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Universal composite pulses for efficient population inversion with an arbitrary excitation profile
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We introduce a method to rotate arbitrarily the excitation profile of universal broadband composite pulse
sequences for robust high-fidelity population inversion. These pulses compensate deviations in any experimental
parameter (e.g., pulse amplitude, pulse duration, detuning from resonance, Stark shifts, unwanted frequency
chirp, etc.) and are applicable with any pulse shape. The rotation allows one to achieve higher-order robustness
to any combination of pulse area and detuning errors at no additional cost. The latter can be particularly
useful, e.g., when detuning errors are due to Stark shifts that are correlated with the power of the applied field.
We demonstrate the efficiency and universality of these composite pulses by experimental implementation for
rephasing of atomic coherences in a Pr3+:Y2SiO5 crystal.
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I. INTRODUCTION

Composite pulses (CPs) have been used for decades in nu-
clear magnetic resonance [1] and since even earlier in applied
optics as a tool to design polarization filters and achromatic
polarization retarders [2]. Recently, they have also been ap-
plied in quantum information processing [3–5] and quantum
optics for highly accurate and robust qubit rotations [6–9],
composite quantum gates [10–16], rephasing of atomic coher-
ences [17–19], fault-tolerant dynamical decoupling [20–25],
and robust composite pulses spectroscopy [26–28]. Examples
of recent applications include also experiments in trapped
ions [3,29–34], neutral atoms [35], cold-atom interferometry
[26,36,37], optically dense atomic ensembles [38], quantum
dots [4,39–43], NV centers in diamond [44–46], and optome-
chanics [47]. The basic idea of CPs is to correct the imperfect
interaction of a quantum system with a single pulse by using
a sequence of pulses with suitably chosen relative phases.
The latter serve as control parameters to choose an optimized
excitation path in Hilbert space, which increases fidelity and
robustness with respect to certain errors.

A common feature of CPs is that they compensate experi-
mental variations in a single parameter only (e.g., pulse dura-
tion, pulse amplitude, detuning), or simultaneous fluctuations
in at most two parameters [1]. Moreover, the optimal phases
of CPs usually depend on their pulse shape. Recently, we
derived theoretically and demonstrated experimentally univer-
sal CPs for complete population inversion, which compensate
variation in any experimental parameter and work with any
pulse shape [18]. The only assumptions made are those of a
two-state system, coherent evolution, and identical pulses in
the CP sequence with accurate control of their relative phases.
These pulses exhibit a remarkably robust performance for any
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systematic error. We also showed that the obtained solutions
for composite pulses consist of two main types of sequences
(which we termed “a” and “b” group), which compensate
(with no additional cost) even higher-order errors in pulse area
and detuning, respectively [18].

In this paper, we describe a general theoretical procedure to
derive universal composite pulses with an arbitrary rotation of
the excitation profile with respect to pulse area and detuning
errors. These pulses compensate variation in any experimental
parameter and work with any pulse shape. Additionally, they
also allow for higher-order error compensation for any combi-
nation of pulse area and detuning errors at no additional cost.
For example, they could be very efficient for compensation of
Stark shift errors, where the detuning is correlated with the
power of the applied field. As a basic example of relevance
to many applications in quantum physics, we experimentally
demonstrate the concept by rephasing of atomic coherences
for coherent optical data storage in a Pr3+:Y2SiO5 crystal.

II. THEORETICAL DESCRIPTION

We consider a coherently driven two-state quantum sys-
tem. Its dynamics obeys the Schrödinger equation, ih̄∂t c(t ) =
H(t )c(t ), where the vector c(t ) = [c1(t ), c2(t )]T contains
the probability amplitudes of the two states. The Hamil-
tonian in the rotating-wave approximation reads H(t ) =
(h̄/2)�(t )e−iδ(t )|1〉〈2| + H.c., with δ(t ) = ∫ t

0 �(t ′)dt ′, where
� = ω0 − ω is the detuning between the field frequency ω

and the Bohr transition frequency ω0. The Rabi frequency
�(t ) = −d · E(t )/h̄ defines the coupling of the two states,
induced by the electric field E(t ) and the transition dipole
moment d. In general, both �(t ) and �(t ) are time dependent.

Our objective is to achieve complete population inversion
in a two-state quantum system even when the properties of
the driving pulses are unknown. We assume that the composite
pulse duration is shorter than the decoherence time of the sys-
tem, so its evolution due to a single pulse can be characterized
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by a propagator

U(α, β ) =
[

ε eiα
√

1 − ε2eiβ

−√
1 − ε2e−iβ ε e−iα

]
, (1)

where the phases α and β and the error term ε ∈ [0, 1] are
unknown. The propagator connects the probability amplitudes
at the initial and final times ti and tf: c(tf ) = U(α, β )c(ti ).
The transition probability of the single pulse yields P(1)

12 =
1 − |U11|2 = 1 − ε2. A constant phase shift φ in the Rabi
frequency leads to the shift β → β + φ in the propagator
U(α, β + φ). Then, the propagator of a composite sequence
of n identical pulses, each with a phase φk , reads

U(n) = U(α, β + φn) . . . U(α, β + φ2)U(α, β + φ1). (2)

We make no assumptions about the individual pulses in the
composite sequence, i.e., how ε, α, and β depend on the
interaction parameters. This justifies the term “universal” for
these composite pulses because they will compensate imper-
fections in any interaction parameter. We only assume that
the constituent pulses are identical and that we can control
their phases φk . We also note that, as we work with the pulse
propagator, we make no assumptions about the initial state of
the system and population inversion is improved for arbitrary
initial states.

In previous work on composite pulses [18], it proved useful
to apply the so-called anagram condition and choose φk =
φn−k+1 in order to obtain the simplest solutions for the phases.
In this work, we do not make this assumption, which allows us
to expand significantly the range of solutions for the universal
composite pulses. First, we define the phase rotation matrix
R(φ) ≡ exp (−iφσz/2), where σz is the respective Pauli ma-
trix, so the propagator in Eq. (1) takes the form U(α, β ) =
R†(β + α)U(0, 0)R(β − α) and the composite pulse propa-
gator in Eq. (2) becomes

U(n) = R†(φn + β + α)U(0, 0)R(�φn−1 − 2α)U(0, 0) . . .

U(0, 0)R(�φ1 − 2α)U(0, 0)R(φ1 + β − α), (3)

where �φk ≡ φk+1 − φk, k = 1, . . . , n − 1. The propagators
R†(φn + β + α) and R(φ1 + β − α) in Eq. (3) do not affect
the population transfer efficiency of the composite pulse as
they cause only phase rotations. Thus the performance de-
pends only on the phase shifts �φk − 2α and the error term
ε, which affects U(0, 0).

We note that the “universal” improvement in performance
implies that it should take place for any α. Physically, α is
typically a phase that is accumulated due to dephasing during
(and/or between) the pulses (if they are time separated). As α

is present in all phase shifts �φk − 2α, a universal composite
pulse should also improve performance if all �φk are shifted
by the same phase. Thus the universal improvement, i.e., for
any phases α, β, and error term ε of the individual pulse, is
only due to the relative phase shifts �k ≡ �φk+1 − �φk =
φk+2 − 2φk+1 + φk, k = 1, . . . , n − 2 (see the Appendix for
a detailed analysis). The specific choice of one of the phase
shifts, e.g., �φ1 = φ2 − φ1, for a given set of �k allows
for selective higher-order compensation of particular errors,
e.g., in pulse area or detuning or combinations of these.
In the following, we take φ1 = 0 without loss of generality
because this assumption amounts to fixing the overall phase

of the wave function. Then, we use the phase shift �φ1 = φ2

as a free parameter to achieve selective higher-order error
compensation for specific errors. Finally, one can use these
assumptions and the definition of �k to express all phases φk

of a composite pulse in terms of φ2 and �k as

φk = (k − 1)φ2 +
k−1∑
l=1

(k − l − 1)�l . (4)

In order to determine the actual phases of a universal CP
sequence of n pulses we calculate the propagator element

U (n)
11 =

n∑
j=1

cn jε
j, (5)

where the coefficients cn j depend on α, φ2, and �k . Our goal
is to nullify (or minimize) all the coefficients cn j up to the
highest possible order of j, which we label j0. As already
shown, the proper choice of �k is sufficient to nullify (mini-
mize) the coefficients cn j , i.e., achieve universal improvement
in performance. We first consider the simplest case of a three-
pulse sequence (n = 3) and obtain

U (3)
11 = −(2eiξ/2[cos (�1/2)]eiα + eiξ e−iα︸ ︷︷ ︸

c31

)ε + O(ε3), (6)

where ξ = 2φ2 + �1. It is evident that we cannot nullify c31

for every α by a proper choice of the control parameters �1

and φ2. Nevertheless, we can minimize |c31| = 1 by choosing
�1 = π . Then, the phase φ3 = 2φ2 + π is a general solution
for the universal composite pulse for population inversion of
three pulses. The free parameter φ2 can be used to achieve
higher-order error compensation for specific errors. We note
that, by choosing φ2 = π/2, we obtain φ3 = 0, i.e., the solu-
tion for the U3 composite pulse in [18].

Next, we give an example for a five-pulse sequence (n =
5), where we obtain

U (5)
11 = ei(2φ2+�1+�2 )(c51+eiα + ei(φ2+�1+�3 )c51−e−iα )︸ ︷︷ ︸

c51

ε

+ O(ε3), (7)

where

c51+ = 1 + ei�3 (1 + ei�1 ),

c51− = 1 + ei�2 . (8)

Then, we can nullify c51 for any α by nullifying both c51+
and c51−, which requires the anagram condition �1 = �3,
and choosing �1 = 2π/3 and �2 = π . As the error term ε

is typically small, the composite pulse transition probability
P(5)

12 = 1 − O(ε6) is much closer to unity than the transition
probability of a single pulse P(1)

12 = 1 − ε2. The phases of the
individual pulses in the sequence φk can be determined by the
formula in Eq. (4) and take the form φ3 = 2φ2 + 2π/3, φ4 =
3φ2 + π/3, and φ5 = 4φ2 + 2π/3. This is a general solution
for the universal composite pulse for population inversion,
consisting of five pulses. The free parameter φ2 can be used to
achieve higher-order error compensation for specific errors.
We note that, by choosing φ2 = 5π/6 and φ2 = 11π/6, we
obtain the solutions for the U5a and U5b composite pulses in
[18].
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TABLE I. Phases �l and the corresponding phases φk of universal CPs with n pulses (indicated by the number in the label of the CP). We
nullify the coefficients in Eq. (5) up to order j0 = 0 for n = 3, j0 = 2 for n = 5 to 9, j0 = 4 for n = 13, and j0 = 8 for n = 25. Each phase
is defined modulo 2π . The phases φk are examples for different φ2 and are determined from �l and Eq. (4). We show only two examples for
U13 and U25 for compactness of presentation. In order to permit comparison to [18], we include also the labels of the “a” and “b” cases for
the CPs, which compensate pulse area and detuning errors to a higher order, respectively. The excitation dynamics remain the same when we
simultaneously add a constant shift to all phases φk . The change of sign of all phases or the reversal of pulse order reflects the excitation profile
(vs errors in the pulse area and detuning �) around the � = 0 axis (see text).

Group Phases �l , l = 1, . . . , n − 2 Sequence Label a/b Phases φk, k = 1, . . . , n

U3 (1)π U3(90◦) U3a (0, 1, 0)π/2
U3(0◦) U3b (0, 0, 1)π
U3(45◦) (0, 1, 6)π/4
U3(135◦) (0, 3, 2)π/4

U5 (2, 3, 2)π/3 U5(150◦) U5a (0, 5, 2, 5, 0)π/6
U5(330◦) U5b (0, 11, 2, 11, 0)π/6
U5(180◦) (0, 3, 2, 4, 2)π/3
U5(0◦) (0, 0, 2, 1, 2)π/3

U7 (6, 4, 5, 4, 6)π/6 U7(165◦) U7a (0, 11, 10, 17, 10, 11, 0)π/12
U7(345◦) U7b (0, 23, 10, 5, 10, 23, 0)π/12
U7(180◦) (0, 6, 6, 10, 7, 8, 3)π/6
U7(0◦) (0, 0, 6, 4, 7, 2, 3)π/6

U13 (12, 16, 14, 16, 16, 11, 16, 16, 14, 16, 12)π/12 U13(67.5◦) U13a (0, 9, 42, 11, 8, 37, 2, 37, 8, 11, 42, 9, 0)π/24
U13(247.5◦) U13b (0, 33, 42, 35, 8, 13, 2, 13, 8, 35, 42, 33, 0)π/24

U25 (2, 3, 2, 2, 3, 2, 3, 2, 4, 1, 2, 3, 2, 1, 4, 2, 3, 2, 3, U25(150◦) U25a (0, 5, 2, 5, 0, 11, 4, 1, 4, 11, 2, 7, 4, 7, 2, 11, 4, 1,

2, 2, 3, 2)π/3 4, 11, 0, 5, 2, 5, 0)π/6
U25(330◦) U25b (0, 11, 2, 11, 0, 5, 4, 7, 4, 5, 2, 1, 4, 1, 2, 5, 4, 7,

4, 5, 0, 11, 2, 11, 0)π/6

We can derive the phases of universal composite pulses
with a higher number of pulses in an analogous way. Specif-
ically, we nullify the coefficients cn j up to the maximum
possible order j0 and minimize the absolute values of the
coefficients of the first nonzero order j0 + 1. The transi-
tion probability for such CP reads P(n)

12 = 1 − |U (n)
11 |2 = 1 −

O(ε2 j0+2). As the error term ε is typically small, the composite
pulse transition probability P(n) quickly converges towards
unity by using longer composite sequences. The length of
pulse sequences is only limited by the coherence time of the
quantum system, to guarantee that the effects of all pulses
in the sequence remain coherent to each other. In order to
incorporate the continuous parameter φ2 in the name of the
universal CP sequences we name them “Un(φ2)”, where n is
the number of pulses in the sequence. For instance, the U5a
and U5b sequences in [18] are named U5(150◦) and U5(330◦)
in this new naming scheme.

Several universal CPs are listed in Table I. The phases �l

are the same and unique (up to the sign of all of them) for the
CP with a particular number of pulses. The proper choice of
the free parameter φ2 allows one to achieve higher-order error
compensation for specific errors or their combinations. For
example, the CPs labeled “a” perform better against variations
in the pulse duration, whereas those labeled “b” perform
better against the detuning [18], while the other sequences
allow for additional error compensations when the errors are
correlated. The latter can be especially useful, e.g., when the
detuning errors are due to Stark shifts that are correlated to
the power of the driving field. All of these, however, permit
compensation against both parameters, as well as against all
other parameters.

The performance of the universal composite pulses for
different phases φ2 versus deviations in the pulse duration
T of each constituent pulse and the detuning is shown in
Figs. 1 and 2. Figure 1 compares a single pulse (a) to four
different three-pulse CPs from the U3 group [(b)–(e)]. As it
is well known, the transition probability for a single pulse
[Fig. 1(a)] quickly drops when the pulse duration T does not
match to a perfect π pulse, i.e., T = 10 μs, or when the pulse
carrier frequency is off resonance. All U3 universal CPs are
robust with respect to variations along both pulse area and
detuning errors. Hence the areas of high transfer probability
(e.g., beyond 0.95 or 0.5; see thick solid and dashed lines
in Fig. 1) increase for excitation with composite pulses com-
pared to a single pulse. The U3(90◦) sequence compensates
higher-order errors with respect to pulse duration, i.e., pulse
area, and is thus labeled also U3a. Similarly, U3(0◦) corrects
higher-order detuning errors and is labeled U3b. Moreover, by
variation of φ2, we can achieve higher-order compensation for
specific combinations of these errors. This is clearly visible
in the simulations by a rotation and controlled distortion of
the regions of high transfer efficiency, when the phase φ2

varies [compare the shape of the patterns in Figs. 1(b)–1(e)].
Specifically, the U3(45◦) [U3(135◦)] CP compensate higher-
order errors when the Rabi frequency and detuning errors have
a negative (positive) correlation. The latter can be particularly
useful when detuning errors are due to Stark shifts, which are
correlated with the power of the applied field.

We note that U3 is not a truly universal CP because the
phases do not nullify the first-order coefficients (i.e., j0 =
0), but only minimize them; cf. Table I. Figure 2 shows
the performance of the higher-order, genuine universal U5
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FIG. 1. Numerical simulation: transition probability P(n)
12 vs static

detuning and duration T of each constituent pulse (referred to as
“pulse duration”) for a single pulse (a) and CPs from the U3 group
[(b)–(e)] with phases from Table I. The particular choice of φ2

allows arbitrary rotation of the excitation profile and higher-order
error compensation at no additional cost. Note that the excitation
profiles of U3(90◦) and U3(0◦) are symmetric around the � = 0
axis. The pulses are assumed rectangular with a Rabi frequency
of � = 50 kHz (in frequency units). Thick solid lines indicate
regions of high transfer probabilities beyond 0.95, thin solid lines
indicate regions with transfer probability beyond 0.7, and dashed
lines indicate regions with transfer probability beyond 0.5.

pulses for different φ2. Again, the U5(150◦) and U5(330◦)
CPs compensate higher-order errors with respect to the pulse
duration or detuning, respectively [18]. Also for the five-pulse
sequences, variation of φ2 rotates and controllably distorts the
composite efficiency patterns to enable higher-order compen-
sation for specific combinations of pulse errors. The optimum
choice of the CP will depend on the particular errors and their
correlation. For example, the U5(60◦) [U5(240◦)] CP have a
higher-order error compensation when the Rabi frequency and
detuning errors have a negative (positive) correlation.

We note that for all universal CPs the change of the sign
of the phases φk or the reversal of pulse order reflects the
excitation profile with respect to the � = 0 axis. The same
reflection takes place when the phases φk are calculated from
Eq. (4) with the values of �l in Table I, φ2 = (φa,b

2 + φ̃), and
we change the sign of φ̃. In the latter expression, φa,b

2 are the
phases φ2 of the Una and Unb CPs, respectively (see Table I)
and φ̃ is an arbitrary phase.

We verified by extensive simulations the robustness of the
universal CPs of seven and more pulses against variations
in other interaction parameters, e.g., Stark shifts, unwanted
frequency chirp, pulse shape, frequency jitter, etc. All sim-
ulations confirm that our universal CPs are amazingly ro-
bust to any such variation and the high-fidelity region ex-
pands steadily with the CP order. We note that the univer-
sal composite pulses can improve performance even when
pulse parameters, e.g., amplitude or frequency, vary on a
time scale, which is shorter than individual pulse duration
as long as it is systematic, i.e., it is repeated in every pulse.
Again, for all universal CPs, shifting φ2 allows us to achieve
higher-order compensation for specific combinations of these
errors.

III. EXPERIMENTAL DEMONSTRATION

We experimentally verified the performance of universal
CP sequences by rephasing atomic coherences for optical data
storage. In the experiment, we generate the atomic coherence
on a radio-frequency (RF) transition between two inhomoge-
neously broadened hyperfine levels of a Pr3+:Y2SiO5 crystal.
The atomic coherence between the two quantum states is op-
tically prepared and read out by electromagnetically induced
transparency (EIT) [48], which enables a straightforward op-
tical readout. The EIT scheme couples states |1〉 and |2〉 by
a strong control field and a weak probe field via an excited
state |3〉. By simultaneously and adiabatically turning off the
control and probe fields, we convert the probe field into an
atomic coherence, i.e., a coherent superposition of states |1〉
and |2〉. This is the “write” process of optical information
encoded in the probe field, often termed “stopped light” or
“stored light” [48–50]. To “read” the optical memory after
an arbitrary storage time, we apply the strong control field
again to beat with the atomic coherence and thereby generate
a signal field with the same properties as the stored field. The
concept and the experimental setup for EIT-based light storage
in Pr3+:Y2SiO5 are described in detail elsewhere [50,51].
After optimizing the parameters of the light storage process
we achieve an efficiency of (20.0 ± 0.4)% for a readout after
2 μs, which is much shorter than the dephasing time of about
20 μs.

In such a coherent optical memory it is crucial to reverse
the effect of dephasing of the atomic coherences during the
storage time. The dephasing is due to inhomogeneous broad-
enings of the hyperfine levels. Rephasing is implemented
usually by resonant RF π pulses, e.g., in a standard Carr-
Purcell-Meiboom-Gill (CPMG) sequence [52]. However, res-
onant π pulses do not work efficiently in systems with large
inhomogeneous broadening, as the transition frequency varies
for different ions. The efficiency is further reduced by the
spatial inhomogeneity of the RF field over the crystal. As an
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FIG. 2. Numerical simulation: transition probability P(n)
12 vs static detuning and duration T of each constituent pulse for CPs from the U5

group with phases from Table I and Eq. (4). As expected, the high efficiency ranges are much broader than with the U3 sequence [compare with
Figs. 1(b)–1(e)]. As we change the free parameter φ2, the excitation profile rotates and allows additional higher-order error compensation for
specific pulse area and detuning errors, as well as their combinations. Note that the excitation profiles of U5(150◦) and U5(330◦) are symmetric
around the � = 0 axis. The pulses are assumed rectangular with a Rabi frequency of � = 50 kHz (in frequency units). For compactness of
presentation we omit the plots for U5(270◦) and U5(30◦).

alternative, adiabatic rephasing techniques, e.g., rapid adia-
batic passage [53,54] or composite adiabatic passage [8,17],
offer improved operation bandwidth. To permit much broader
operation bandwidth, we replace now the single π pulses in
the CPMG rephasing sequence by our universal CPs. In the
experiment we set the storage time to 400 μs, i.e., much
larger than the dephasing time. The optical “write” and “read”
sequences were kept fixed, while the RF rephasing pulses
were varied. Therefore, the energy of the retrieved optical
signal serves as a measure for the rephasing efficiency and
hence the efficiency of the driving π pulse or CP.

The different rephasing pulses are generated by an arbitrary
waveform generator (AWG 5014, Tektronix) and amplified
to a maximum power of 30 W (LZY-22+, Mini-Circuits).
In order to maximize the power of the RF pulses emitted
by our pair of coils surrounding the Pr3+:Y2SiO5 crystal
we use a single frequency impedance matching circuit. This
circuit provides a 3 dB bandwidth of about 600 kHz, which
is much wider than the maximum detuning range of 120 kHz
considered in this paper.

We set the amplitude of the RF pulses such that the Rabi
frequency is constant and perform a systematic measurement
of the rephasing efficiency for different detuning and duration
of the pulses. Figure 3(a) shows the rephasing efficiency of
a single pulse relative to the maximum rephasing efficiency
of the U5(60◦) sequence, which performed best in our ex-
periment, as demonstrated later in the text. The contour plot
shows a clear maximum in the rephasing efficiency for zero
detuning and a pulse duration of 10 μs. As the maximum is

expected when the applied pulse is a resonant π pulse, we
estimate that our Rabi frequency is approximately 50 kHz (in
frequency units). Despite the rephasing the maximum light
storage efficiency is reduced to 4.7%. The reduction of the
efficiency by a factor of four compared to the short storage
time of 2 μs is partially due to pulse errors and partially due
to additional decoherence effects which lead to a decoherence
time of about 500 μs, i.e., in the range of our storage time.
For pulse parameters deviating from the optimum the transfer
efficiency of the π pulses, and hence the rephasing efficiency
of the light storage experiment, quickly drops. We note that,
for application of two π pulses, the rephasing efficiency can
be approximated by the square of the single-pulse transition
probability [19]. This leads to a narrowing of the efficient
parameter region [compare Fig. 1(a)], while the shape of the
excitation profile is preserved.

Now we replace each of the single π pulses by three
consecutive π pulses with relative phases from the U3 group
and repeat the parameter scan. Figures 3(b)–3(e) show the
experimentally determined relative rephasing efficiency vs de-
tuning and pulse duration of our composite pulse sequences.
The shapes of the obtained efficiency patterns clearly con-
firm the theoretical prediction (compare Fig. 1). The U3
composite pulse sequences significantly increase the regions
of high rephasing efficiency. Choice of φ2 rotates the ex-
citation pattern. While the U3(90◦) sequence works well
to compensate pulse duration errors at zero detuning, the
U3(45◦) and U3(135◦) sequences enable compensation of
specific combinations of the two parameters. Hence, when
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FIG. 3. Experimental data: rephasing efficiency in the EIT-driven
optical memory in Pr3+:Y2SiO5, involving either single pulses (a) or
different U3 rephasing sequences [(b)–(e)], vs pulse duration and
detuning. Blue color indicates low and red color indicates high
rephasing efficiency. The rephasing efficiency is normalized with
respect to the maximum efficiency of all investigated sequences [i.e.,
the maximum of the U5(60◦) sequence].

pulse area and detuning errors are correlated in an experiment,
we can choose φ2 in the rephasing composite sequence to
cope with any specific correlation and maintain high transfer
efficiency. We note that in Fig. 3 we show only four specific
choices of φ2. Nevertheless, we confirmed that the excitation
pattern can be varied continuously with φ2. This new feature
of composite sequences simply requires appropriate choice
of phases, while no changes to the experimental setup are
necessary.

We note that careful comparison of our experimental data
to the simulated transfer efficiency (see Fig. 1) shows that the
expected additional smaller areas of higher efficiency in the
“wings” of the U3(90◦) profile [e.g., at � = ±(30 . . . 60) kHz
and pulse durations of 5 . . . 9 μs in Fig. 1(b)] have less
efficiency than theoretically expected. We attribute this to RF

FIG. 4. Experimental data: rephasing efficiency in the EIT-driven
optical memory in Pr3+:Y2SiO5, involving either single pulses (a) or
different U5 rephasing sequences [(b)–(e)], vs pulse duration and
detuning. The rephasing efficiency is normalized with respect to the
maximum efficiency of all investigated sequences [i.e., the maximum
of the U5(60◦) sequence].

field inhomogeneities, which lead to averaging effects and
washing out of smaller features in the excitation patterns.
Moreover, the experimental data indicate a drop of the rephas-
ing efficiency for larger pulse durations—while the simulation
for the U3(90◦) pulse sequence shows a region of high transfer
efficiency for zero detuning and a pulse duration of 15 μs.
This could be due to inhomogeneous broadening and field
inhomogeneities in our experimental setup, which reduce the
rephasing efficiency of single pulses for longer interaction
times and are not taken into account in our simplified simu-
lations.

In order to proceed towards longer composite sequences in
the experiment, we replaced now the U3 pulse sequence by
five pulses with phases according to the U5 group. Figure 4
shows the parameter scans, similar to Fig. 3. Very obvi-
ously, the rephasing efficiency is now substantially improved,
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compared not only to the single π pulse, but also compared
to the U3 sequences. Both the plateaus of efficient transfer
efficiency as well as the peak values increase. The U5(60◦)
sequence reaches the maximum rephasing efficiency of all
sequences shown in this publication. At a detuning of 5 kHz
and a pulse duration of 7.75 μs the rephasing efficiency is a
factor of 1.37 higher compared to the simple π -pulse rephas-
ing. Note that the increase in rephasing efficiency depends on
the amount and type of pulse errors and the given value is
specific to our experimental setup. Our data confirm the the-
oretically predicted higher capability for error compensation.
Again, comparison of the four U5 sequences shows controlled
rotation and distortion of the excitation pattern by variation of
phases.

IV. CONCLUSION

In conclusion, we theoretically developed and experimen-
tally demonstrated generalized universal broadband compos-
ite pulses for robust high-fidelity population inversion with
the possibility to arbitrarily rotate their excitation profile in
parameter space. The relative phases of the pulses in the
sequence serve as control parameters to steer the quantum
system on robust pathways through Hilbert space. The pulse
sequences compensate deviations in any experimental pa-
rameter (e.g., pulse amplitude, pulse duration, detuning from
resonance, Stark shifts, unwanted frequency chirp, etc.) and
are applicable with any pulse shape. As the only constraints
we require identical pulses in the sequence, accurate control
of their relative phases, and the total duration of the pulse
sequence must not exceed the coherence time of the medium.
The rotation of the excitation profile allows one to achieve
higher-order robustness to any combination of pulse area and
detuning errors at no additional cost.

We experimentally demonstrated the concept by system-
atic studies of the rephasing efficiency of atomic coherences
during EIT-based light storage in a Pr3+:Y2SiO5 crystal. The
experimental implementations of our new U3 and U5 compos-
ite pulse sequences agree very well with the numerical simu-
lations and, hence, fully support the theoretical predictions.
Both the peak transfer efficiency as well as the robustness
(e.g., measured by the extension of regions of high transfer
efficiency) are much larger for rephasing by composite pulses
compared to simple π pulses. Moreover, the experimental data
demonstrate the possibility to rotate the excitation patterns in
parameter space by variation of the pulse phases. This is of rel-
evance to any experiment, which requires efficient and robust
compensation of correlated excitation pulse errors. Specific
examples include, e.g., quantum gates, dynamical decoupling,
or composite pulses spectroscopy, where the individual popu-
lation inversion pulses can be replaced by composite pulses or
embedded in the protocol.
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APPENDIX: PROOF OF IMPROVED PERFORMANCE
FOR ANY φ2

In this section we show that the universal improvement in
performance for a universal composite pulse is due only to the
choice of the phases �k , as defined in the main text, and can
be achieved for any phase φ2.

First, the propagator of a single pulse is conveniently
parametrized by [18,19,22]

U(α, β ) =
[

ε eiα
√

1 − ε2eiβ

−√
1 − ε2e−iβ ε e−iα

]
, (A1)

where the phases α and β and an error term ε ∈ [0, 1]
are unknown. A constant phase shift φ in the Rabi fre-
quency transforms the phase β to β + φ and the propagator
U(α, β ) to

U(α, β + φ) = R†(φ)U(α, β )R(φ)

=
[

ε eiα
√

1 − ε2ei(β+φ)

−√
1 − ε2e−i(β+φ) ε e−iα

]
,

(A2)

where the phase rotation matrix is defined as

R(φ) ≡ exp (−iφσz/2) =
[

e−iφ/2 0
0 eiφ/2

]
,

where σz is the respective Pauli matrix. We note that the
unknown phases α and β can also be included in the phase
rotation matrix, so the propagator in Eq. (A2) takes the form

U(α, β + φ) = R†(φ + β + α)U(0, 0)R(φ + β − α). (A3)

Assuming coherent evolution during a sequence of n pulses
with different relative phases φk , the propagator of the com-
posite sequence then becomes

U(n) = U(α, β + φn) . . . U(α, β + φ1), (A4)

and the phases φk of the individual pulses can be used as con-
trol parameters to achieve a robust performance. For example,
the propagator of a sequence of n = 3 pulses with phases φ1,
φ2, and φ3 is given by

U(3) = U(α, β + φ3)U(α, β + φ2)U(α, β + φ1)

= R†(φ3 + β + α)U(0, 0)R(�φ2 − 2α)

U(0, 0)R(�φ1 − 2α)U(0, 0)R(φ1 + β − α),

(A5)

where �φk ≡ φk+1 − φk is the relative phase shift between
the (k + 1)th and the kth pulses.

The propagators R†(φ3 + β + α) and R(φ1 + β − α) in
Eq. (A5) do not affect the population transfer efficiency as
they cause only phase rotations around the z axis of the
Bloch sphere. Thus the population transfer efficiency of the
composite pulse can be determined solely from the modified
propagator

Ũ(3) = U(0, 0)R(�φ2 − 2α)U(0, 0)R(�φ1 − 2α)U(0, 0),
(A6)

which does not depend on the phase β but only on the relative
phase shifts �φk between the pulses, the unknown phase α
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(e.g., due to dephasing during a pulse), and the error term ε ∈
[0, 1], which quantifies the single pulse population transfer
efficiency error: ε2 ≡ 1 − P(1)

12 .
The analysis can be generalized for a sequence of n pulses,

where the modified propagator takes the form

Ũ(n) = U(0, 0)R(�φn−1 − 2α) . . .

U(0, 0)R(�φ2 − 2α)U(0, 0)R(�φ1 − 2α)U(0, 0).

(A7)

We can redefine all relative phase shifts by taking χk ≡
�φk+1 − �φ1, k = 1, . . . , n − 2 and obtain

Ũ(n) = U(0, 0)R(χn−2 + α̃) . . .

U(0, 0)R(χ1 + α̃)U(0, 0)R(̃α)U(0, 0), (A8)

where α̃ ≡ �φ1 − 2α. We note that we can take φ1 = 0
without loss of generality as usually only the relative phases
between the pulses have a physical meaning. Thus �φ1 =
φ2 − φ1 = φ2 and α̃ = φ2 − 2α.

We note that in our analysis we make no assumptions
about the individual pulses in the composite sequence, i.e.,
how ε, α, and β depend on the interaction parameters. This
justifies the term universal for our composite pulses because
they compensate imperfections in any interaction parameter.
As a result, they improve performance for any α and thus for
any parameter α̃ = φ2 − 2α. Since α̃ is a linear combination
of α and φ2, the effect of a change in α by �α is equivalent
to a change in φ2 by −2�α as long as the phases χk remain

the same. Thus the requirement that a universal composite
pulse improves performance for any α is equivalent to the
requirement that it improves performance for any �φ1 = φ2.
In other words, the universal improvement in performance for
a composite pulse is due only to the choice of the phases
χk , where k = 1, . . . , n − 2 as it is achieved for any α̃ and
thus for any phase φ2. Moreover, the universal improvement
in performance for any φ2, given a set of χk , is a necessary
condition for improved performance for any α, and thus for a
universal composite pulse.

Finally, it proves useful to define the phases

�k = χk − χk−1 = φk+2 − 2φk+1 + φk, (A9)

where k = 2, . . . , n − 2 and �1 = χ1. These are linear combi-
nations of χk and the latter can be expressed as χk = ∑k

i=1 �i.
The advantage of �k is that the anagram condition �k =
�n−k−1, k = 1, . . . , n − 2 is required for the nullification or
minimization of coefficients cn j , as defined in Eq. (5), and
allows for simplification of the analysis and presentation.
Thus we use them in the main text.

In summary, we showed that the universal improvement in
performance for a composite pulse is due only to the choice of
the phases χk (and their linear combinations �k) and can be
achieved for any phase φ2. The latter is a necessary condition
for universal improvement in performance for any α and
thus for a universal composite pulse. The proper choice of
φ2 allows only for additional higher-order compensation of
specific errors, e.g., better compensation of detuning, pulse
duration errors, etc., or combinations of these, as we show in
the main text.
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