the rela-
tive strengths between the FRET and the radiative coupling.
As examples, the FRET rate is estimated to be (38 ps)−1

for the CdSe/ZnS quantum dots with interdot separation
of 5.4 nm [59], and (120 ps)−1 for the InP quantum dots

with interdot separation of 7 nm [5]. The interdot separation
between the two quantum dots inside the PC L3 cavity is
1.7a = 442 nm. At this interdot separation, according to the
dependence of the inverse sixth power, the FRET rate is
estimated to be (11.4 s)−1 for the CdSe/ZnS quantum dots,
and (7.6 s)−1 for the InP quantum dots, which are both
about 12 orders of magnitude smaller than the peak value
(at resonance) 1.76 meV

h̄ = (2.35 ps)−1 of the imaginary part
of W −

i j (ω). Obviously, in small optical cavities, when the
interdot separation is comparable to a visible wavelength, the
radiative coupling dominates over the FRET, which validates
the conclusion made at the end of Sec. II.

FIG. 2. Radiative coupling between two quantum dots in the PC L3 cavity for the zero dot-dot and dot-cavity detuning case ωA = ωB = ωc.
(a) Coupling matrix elements W −

i j (ω) (i, j = A, B). The solid black and dotted pink lines are the real and imaginary parts, respectively.
(b) Level shift �ii(ri, ω) and half of the local coupling strength �ii(ri, ω) for each quantum dot i = A, B.
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FIG. 3. Decay dynamics of the two quantum dots in the PC L3 cavity with zero dot-dot detuning ωA = ωB. (a) Modulus of the evolution
spectrum G±

aa(ω) and G±
ba(ω) for zero dot-cavity detuning ωA = ωc. (b) Population PA(t ) and PB(t ) for zero dot-cavity detuning ωA = ωc. Inset:

population for longer time. (c, d) Modulus of the evolution spectrum (c) G±
aa(ω) and (d) G±

ba(ω) for different dot-cavity detunings ωA − ωc.
The dashed white line denotes ωc. The dotted blue line denotes ωA (ωB).

When i = j, W ±
ii (ω) characterizes the local coupling be-

tween the ith quantum dot and the eigenmodes of the dielectric
nanostructure. We adopt our previous method proposed in
Refs. [48,60] to simulate the local coupling strength �ii(ri, ω).
Then, based on the local coupling strength, the level shift
is calculated via the principal-value integral as �ii(ri, ω) =

1
2π
P

∫ +∞
0 dω′ �ii (ri,ω

′ )
ω−ω′ . Since both the geometry and cavity

mode are symmetric at rA and rB, the results for quantum dot A
and B are identical, as shown in Fig. 2(b). Comparing Fig. 2(a)
with Fig. 2(b), we can confirm that the real part of W ±

ii (ω)
is the level shift �ii(ri, ω) while the absolute value of the
imaginary part of W ±

ii (ω) is half of the local coupling strength
�ii(ri, ω). We can adopt the formalism proposed in this paper
to directly, without performing principal-value integral, obtain
�ii(ri, ω) and �ii(ri, ω) from the imaginary and real part,
respectively, of the calculated W −

i j (ω). Based on �ii(ri, ω) and
�ii(ri, ω), the decay dynamics of single two-level quantum
emitter in arbitrary dielectric nanostructure can be further
investigated [48,60].

Based on the local coupling strength �ii(ri, ω), by our
previous method [48], we can obtain the Q factor of the PC
L3 cavity Q = 68891 and the modulus of coupling coefficient

h̄|gic(ri )| = 0.129 meV. The calculated h̄|gic(ri )| is slightly
different from 0.125 meV given in Ref. [2] since the location
ri of the ith quantum dot might be slightly different, which is
not explicitly given in Ref. [2].

Based on the coupling matrix elements W ±
i j (ω), by Eqs. (6)

and (7), we can calculate the evolution spectrum G±
aa(ω)

and G±
ba(ω). Obviously, G+

aa(ω) and G+
ba(ω) are the complex

conjugates of G−
aa(ω) and G−

ba(ω), respectively. Figure 3(a)
shows that the modulus of G±

aa(ω) and G±
ba(ω) both have

three peaks. The central peak at ωA (ωB) is the dark mode,
i.e., the antisymmetric state of the two quantum dots. The
central peak is extremely narrow since the linewidths of the
two quantum dots are negligible. On the contrary, the two
side peaks symmetrically beside ωA (ωB) are the bright modes
composed of the symmetric state of the two quantum dots and
the cavity mode. The two side peaks are relatively wide since
the linewidth of the cavity mode κ = ωc/Q is relatively large.
The vacuum Rabi splitting between the upper and lower po-
laritons is h̄ = 0.366 meV = 2

√
2h̄|gic(ri )|. In other words,

the two quantum dots with symmetric state behaves as a single
exciton with an effective modulus of coupling coefficient of√

2|gic(ri )| [2].
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The time-dependent radiative excitation transfer is a
useful coupling mechanism between different qubits in a
semiconductor-based quantum gate architecture [2]. The time-
dependent probabilities of excitation, i.e., the population of
quantum dot A and B as PA(t ) = |a(t )|2 and PB(t ) = |b(t )|2
can be calculated by Eq. (4), based on the evolution spectrum
G±

aa(ω) and G±
ba(ω). As shown in Fig. 3(b), initially, quantum

dot A is in excited state while quantum dot B is in ground state.
Due to the radiative coupling between the two quantum dots
mediated by the cavity mode, the populations of the two quan-
tum dots both oscillate at the frequency of /2 = √

2|gic(ri )|.
Due to the cavity leakage κ = ωc/Q, the amplitudes of the two
oscillating populations decay at the rate of 2ωc/Q. Due to the
dark state and negligible nonradiative decay mechanism of the
quantum dots, the two populations both eventually approach
the steady value of 0.25, as shown in the inset of Fig. 3(b).
As we mentioned in the Introduction, this radiation trapping
effect originates from the absence of indistinguishability and
entanglement in the initial state of the two quantum dots.

We now proceed to vary the transition frequencies of both
quantum dots while keeping zero dot-dot detuning ωA = ωB,
and calculate the evolution spectrum G±

aa(ω) and G±
ba(ω) for

different dot-cavity detunings ωA − ωc. As shown in Figs. 3(c)
and 3(d), for each detuning ωA − ωc, the evolution spectrum
G±

aa(ω) and G±
ba(ω) both have three peaks. The central peak at

ωA (ωB) is the dark mode, i.e., the antisymmetric state of the
two quantum dots. For large dot-cavity detuning |ωA − ωc|,
one side peak approaches ωA (ωB) (contributed mainly from
the transition of the quantum dots) and the other side peak
approaches ωc (contributed mainly from the resonance of
the cavity). As dot-cavity detuning |ωA − ωc| decreases, the
two side peaks gradually repel each other (both contributed
from the two quantum dots and the cavity), which is similar
to the anti-crossing behavior in the strong-coupling system
composed of only a single quantum dot and the PC L3 cavity
[60]. For zero dot-cavity detuning, the two side peaks locate
symmetrically at both side of ωc and form two polaritonic
states, which is the case of Fig. 3(a). In experiment, the exact
resonance between the cavity mode and the quantum dots
can be tuned by various techniques. The transition frequency
of the quantum dot can be tuned by temperature [61–64] or
operando strain [65], while the resonant frequency of the PC
cavity can be tuned by thin-film condensation [66] or digital
etching [67].

In experiment, due to the inhomogeneous distribution of
the shape and size, the transition frequencies of the quantum
dots are detuned, which may influence the radiative coupling
and decay dynamics of the quantum dots. We now turn to
investigate this realistic case and assume the small dot-dot de-
tuning as h̄(ωA − ωB) = 0.3 meV. First, we consider the zero
dot-cavity detuning case (ωA + ωB)/2 = ωc. The evolution
spectrum G±

aa(ω) and G±
ba(ω), as shown in Fig. 4(a), both have

three peaks. Comparing with the zero dot-dot detuning case in
Fig. 3(a), the central peak at ωc is much lower and wider since
the central peak is contributed from not only the two quantum
dots, but also the cavity. So, the central peak is no longer a
dark state. Besides, the vacuum Rabi splitting  between the
two side peaks is wider due to the additional dot-dot detuning.

Comparing with the zero dot-dot detuning case in Fig. 3(b),
the population PA(t ) and PB(t ) of the two quantum dots for

the small dot-dot detuning case in Fig. 4(b) both oscillate at a
larger frequency /2. Since the three peaks are all contributed
from the two quantum dots and the cavity, the three polaritons
may all decay into vacuum via the leakage of the cavity
κ = ωc/Q. Hence, the populations of the two quantum dots
both eventually approach the steady value of 0, at the rate of
2ωc/Q, as shown in the inset of Fig. 4(b).

We now vary the transition frequencies of both quan-
tum dots while keeping dot-dot detuning as h̄(ωA − ωB) =
0.3 meV, and calculate the evolution spectrum G±

aa(ω) and
G±

ba(ω) for different dot-cavity detunings (ωA + ωB)/2 − ωc.
As shown in Figs. 4(c) and 4(d), for each dot-cavity detun-
ing (ωA + ωB)/2 − ωc, the evolution spectrum G±

aa(ω) and
G±

ba(ω) both have three peaks. For large dot-cavity detuning
|(ωA + ωB)/2 − ωc|, two peaks approach ωA and ωB (con-
tributed mainly from the two quantum dots) and the third
peak approaches ωc(contributed mainly from the cavity). As
dot-cavity detuning |(ωA + ωB)/2 − ωc| decreases, the three
peaks gradually repel each other and form three polaritonic
states, all contributed from the two quantum dots and the
cavity. For zero dot-cavity detuning, the central peak locates
exactly at ωc and the two side peaks locate symmetrically at
both sides of ωc, which is the case of Fig. 4(a).

The inhomogeneous distribution of the shape and size of
quantum dots results in not only the transition frequency
detuning, but also the lifetime mismatch, which influences the
transition dipole moment, coupling coefficient and coupling
matrix elements, subsequently. According to our further cal-
culation, for lifetime mismatch of 1.44 times between quan-
tum dot A and B, the anti-crossing behavior among the upper
polariton, lower polariton and dark mode (or middle polariton)
branches in the evolution spectrum of varying dot-cavity
detuning for zero (or small) dot-dot detuning case can still
be observed, however, with different vacuum Rabi splitting.
For zero dot-dot detuning case, the population of quantum dot
A and B both oscillate at a different frequency. However, for
small dot-dot detuning case h̄(ωA − ωB) = 0.3 meV, the pop-
ulation of quantum dot A and, especially, B no longer oscillate
perfectly due to the coexistence of small transition frequency
detuning and large lifetime mismatch (1.44 times). Obviously,
the robustness of this system in experimental implementation
needs further verification.

Although we simulate two quantum emitters in the PC
L3 cavity as a demonstration, our formalism do not simulate
the band structures of PCs, and can be applied to arbitrary
dielectric nanostructures.

IV. CONCLUSION

We develop a formalism to efficiently calculate the radia-
tive coupling and decay dynamics of two two-level quantum
emitters in arbitrary dielectric nanostructures. The coupling
matrix element W ±

i j (ω) can be calculated based on the com-
plex amplitudes of the electric field E j (ri, ω), which is excited
by the jth dipole and detected at the location of the ith
dipole ri. Based on the coupling matrix element, the evolution
spectrum and hence the decay dynamics of the two quantum
emitters can be obtained. In the prototypical case of two
quantum dots embedded in the PC L3 cavity, we apply our
formalism to directly reproduce the local coupling strength
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FIG. 4. Decay dynamics of the two quantum dots in the PC L3 cavity with small dot-dot detuning as h̄(ωA − ωB) = 0.3 meV. (a) Modulus
of the evolution spectrum G±

aa(ω) and G±
ba(ω) for zero dot-cavity detuning (ωA + ωB)/2 = ωc. (b) Population PA(t ) and PB(t ) for zero dot-cavity

detuning (ωA + ωB )/2 = ωc. Inset: population for longer time. (c, d) Modulus of the evolution spectrum (c) G±
aa(ω) and (d) G±

ba(ω) for different
dot-cavity detunings (ωA + ωB)/2 − ωc. The dashed white line denotes ωc. The dotted blue line denotes ωA. The dash-dotted green line denotes
ωB.

�ii(ri, ω) and the level shift �ii(ri, ω). We can simulate
the anti-crossing behavior among the upper polariton, lower
polariton and dark mode (or middle polariton) branches in the
evolution spectrum of varying dot-cavity detuning for zero (or
small) dot-dot detuning case. The vacuum Rabi oscillation
in the populations of the two quantum dots for both zero
and small dot-dot detuning cases can be observed, although
approaching different steady values at the long-time limit.

The present formalism can be applied to a large variety of
photonic structures, such as PC slab [68] and dimers [24–26].
The doubly degenerated orthogonally polarized dipole modes
of the PC H1 cavity [69] might enrich the radiative coupling
and result in interesting decay dynamics of two quantum
emitters. The bowtie PC cavities with ultrasmall mode volume
below the diffraction limit [70,71] might be adopted to realize
the strong radiative coupling if two quantum emitters are
positioned exactly at the bowtie tips (hot spots of the cavity
mode).

The formalism can be further developed to handle different
initial states of the two quantum emitters with indistinguisha-
bility and entanglement, which can be boosted by cascaded
cavities [72], and predict different dynamic behaviors and

radiation characteristics. We can also develop the formalism
to investigate the decay dynamics of more than two quantum
emitters, which is essential for multiqubit manipulation. Most
importantly, due to the abundant physical phenomena and
promising application prospect in plasmonics [73–76], further
efforts should be made to develop the formalism to simulate
the radiative coupling and decay dynamics of two two-level
quantum emitters in arbitrary metallic nanostructures.
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APPENDIX A

The first two terms of Eq. (1) are the noninteraction Hamil-
tonian Ĥ0 and the last term is the interaction Hamiltonian ĤI .
Equation (5) can be rewritten as(

z − Ĥ0

h̄

)
Ĝ(z) = 1 + ĤI

h̄
Ĝ(z). (A1)

Regarding the completeness relationship I = |a〉〈a| +
|b〉〈b| + ∑

μ |cμ〉〈cμ|, the matrix element of both sides of Eq.
(A1) between 〈a| and |a〉 is

(z − ωA)Gaa(z) = 1 +
∑

λ

g∗
Aλ(rA)Gλa(z). (A2)

The matrix element between 〈b| and |a〉 is

(z − ωB)Gba(z) =
∑

λ

g∗
Bλ(rB)Gλa(z). (A3)

The matrix element between 〈cλ| and |a〉 is

(z − ωλ)Gλa(z) = gAλ(rA)Gaa(z) + gBλ(rB)Gba(z). (A4)

Eliminating Gλa(z) = 〈cλ|Ĝ(z)|a〉 in Eqs. (A2), (A3), and
(A4), and adopting the coupling matrix element of Eq. (8), we
can obtain

[z − ωA − WAA(z)]Gaa(z) = 1 + WAB(z)Gba(z),
(A5)

[z − ωB − WBB(z)]Gba(z) = WBA(z)Gaa(z).

By solving Eq. (A5), we can obtain Eqs. (6) and (7) [41].

APPENDIX B

The two curl Maxwell equations in the nonmagnetic,
nondispersive, and lossless dielectric nanostructure with di-
electric constant ε(r) = ε0εr (r) are

∇ × E(r, t ) = −∂μ0H(r, t )

∂t
, (B1)

∇ × H(r, t ) = Jγ (r, t ) + ∂ε(r)E(r, t )

∂t
+ ∂P(r, t )

∂t
. (B2)

Here, the electric field E(r, t ) and the magnetic field
H(r, t ) are functions of both space r and time t . Following
the approach in Ref. [77], for convenience of analysis, we
introduce the dissipation current density Jγ (r, t ), assumed to
be linear function of electric field as Jγ (r, t ) = γ ε(r)E(r, t ).
For lossless dielectric nanostructure, at the end of calculation,
the magnitude of proportionality constant goes to zero: γ →
0+. Hence, this magnitude is of no real consequence. The
dipole source (polarization density) P(r, t ) is equivalent to the
current source (current density) J(r, t ) as J(r, t ) = ∂P(r,t )

∂t .
The electric field can be expanded in terms of a complete

set of eigenmodes of the dielectric nanostructure as

E(r, t ) =
∑

λ

αλ(t )Eλ(r). (B3)

These eigenmodes obey the eigenmode equation:

1

εr (r)
∇ × [∇ × Eλ(r)] = ω2

λ

c2
Eλ(r). (B4)

These eigenmodes are orthonormal to each other as∫
V

εr (r)E∗
μ(r) · Eλ(r)dr = δμλ. (B5)

Taking curl of both side of Eq. (B1) and substituting Eq.
(B2) into it, we can obtain

∇ × ∇ × E(r, t ) = −μ0γ ε(r)
∂

∂t
E(r, t ) − μ0ε(r)

∂2E(r, t )

∂t2

− μ0
∂2P(r, t )

∂t2
. (B6)

Substituting Eq. (B3) into Eq. (B6), and considering Eq.
(B4), we can obtain

∑
λ

[
ω2

λαλ(t ) + γ α̇λ(t ) + α̈λ(t )
]
εr (r)Eλ(r) = − 1

ε0

∂2P(r, t )

∂t2
.

(B7)

Taking dot product of both side of Eq. (B7) by E∗
μ(r),

integrating over the whole space and considering Eq. (B5),
we can obtain

ω2
λαλ(t ) + γ α̇λ(t ) + α̈λ(t ) = − 1

ε0

∫
V

E∗
λ(r) · ∂2P(r, t )

∂t2
dr.

(B8)
Obviously, via the expansion coefficients αλ(t ), the electric

field E(r, t ) of Eq. (B3) is excited by the dipole source P(r, t ).
To simulate the two two-level quantum emitter, we adopt

single-point dipole source i = A, B:

Pi(r, t ) = Di(t )d̂iδ(r − ri ) =
∫ +∞

−∞
di(ωi )e

−iωit dωid̂iδ(r − ri ).

(B9)

Here, Di(t ) is the time-domain magnitude of the ith dipole
source with, e.g., Gaussian profile, and di(ωi ) is its complex
amplitude. d̂i and ri are the direction and location of the
ith dipole source, respectively. Substituting Eq. (B9) into Eq.
(B8), we can obtain

ω2
λαλ(t ) + γ α̇λ(t ) + α̈λ(t )

= 1

ε0

∫ +∞

−∞
di(ωi)ω

2
i e−iωit dωiE∗

λ(ri ) · d̂i. (B10)

The solution of the linear Eq. (B10) is

αλ(t ) = 1

ε0

∫ +∞

−∞
di(ωi )

ω2
i

ω2
λ − iγωi − ω2

i

e−iωit dωiE∗
λ(ri ) · d̂i.

(B11)

Although the dissipation current density Jγ (r, t ) can be
used to fix the precise position of the poles with respect to the
integration contour in Eq. (B11), there is no need to calculate
αλ(t ), by performing either frequency integration or contour
integration via Eq. (B11). In fact, what really matters is the
complex amplitude of αλ(t ) excited by the jth dipole source
as

αλ j (ω j ) = 1

ε0
d j (ω j )

ω2
j

ω2
λ − iγω j − ω2

j

E∗
λ(r j ) · d̂ j . (B12)
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Combining Eq. (B12) with Eq. (B3), we can obtain the
complex amplitude of the electric field excited by the jth
dipole source as

E j (r, ω j ) =
∑

λ

Eλ(r)
1

ε0
d j (ω j )

ω2
j

ω2
λ − iγω j − ω2

j

E∗
λ(r j ) · d̂ j .

(B13)

Considering Eq. (B9), the complex amplitude of the current
density corresponding to the ith dipole source is

Ji(r, ωi ) = −di(ωi )iωid̂iδ(r − ri ). (B14)

Similar to the time-averaged dipole emission power [78],
we may adopt Eqs. (B13) and (B14) to define the complex
dipole power:

Ri j = −1

2

∫
V

drJi(r, ωi ) · E∗
j (r, ω j )

= −i
∑

λ

di(ωi )d∗
j (ω j )ωiω j

4ε0
[d̂i · E∗

λ(ri )][Eλ(r j ) · d̂ j]

×
[
P 1

ω j − ωλ

+ iπδ(ω j − ωλ)

]
. (B15)

Here, we assume ωλ = ω j , since the sum is dominated
by the eigenmodes of the dielectric nanostructure whose
eigenfrequencies ωλ are close to the transition frequency of
the quantum emitter ω j . If we set ωi as constant and ω j as
variable ω, then Eq. (B15) can be rewritten as

Riω = −1

2

∫
V

drJi(r, ωi ) · E∗
j (r, ω)

= −i
∑

λ

di(ωi )d∗
j (ω)ωiω

4ε0
[d̂i · E∗

λ(ri )][Eλ(r j ) · d̂ j]

×
[
P 1

ω − ωλ

+ iπδ(ω − ωλ)

]
. (B16)

According to Eqs. (9) and (B16), we can obtain

W −
i j (ω) = −i

u∗
i u j

h̄di(ωi )d∗
j (ω)ω

∫
V

drJi(r, ωi ) · E∗
j (r, ω).

(B17)
Here, we assume ωλ = ω j once more. By substituting Eq.

(B14) into Eq. (B17), we can further obtain Eq. (10).
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