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Spontaneous symmetry breaking can occur in the powers of two optical modes coupled into a ring resonator,
described by a pair of coupled Lorentzian equations, and featuring tunable self- and cross-phase modulation
terms. Investigated is a wide variety of nonlinear materials by changing the ratio of the self- and cross-phase
interaction coefficients. Static and dynamic effects range from the number and stability of stationary states to
the onset and nature of oscillations. Minimal conditions to observe symmetry breaking are provided in terms
of the ratio of the self- and cross-phase coefficients, detuning, and input power. Different ratios of the nonlinear
coefficients also influence the dynamical regime, where they can induce or suppress bifurcations and oscillations.
A generalized description on this kind is useful for the development of all-optical components, such as isolators
and oscillators, constructed from a wide variety of optical media in ring resonators.
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I. INTRODUCTION

Originally proposed in 1987, the Lugiato-Lefever equation
(LLE) [1] has been used to model a variety of nonlinear
optical systems [2]. One of the equation’s major successes has
been in describing light propagating in fiber loops and micror-
ing resonators featuring Kerr media—materials in which the
refractive index is modified by the intensity of the propagat-
ing light. While the original model described spatiotemporal
dynamics in the plane transverse to the direction of propaga-
tion, a later model for purely temporal effects [3] has been
demonstrated to be mathematically equivalent [4,5].

Coupled LLEs have been used to describe normalized left-
and right-circularly polarized field envelopes, E±, in Fabry-
Pérot or ring cavities [6]. This system of two coupled LLEs is
given by

∂E±
∂t

= EIn − E± − iηθE± + ia∇2E±

+ iη(A|E±|2 + B|E∓|2)E±, (1)

where θ denotes the cavity detuning—the difference between
the input field’s frequency and the closest cavity resonance
frequency, a describes the transverse diffraction strength, EIn

is the input pump envelope, η = ±1 indicates either a self-
focusing, +1, or self-defocusing medium, −1, respectively,
and ∇2 is the transverse Laplacian. The one-dimensional case
of Eq. (1), with diffraction replaced by dispersion, describes
the propagation of two optical field components in ring res-
onators. In the case of continuous wave (cw) inputs and neg-
ligible dispersion, Eq. (1) describes either two copropagating
fields with left and right circular polarizations [see Fig. 1(a)]
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or two counterpropagating fields with equal linear polarization
[see Fig. 1(b)]. The coupling constants A and B are related
to the third-order nonlinear susceptibility tensor, χ (3), and
describe the strengths of self- and cross-phase modulation,
respectively—the former is the change in refractive index
induced by one optical mode on itself and the latter is the
change induced by the other mode. The values of these
two coefficients are of great interest because their relative
magnitudes and signs vary across a large number of different
experimental configurations. These situations include light
propagating through dielectrics, optical fibers, Kerr liquids
(such as carbon disulphide, benzene, toluene, and certain
liquid crystals), engineered structures such as periodically
poled lithium niobate, as well as experiments featuring atomic
vapors. We provide a comprehensive theory of spontaneous
symmetry breaking in the intensity of two distinct modes,
across a variety of different experimental contexts, by con-
sidering variations of the ratio B/A—the central parameter of
the investigations.

By restricting the solution set of E± in Eq. (1) to being
both stationary and homogeneous, and then multiplying each
element by its complex conjugate, one obtains

P1,2 = I

1 + (θ − AP1,2 − BP2,1)2
, (2)

where we have set |E+|2 = P1, |E−|2 = P2, and E2
In = I for

the ease of notation. This particular solution corresponds to
two coupled Lorentzian equations—mathematically identical
to those that describe two normalized, linearly polarized,
counterpropagating stationary fields in ring resonators [7–12],
Fig. 1(b). Of course, mathematical equivalence does not nec-
essarily imply physical equivalence. In the counterpropagat-
ing case, E± are the two counterpropagating field envelopes
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FIG. 1. Ring resonator setups, showing (a) copropagation of two
light components with left and right circular polarizations and (b) the
counterpropagation of two light beams, linearly polarized along the
same axis.

and the coupling constants A and B now depend on the
formation of an index grating generated by the two fields,
rather than on χ (3) as with the polarization equations [13–16].

Equation (2) can be understood as the homogeneous sta-
tionary solution set of any system described by two coupled
LLEs, such that many of the subsequent results of this paper
can be applied not only to both the counterpropagating and
polarization cases, but to other physical systems, too.

One fascinating phenomenon that arises from a system of
two coupled Lorentzian equations, such as Eq. (2), is sponta-
neous symmetry breaking [8,11]. We first extend the investi-
gation of the onset of symmetry breaking in ring resonators to
a variable ratio of the self- and cross-phase modulation terms,
B/A, in Sec. II. We then identify the steady-state character-
istics of the symmetry breaking for variable B/A in Sec. III.
Sections IV and V are devoted to an analytical stability
analysis and dynamical behavior via numerical integration,
respectively. In the latter case, we ascertain how varying
the cross-coupling strength between the two fields alters the
temporal instability of the system, thereby encouraging or
suppressing deterministic chaos. Our conclusions are summa-
rized in Sec. VI.

Symmetry breaking phenomena have a wide range of
applications in nonlinear optics: To enhance the Sagnac effect
[7,11], to realize optical isolators, circulators [10], and oscilla-
tors [12], and to enhance near-field detectors [17]. A possible
area of further application is the generation of temporal cavity
solitons (TCS) for data storage and in the generation of
frequency combs. There is enormous interest in extending
the range and realization of TCS due to their diverse utility
in fields such as precision metrology, gas sensing, arbitrary
optical waveform generation, and telecommunications [18].

II. SPONTANEOUS SYMMETRY BREAKING

Spontaneous symmetry breaking of two modes in an op-
tical ring resonator manifests itself as unequal coupling of
the two input powers into the resonator. Consequently, we
will refer to spontaneous symmetry breaking of the “coupled
powers.” This was first predicted theoretically in Ref. [8], and
has since been experimentally observed in Refs. [9,10] for

FIG. 2. Different graphical representations of spontaneous sym-
metry breaking when scanning pump power, I , shown here for A = 1,
B = 2, and θ = 2. (a) Coupled powers are plotted against each other,
Eq. (3). The points a and b indicate the opening and closing of the
symmetry-broken bubble given by Eq. (12). Point c is the point at
which symmetry breaking occurs at the detuning limit; see Eq. (13).
The maximum coupled power difference can be found at points d
and e; see Eq. (15). (b) The coupled powers are plotted against input
power. Note the visible presence of the “symmetric bistability” (the
highlighted S-shaped curve), but also the loss of some symmetries
seen in (a).

counterpropagating fields, whilst the polarization case is dis-
cussed in Refs. [6,19,20] and experimentally in Refs. [21,22].

Spontaneous symmetry breaking in the coupled Lorentzian
system can be visualized in a number of ways. One way is
to eliminate the explicit dependence on the pump power, I ,
by rearranging Eq. (2) such that the two expressions are each
made equal to I . They may then be solved simultaneously as

P1[1 + (θ − AP1 − BP2)2] = P2[1 + (θ − AP2 − BP1)2].

(3)

This solution is plotted in Fig. 2(a), and corresponds to a
“scan” with respect to the pump power, I , shown in Fig. 2(b).
The “symmetric” solution line features a simple P1 = P2

relationship and the spontaneous emergence of the symmetry-
broken solution line is characterized by an ellipse. The point
at which symmetry-broken solutions arise is known as the
“symmetry breaking bifurcation point,” whereas the point at
which they disappear is the “inverse bifurcation point.”

It has been shown that, in the case of A = 1, B = 2, the
symmetric solution line between the bifurcation points is
unstable, and so, if the system is subject to a perturbation,
such as noise, it will evolve towards the stable symmetry-
broken solution line [8]. This is an extremely useful result,
since it means that the two observed field envelopes will no
longer circulate with equal intensity—one field envelope will
become dominant, whilst the other is quenched. This behavior
is central to the applications mentioned previously.

Figure 2(a) is the counterpart of Fig. 2(b), originally
reported in Ref. [8]. In different ways, they both illustrate
the symmetry breaking by scanning the input power. An
informative advantage of Fig. 1(b) comes from its ability to
show the “symmetric bistability”—highlighted by a red ring.
This region is present in Fig. 2(a), but is hidden within the
symmetric solution line. The advantage of Fig. 2(a), however,
comes from its additional symmetry, which can allow for
mathematical simplifications in the derivations of later results.
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FIG. 3. Different graphical representations of spontaneous sym-
metry breaking when scanning detuning, θ , shown here for A = 1,
B = 2, and I = 3. (a) Coupled powers are plotted against each
other, Eq. (4). The points f and h indicate the symmetry breaking
bifurcation pair for a detuning scan—see Eq. (17). At point g, the
bubble emerges at the intensity limit—see Eq. (16). (b) Coupled
envelope powers are plotted against detuning, θ . Note again the loss
of symmetry between (a) and (b).

It is also possible to observe symmetry breaking when
scanning the cavity detuning rather than the pump power. This
can be done by employing a similar method to above—by
rearranging Eq. (2) such that the two expressions are in terms
of θ ; they can again be solved simultaneously, eliminating θ ,

AP1 + BP2 ±
√

I

P1
− 1 = AP2 + BP1 ±

√
I

P2
− 1, (4)

where each ± is independent of the other. This solution set
is plotted in Fig. 3(a), along with its analogous graph, 3(b),
reported in Ref. [12]. Figures 2(b) and 3(b) can be obtained
by rearranging one of the coupled Lorentzian equations such
that it is equal to one of the variables P1,2, and substituting this
into the second of the Lorentzian equations.

It is possible, for all graphs of Figs. 2 and 3, to isolate
the symmetry-broken solution curves using the full equation
describing the solution set divided by the equation describ-
ing the symmetric solution set followed by simplifications.
By studying each component individually, the mathematical
analysis can, in some cases, be simplified.

Many of the applications described previously require
careful predictions about the characteristics of the symmetry
broken region. Some of these characteristics, such as the
minimum detuning required for symmetric bistability, or the
possibility for symmetry-broken solutions, have been reported
for specific values of A and B: A = 1, B = 2 in the case of
Ref. [8]. A larger, but finite, range is analyzed in Refs. [23,24],
but there appears to be no general analysis spanning all values
of A, B ∈ R. We present this general analysis here along with
useful results that are pertinent to the applications mentioned
above. First, however, a more immediate question presents
itself: Which values of A and B are physically feasible?

In the case of two coupled Lorentzian equations describing
two counterpropagating fields, the symmetry breaking is a
result of the formation of an index grating in the medium due
to the standing wave interference pattern that forms [13–16].
In this case, the values that A and B can take are given
by A = 1, B = 1 + h, where 0 � h � 1, depending on the
medium’s ability to “wash out” the grating via, for example,

TABLE I. Selection of different experimentally accessible values
of A and B for the two setups described in Sec. I.

Two counterpropagating fields A B

Solids (without diffusion) 1 2
General diffusive effects 1 1 + h (0 < h � 1)
Gases (high rates of diffusion) 1 → 1

Two copropagating polarizations

Isotropic media A + B = 2
Nonresonant electronic response 2/3 4/3
Liquids, or molecular orientation 1/4 7/4
Electrostriction 1 1
χ (2) media with effective χ (3) Wide range of values of B/A
Atomic vapors Wide range of values of B/A

Bose-Einstein condensates

Spin-orbit-coupled BEC Wide range of values of B/A

diffusion, in the case of a gas or liquid. In a medium with
no diffusive effects, h = 1, whilst for a highly mobile Kerr
medium, such as a gas, h → 0.

The polarization case has far greater variation in the pos-
sible values that the coupling constants can take. In this case,
A and B are related to the third-order nonlinear susceptibility
tensor, χ (3), by

A = χ
(3)
1122 + χ

(3)
1212

χ
(3)
1111

, B = χ
(3)
1122 + χ

(3)
1212 + 2χ

(3)
1221

χ
(3)
1111

, (5)

with the constraint that, for cw pumps, A + B = 2 for an
isotropic medium with neglected dispersion [6]. The other
cases are a nonresonant electronic response, A = 2/3, B =
4/3, liquids or molecular orientation, A = 1/4, B = 7/4, and
electrostriction, A = 1, B = 1 [25]. Deviating momentarily
from Kerr media, atomic vapors are likely to show phenom-
ena offering a wide range of possible magnitudes of A and
B [6,26], experimentally shown in Ref. [27]. These atomic
vapors could be used, for example, in hollow fibers [28]. Mod-
ification of an effective χ (3) nonlinearity has been demon-
strated in periodically poled lithium niobate (PPLN) [29,30]
and bismuth borate [31]; cascaded quadratic nonlinearities
have also been used to realize a negative effective nonlinear
coefficient in the context of self-phase modulation [32–34].
We speculate that it may be possible to generate B/A <

0 through appropriate material engineering—as considered,
for example, in Ref. [35]. Self- and cross-phase modulation
coefficients with opposite sign are used in spin-orbit-coupled
Bose-Einstein condensates (BEC) [36]. These A and B values
are summarized in Table I.

The values of these coupling constants may not be purely
limited to those suggested here. For example, nonlinear ther-
mal effects [37] act to rescale A and B by equal amounts—
i.e., they are symmetric effects. The following analysis can
be applied to any system described by coupled LLEs or
Lorentzian equations of the forms given by Eqs. (1) and (2),
respectively, such as in Ref. [24], where both electric and mag-
netic nonlinearities are modeled. Further systems that exhibit
similar symmetry breakings can be found in Refs. [38–41].
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FIG. 4. Example optical bistability of Eq. (6), with limits cal-
culated via Eqs. (7) and (8). Blue dashed line indicates an unstable
state; see Sec. IV.

III. CHANGING THE RELATIVE STRENGTHS OF SELF-
AND CROSS-PHASE MODULATION

The first generalized result observed here is the region of
optical bistability for symmetric solutions, previously seen
highlighted in Fig. 1(b) with a red ring. The symmetric so-
lution line in the circulating powers vs input power diagrams
is given by

I = P1,2{1 + [θ − (A + B)P1,2]2}. (6)

The bistable region is found to be bounded by the
following:

P1,2 = 2θ ± √
θ2 − 3

3(A + B)
, (7)

where dI/d (P1,2) = 0. This reveals that there is a limiting
detuning value for symmetric optical bistability of θ = √

3
that is independent of the values of the coupling constants.
The coupled powers themselves, however, are dependent on
the coupling constants. Inserting Eq. (7) into Eq. (6) gives the
limits on the input power, between which lies the region of
symmetric bistability,

I = −2(2θ ± √
θ2 − 3)(−θ2 ± θ

√
θ2 − 3 − 3)

27(A + B)
. (8)

These pump power limits are also dependent on A and
B, with higher values of A + B leading to a lower value of
required input power. Note that, in Eq. (8), a choice of one
± sign enforces the same choice on the other. A graphical
example of these results is given in Fig. 4.

The characteristics of the symmetry-broken region are
most easily analyzed by examining the symmetry-broken part
of Eq. (3), which is given by

[θ − A(P1 + P2)]2 − P1P2(B − A)2 = −1. (9)

This equation reveals several important conditions which are
required for asymmetric solutions to occur. For example, there
exists a minimum cavity detuning limit, below which the
symmetry broken region will never emerge, for any pump

FIG. 5. (a) Minimum detuning required to observe symmetry
breaking when changing the ratio of the coupling constants B/A.
The yellow regions indicate where symmetry breaking is possible,
with the blue lines indicating the limits where symmetry breaking
becomes impossible. (b) Minimum input power required to observe
symmetry breaking. The negative values for I are included for math-
ematical symmetry only—they are clearly not physically attainable.

power. This detuning limit is given by

|θ | >

√(
3 − B

A

)(
1 + B

A

)
∣∣B

A − 1
∣∣ . (10)

As shown in Fig. 5(a), this limit equation yields itself some
interesting results. The first one is that, for a unity ratio be-
tween the two coupling constants, symmetry breaking is never
possible, since θmin diverges to ∞. The second interesting
result is that, for B/A > 3 or B/A < −1, symmetry breaking
is attainable for all detuning values, even θ = 0, for pump
powers above given thresholds.

Similar to Eq. (10), an equation defining the pump power
limit is also derivable and is given by

|I| >

8
9

√
3∣∣B

A − 1
∣∣ . (11)

Below this limit, symmetry breaking is again not possible for
any range of cavity detunings. Unlike with the detuning limit,
this power limit only falls to zero as B/A tends to ∞.

Further analysis of Eq. (9) reveals the coupled powers at
which the symmetry breaking bifurcation points are located.
These points, where the symmetry-broken region opens and
closes, are given by

P1,2 = C ± D

(3A − B)(A + B)
, (12)

where

C = 2Aθ

(3A − B)(A + B)
(13)

and

D =
√

−3A2 + θ2(A − B)2 − 2AB + B2. (14)

A final result of interest emerging from Eq. (9) is of im-
portance for the optimization of the formation of isolators
for integrated photonic circuits, such as in Ref. [10]. For
such applications, one mode must be suppressed as much as
possible, whilst the other mode is maximized. The coupled
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powers of the greatest possible difference are given by

P1,2 = C ± 1

B − A

D√
(3A − B)(A + B)

. (15)

These special points are all summarized in Fig. 2(a) (points a,
b, c, d , e) with the input power required to reach each point
given by substituting the appropriate equations into Eq. (2).

Equation (12) identifies critical values for the “bursting”
of the bubble, beyond which the symmetry-broken region
opens, but never closes. Consequently, isolators based on this
principle would have no upper limit of operational power
(above which they would return to symmetric solutions).
These bursting ratios, beyond which the symmetry-broken
solution forms a parabola rather than an ellipse, are given by
B/A > 3 and B/A < −1.

Turning attention to Eq. (4), some key points of the detun-
ing scans can be identified. At the power limit, Eq. (11), the
symmetry-broken region emerges at

P1,2 = 3
4 I, (16)

while the symmetry breaking bifurcation point pair is given
by solving the real roots to the quartic equation

P4
1,2 − IP3

1,2 +
[

I

2(A − B)

]2

= 0. (17)

The detuning requirements to observe these points can then be
obtained by substituting the appropriate equations into Eq. (2).
These special points are shown in Fig. 3(a) (points f , g, h).

In closing this section, we note that the value of B/A
also affects where the symmetry-broken solution line appears
with respect to the bistable symmetric solution line. It is
known that, for A = 1 and B = 2, the symmetry-broken “bub-
ble” appears on the upper branch of the bistable symmetric
solution line for graphs like that of Fig. 1(b) [8]. This is
because, for this B/A ratio, Eq. (10) dictates that symmetry-
broken solutions are only possible for θ �

√
3, with θ =√

3 being the condition where optical bistability emerges.
This holds true for any 1 < B/A � 2. Above ratios of 2, the
minimum detuning for symmetry breaking is below that for
optical bistability, meaning that it is now possible to observe
the symmetry-broken solutions without bistability, Fig. 6(a).
More interesting is the region B/A < 1. For 0 < B/A < 1,
symmetry breaking is again only possible for detunings above
the

√
3 value for optical bistability, but now the symmetry-

broken bubble appears on the middle branch of the bistable
region, as shown in Fig. 6(b). Progressing further, for B/A <

0, it is once again possible to observe the symmetry-broken
solutions for detunings lower than the minimum required for
symmetric solution line optical bistability.

We note that, when plotting in the style of Fig. 1(a) for
B = 0, it would appear that symmetry broken solutions are, in-
terestingly, still possible, as shown in Fig. 6(c). This explains
the continuous nature of all equations described previously,
and Fig. 5, about B/A = 0. In this case the appearance of the
apparently symmetry-broken solutions is due to the imposed
constraint that both θ and I are equal for both equations. This
results in the two, now uncoupled, Lorentzian equations being
identical. The “symmetry-broken” solutions arise physically
from the possibility of one field being on the top branch of the

FIG. 6. (a), (b) Plots of the input power scans for B/A = 2.2,
θ = 1.5 and B/A = 0.5, θ = 4 respectively. Panels (c), (d) show the
special case of B = 0, A ∈ R, with A = 1, θ = 3. Panel (c) shows the
possibility still for symmetry-broken solutions, while (d) shows how
their origin is due to the bistable region of the Lorentzian equation.

optical bistability while, simultaneously, the other is on the
bottom, or vice versa; see Fig. 6(d).

IV. GENERALIZED STABILITY ANALYSIS

In the same spirit as Ref. [12], we recognize that Eq. (2) is
the steady state of the following time-dependent system:

∂E±
∂t

= Ein − [1 + i(θ − A|E±|2 − B|E∓|2)]E±. (18)

Following the procedure set out in Ref. [12], we add small
perturbations to the steady state solution, calculate the eigen-
values of the (Jacobian) matrix that results, and assess the
stability of this system. The eigenvalues of the linear stability
of Eq. (18) have the same form as those provided in Ref. [12]:

λ = −1 ±
√

−α1β1 − α2β2 ± S

2
, (19)

with

S =
√

(α1β1 − α2β2)2+ 4α1α2γ 2, (20)

but the quantities α1,2, β1,2, and γ 2 take on forms gener-
alized to arbitrary self- and cross-phase modulation coeffi-
cients: α1,2 = θ − AP1,2 − BP2,1, β1,2 = θ − 3AP1,2 − BP2,1,
and γ 2 = 4B2P1P2. Note that, in Eq. (19), one ± choice
enforces no restrictions on the other ±, giving a total of
four eigenvalues. The quantity S plays an essential role in
establishing the stability of the system. If S is real, and the
quantity under the square root in Eq. (19) is negative for
both ±S, i.e, S < α1β1 + α2β2, then all the eigenvalues are
complex numbers with real part equal to −1, leading to full
stability of the corresponding stationary states. On the other
hand, if S is real, and the quantity under the square root in
Eq. (19) is positive, then one real eigenvalue can be positive
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FIG. 7. Panels (a)–(d) illustrate the coupled power P1,2 against the detuning parameter θ for A = 1 and B = 0.9. Stable and nonoscillatory
unstable solutions are shown in solid and dotted blue, respectively, whilst oscillatory instabilities are shown in dashed red. The input power,
I , increases with each frame. (a) I = 9. No symmetry-broken solutions have yet emerged. (b) I = 18. Spontaneous symmetry breaking occurs
in the unstable symmetric branch. (c) I = 40. Stable symmetry-broken solutions emerge but quickly lose stability to complex eigenvalues
with positive real parts. (d) I = 80. The entire structure is stretched, including the region of unstable oscillatory and stable symmetry-broken
solutions. Note the parameter range with four stable solutions. The right-hand plots illustrate the coupled power, P1,2, against the input power,
I . The key phenomena shown on the left are visible here. (e) θ = 15. (f) θ = 25. (g) θ = 75. (h) θ = 170. Note that, in the above plots, growing
oscillations are always accompanied by a stable solution so these oscillations may not be experimentally observable.

(meaning a nonoscillatory instability) if

S > 2 + α1β1 + α2β2, (21)

with the maximum of two real eigenvalues being positive
when

S < −(2 + α1β1 + α2β2) (22)

is also satisfied. Note that this condition for a second unstable
eigenvalue is only possible when 2 + α1β1 + α2β2 < 0.

Under the condition of S being purely imaginary, the
eigenvalues, Eq. (19), are complex with the real (R) and
imaginary (
) parts, corresponding to the growth rate and the
angular frequency, respectively. These have the structure of
those given in Ref. [12].

The instabilities are then obtained by finding the conditions
for which R > 0, and correspond to

|S2| > 8(2 + α1β1 + α2β2). (23)

This birth of a stable limit cycle implies a supercritical
Hopf bifurcation. Note that, for this system, if we have a
pair of oscillatory eigenvalues with positive real part, then
the real part of the remaining two must necessarily be neg-
ative. Interestingly, oscillatory instabilities can only appear
in the symmetry-broken branches of the stationary solutions,
regardless of B/A; no oscillatory instability can be found on
the symmetric branches, since, in this case, S is always a real
number.

By evaluating partial derivatives with respect to the detun-
ings and pump powers, we can also locate the generalized con-
dition for a transcritical bifurcation that occurs during a scan

of the common-mode detuning under imbalanced conditions.
This point is given by

1 + α2
1

2P1α1
= 1 + α2

2

2P2α2
= A − B. (24)

This condition is the generalized form of that presented in
Ref. [12] for A = 1 and B = 2.

Real eigenvalue instabilities can be found on the symmetric
branches of the stationary solutions, where α = α1 = α2 and
β = β1 = β2. Here, real S means S = 2|γα| and the condi-
tions (21) and (22) reduce to

|γα| > 1 + αβ, |γα| < −(1 + αβ ). (25)

On the symmetric branches, the bifurcations corresponding
to conditions (25) are either the saddle-node bifurcations of
the S-shaped stationary curves or the pitchfork bifurcations
leading to symmetry-breaking solutions.

To illustrate the effect of the cross-phase modulation co-
efficient on the stability of the system, we report here about
two limit cases of small and large cross-phase to self-phase
modulation ratio, B/A. Complex eigenvalues with positive real
part may lead to experimentally accessible oscillations, since
their amplitude will eventually stop growing due to saturation
effects that are not captured by the above stability analysis.

Figure 7 illustrates stable, unstable, and oscillatory un-
stable regimes for a variety of choices of parameters for a
small value of B/A = 0.9, where the self-phase modulation
is stronger than the cross-phase modulation. In this regime,
the system is not strongly susceptible to either symmetry
breaking or the onset of growing oscillations, and so the
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FIG. 8. Coupled power P1,2 against the detuning parameter θ

for A = 1, B = 7, and I = 3.3. Stable and nonoscillatory unstable
solutions are shown in solid and dotted blue, respectively, whilst
oscillatory instabilities are shown in dashed red.

power thresholds for accessing these phenomena are very
high. When increasing the input power, I , symmetry-broken
solutions occur in the middle branch of the bistable S-shaped
curves. Some of these solutions later gain stability, and others
exhibit growing oscillations; the system begins to display mul-
tistability of symmetric and asymmetric solutions, as observed
in Figs. 7(c), 7(d), 7(g), and 7(h).

For larger values of B/A such as B/A = 7, large parameter
regions where stationary states are susceptible to oscillations
are observed, as displayed in the detuning scan in Fig. 8 for
I = 3.3. Figure 8 is also consistent with a prediction made in
Sec. III: Symmetry-broken solutions at zero detuning.

V. TEMPORAL DYNAMICS

The stability analysis of the previous section described
how the system responds to small, noiselike, perturbations
with respect to changes of the ratio B/A. In this section,
we investigate the full temporal evolutions and oscillations
by using numerical integration of Eq. (18). The temporal
dynamics of optical systems can lead to a range of applica-
tions, such as polarization scramblers or devices with periodic
switching of polarization state or direction. The dynamics
of similar systems to those described here were previously
studied in Ref. [28]. These numerical integrations illustrate
the consequences of modifying the relative strengths of self-
and cross-phase modulation for the onset and extent of deter-
ministic chaos. We consider changes in the cross- to self-phase
modulation ratio B/A and found that increasing B/A increases
the susceptibility of the system to temporal instabilities and
chaos. For each parameter configuration specified by B, θ ,
and I in the oscillatory regime, we sample the evolution
trajectories of the coupled powers P1,2 by evaluating the
Poincaré section corresponding to their local maxima where
the first derivative in time is zero and second derivative is
negative. In this way, we can monitor the number of maxima
per period and register their values. Figure 9(a) shows the
maxima of the coupled power P1 during oscillations when
changing B from 1.5 to 7, for A = 1, θ = 5, and I = 3.3.
We observe sequences of bifurcations, chaotic windows, and
sudden crises. The power ranges spanned by the oscillations
clearly increase with the cross-phase modulation magnitude.

To illustrate the susceptibility of the system to temporal
oscillations at large values of B/A, we show in Fig. 9(b)
the Poincaré sections in a detuning scan for B/A = 7 and
I = 3.3. These are the same parameters of the stationary
solution curves displayed in Fig. 8. In this case, the symmetry
breaking bifurcation occurs at negative values of the detuning
θ . After this bifurcation, one of the coupled powers increases
while the other decreases. The onset of oscillations occurs
when the decreasing coupled power approaches zero (just
after θ = 3.5) in a region without stable stationary states.

FIG. 9. (a) Poincaré sections of the maxima of oscillating coupled power P1 versus the cross-phase modulation coefficient B for constant
A = 1. These points correspond to constant values of the detuning θ = 5 and input power I = 3.3. (b) Illustration of periodic oscillations
and deterministic chaos in the Poincaré sections of the maxima of P1 when varying the detuning parameter θ for a large cross- to self-phase
modulation ratio. In this case, A = 1, B = 7 and the input power is I = 3.3. Note the dense columns of chaotic windows. The solid (dashed)
black line corresponds to a stable (unstable) symmetric stationary state. The red lines indicate the detuning values used in Fig. 10.
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FIG. 10. Results of numerical simulations of Eq. (18) for A = 1,
B = 7, and I = 3.3 showing oscillatory (a), (b), chaotic switching
(c), (d), and periodic switching (e), (f) solutions. Panels (a), (c), and
(e) all show the temporal evolutions of the coupled powers, while (b),
(d), and (e) show the phase space orbits of the real and imaginary
components of the late temporal evolutions of E±. The detuning
parameter for (a), (b) is θ = 3.6, for (c), (d) is θ = 4.31, and for
(e), (f) is θ = 4.755. Time is dimensionless.

Windows of periodic and chaotic oscillations alternate with
increasing detunings until no symmetry-broken solutions are
observed just after θ = 5.74. For large detunings and close
to the end of the dynamical regimes, we observe a region of
coexistence of a stable symmetric stationary state [black solid
line in Fig. 9(b)] and chaotic oscillations. Similar coexistence
regions are also found for lower values of the parameter B/A.

The richness of oscillatory behavior for B/A = 7 and I =
3.3 is presented in Fig. 10, which shows specific cases of
different oscillatory regimes for given values of the detuning,
as predicted by Fig. 9(b). Figures 10(a) and 10(b) show
periodic oscillations close to the onset of temporal instability.
Each asymmetrically coupled power has undergone a Hopf
bifurcation, leading to a small amplitude modulation. The dy-
namical behavior is attracted to two disjointed regions of the
phase space. When increasing the detuning, the amplitude of
the oscillations grows and chaotic dynamics are observed [see

Figs. 10(c) and 10(d)]. We note, however, that the oscillations
now switch erratically from one dominant field to the other
and that the attractor covers a single region of the phase space
for both coupled fields. This latter aspect becomes even more
striking by a further increase in the detuning parameter as
shown in Figs. 10(e) and 10(f). Here, the system displays a
periodic switching between the two modes and the projection
of the attractors of the two fields overlap completely. An effect
such as this has potential application in photonic systems
where control of the output pulses, in particular of their
polarization or propagation direction, is required. While we
show this behavior for B/A = 7, we also predict that it would
be present for many other values of the self- and cross-phase
modulation constants.

VI. CONCLUSION

We have presented a theoretical model for the spontaneous
symmetry breaking of light in ring resonators, generalized to
arbitrary strengths of self- and cross-phase modulation, and
describing the coupling of either two circularly polarized or
two counterpropagating fields. We have presented the char-
acteristics of the steady-state symmetry-broken region, such
as the minimum criteria for its observation, its opening and
closing bifurcation points, and the conditions for maximum
difference in the coupled intensities. It was observed how the
position of the symmetry-broken region varies with respect to
the symmetric optical bistability, along with the dependence
of the oscillatory regime on the value of B/A. Finally, we
have shown the presence of a subset of oscillatory solutions
which may lead to new applications such as sequences of
pulses with given polarization or propagation direction. These
oscillatory behaviors include different styles of switching
between modes. Periodic switching suggests a partial sym-
metry restoration in a chaotic regime. These findings should
be applicable to a large range of experimental settings fea-
turing nonlinear media, including Kerr liquids and atomic
vapors, as well as situations that exhibit variable overlap (and,
hence, variable cross-phase modulation) between two optical
modes.
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