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Coherence-based measurement of non-Markovian dynamics in an open quantum system
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We present a theoretical scheme and its experimental proof of principle for an open quantum system
undergoing Markovian and non-Markovian evolutions. We exhibit these two regimes by diagnosing them with
the relative entropy of coherence of two polarization qubits playing the roles of system and ancilla. These
are initially prepared in a polarization maximally entangled state of a photon pair produced by spontaneous
parametric down-conversion. We induce Markovian and non-Markovian regimes in the system’s dynamics
with the help of two auxiliary qubits, experimentally implemented by optical paths in a layout of Sagnac
and Mach-Zehnder interferometers. We replicate system-environment interactions by means of an amplitude
damping channel and a suitably designed inversion of it. In our scheme, one needs only two experimentally
accessible parameters to achieve Markovian and non-Markovian regimes.
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I. INTRODUCTION

In the framework of open quantum systems, it is useful
to consider the system under study and its environment as
two subsystems that constitute a closed Hilbert space. In this
space, the total amount of information is preserved, even
though it may be exchanged between system and environment
[1,2]. System-environment communications are governed by
a global dynamical map that usually leads to irreversible
Markovian processes where any structured information gets
dissipated among the interconnected parts of the total Hilbert
space. However, there are also cases in which information
can flow from the environment back to the system, thereby
exhibiting a non-Markovian behavior [3]. By exploiting cases
like these, one could in principle engineer techniques to pre-
vent information losses and so design robust communication
protocols.

The purpose of this work is to study a suitably designed ex-
ample of coherence tracking and control on an open quantum
system. We identify coherence as being a quantum resource
that can be generated and consumed by means of suitably
designed mechanisms. This makes coherence a useful quanti-
fier for quantum information tasks [4], while it further allows
the signal of Markovian and non-Markovian evolutions [5].
In particular, the so-called relative entropy of coherence Crec

has been defined [4] to measure the population balance and its
relative correlation according to

Crec(ρ) = S(ρdiag) − S(ρ). (1)

Here, S is the von Neumann entropy [6] and ρdiag denotes the
matrix obtained by deleting all off-diagonal elements in the
density matrix ρ.

When a system s undergoes a Markovian process, its
state ρs evolves in time according to ρs(t ) = �s(t )ρs(0),

with �s(t ) being a completely positive and divisible map.
Such a map cannot increase the amount of coherence [4,7].
Hence, one may assume that the monotonic derivative condi-
tion Ċrec[ρs(t )]�0 signals a non-Markovian dynamics on the
system space. However, it has been shown that this condition
fails to diagnose Markovianity in some cases, in particular
when the amplitude damping channel is involved [5]. This
channel represents an important dissipation mechanism that
can lead, for instance, to bit-flip errors. These errors do not
occur when dissipation comes only from phase damping, a
channel that has been much studied lately [8–15]. It is thus
worth addressing the amplitude damping channel in order to
get additional insight about information losses and recovery.
Fortunately, there is a way around the inappropriateness of the
derivative condition Ċrec[ρs(t )]�0. Indeed, one may resort to
a modified rule for Markovianity that reads Ċrec[ρa,s(t )]�0,
where the compound state ρa,s describes the system of inter-
est (s) together with some ancilla (a). Accordingly, for the
state evolution ρa,s(t ) = E[ρa,s(0)], with a bipartite process
E = Ia ⊗ �s, the violation of the last extended monotonicity
implies the appearance of non-Markovianity [5,16–18].

In this work, we analyze the evolution of Crec for a state
ρa,s in which system and ancilla are encoded in two polar-
ization photon qubits. System s interacts with two additional
degrees of freedom that represent two environment qubit
spaces (e and d). One of them has been implemented by
the two output modes of a Sagnac interferometer, while the
other qubit corresponds to two possible detection times due
to an unbalanced nested structure within a Mach-Zehnder
interferometer (MZI). With this scheme, we are able to
generate different regimes of Markovian and non-Markovian
dynamics by tuning only two experimental parameters. Such
regimes and their experimental realizations constitute the first
steps towards the implementation of related protocols for
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efficient information tracking and recovery of information
losses.

Our study complements previous research related to phase-
damping channels, where the open system was either a sin-
gle polarized photon or a pair of polarized photons [8–15].
In most of those cases, the environment was given by the
photon’s frequency mode, ruled by some frequency distri-
bution whose evolution depended on the polarization state,
thereby giving rise to non-Markovian processes. In other
cases, the role played by the photon’s frequency distribu-
tion was played by the photon’s spatial distribution, i.e.,
the distribution of the photon’s emission angles [12]. The
degree of non-Markovianity was assessed through the rate of
change σ of the trace distance D(ρ1, ρ2) = Tr |ρ1 − ρ2|/2 be-
tween states ρ1(t ) and ρ2(t ), i.e., through σ [t, ρ1(0), ρ2(0)] =
Ḋ[ρ1(t ), ρ2(t )]. In terms of σ , one defines the measure
N = max0

∫
σ>0 σ [t, ρ1(0), ρ2(0)]dt , where max0 means the

maximum over all possible pairs of initial states ρ1(0) and
ρ2(0). What N measures is thus the total increase of the
trace distance during the system’s evolution, and this is
usually interpreted as a quantifier of the maximal amount
of information that comes from the environment back to
the system. This interpretation is based on the assumption
that similarity between quantum states is a property from
which one can draw conclusions about quantum resources.
However, care should be exercised when making such an
assumption [19,20]. Indeed, two states may be very close to
each other in terms of the trace distance as well as in terms of,
say, the Bures distance DB(ρ1, ρ2) =

√
2(1 − √

F (ρ1, ρ2)),

where F (ρ1, ρ2) = (Tr
√√

ρ1ρ2
√

ρ1)
2

is Uhlmann’s fidelity
[21]. In spite of being close to each other, two states can
nonetheless have very different physical properties, e.g., one
being separable and the other entangled [22]. In order to
assess, for instance, information recovery when employing
quantum resources, it is advisable to study different features
such as distinguishability between quantum states as well as
the amount of coherence. Appropriate quantifiers should then
be introduced in each case.

Our goal is to employ coherence as a tool to diagnose
information recovery in terms of the total increase of the
relative entropy of coherence. To this end, we must implement
some accompanying non-Markovian evolution and see how
much control we can have over it. Here we present a viable
approach and its experimental proof of principle by address-
ing the amplitude damping channel. Our all-optical approach
requires polarization and path qubits alone. This suggests a
possible complementary role that such an approach could have
when dealing with phase damping and with various degrees
of freedom that might enter more sophisticated scenarios.
The results we report below should serve to increase our
understanding of non-Markovian processes and the degree of
control we might have upon them.

II. THEORETICAL MODEL

A. Non-Markovianity measure

Similarly to the measure N , which involves trace distance,
there is a measure that involves the relative entropy of coher-
ence. As we said before, for the purposes of addressing the

amplitude damping channel, this measure should be applied to
the bipartite system that comprises the system under study and
some ancilla. This bipartite system should evolve according to
ρa,s(t ) = E[ρa,s(0)], with E = Ia ⊗ �s. The required measure
is then given by [5]

N (S)
rec = maxρa,s (0)

∫
Ċrec (ρa,s (t ))>0

Ċrec[ρa,s(t )]dt . (2)

We see that N (S)
rec evaluates the monotonicity Crec[E (ρa,s)] �

Crec(ρa,s). As it occurs with N , measure N (S)
rec also prescribes

that we should seek for the maximum over all possible initial
states ρa,s(0), which implies an optimization procedure that
is generally a hard task. Fortunately, in our case we can
replace N (S)

rec by a simpler quantifier that is based on the
maximally entangled system-ancilla state ρa,s(0) = 1

2 (|00〉 +
|11〉)(〈00| + 〈11|). With reference to this initial state, we can
introduce and use henceforth the following expression for a
non-Markovian quantifier [5]:

Nrec ≡
∫

Ċrec (ρa,s (t ))>0
Ċrec[ρa,s(t )]dt . (3)

B. Dynamical process

Our proposed evolution contains two steps. The first step
models the usual amplitude damping (AD) channel [6], whose
action describes the excitation of e by the relaxation of s. This
mechanism can be simulated by the transitions |V 〉s |0〉e →
|V 〉s |0〉e and |H〉s |0〉e → √

1 − η1 |H〉s |0〉e + √
η1 |V 〉s |1〉e,

where η1 is the damping parameter, |H〉s (|V 〉s) is the hori-
zontal (vertical) polarization of a photon, while |0〉e and |1〉e
stand for the two spatial modes of a Sagnac interferomet-
ric configuration. We have taken |V 〉s and |0〉e as “ground”
states and |H〉s and |1〉e as “excited” states. The associated
transformation that couples system (polarization) with en-
vironment (spatial modes) from t0 to t1 is described by a
unitary operator U(s,e)(t1, t0), whose internal structure and
optical implementation will be discussed later. The second
step, which takes place between t1 and t2, has been suitably
designed to effectively generate an antiamplitude damping
(A-AD) channel that reverses the previous decoherence effect.
Its mechanism involves, besides the s and e spaces, also the
photon arrival time, which is implemented by resorting to an
additional qubit, the d qubit (|0〉d and |1〉d ). The associated
evolution operator U(s,e,d )(t2, t1) depends therefore on three
qubits, the explicit formulation of which is given below.

If we consider an uncoupled, normalized initial state
|ψ (t0)〉(s,e) = (α |H〉s + β |V 〉s) |0〉e, the first step of the
evolution reads

|ψ (t1)〉(s,e) = U(s,e)(t1, t0) |ψ (t0)〉s,e

= (α
√

1 − η1 |H〉s + β |V 〉s) |0〉e

+α
√

η1 |V 〉s |1〉e . (4)

For the second step we seek to implement an AD channel in
which the damping parameter is changed from η to some-
thing proportional to 1 − η. Because of this an increase in
η translates into a population increase of the “excited” state
|H〉e, i.e., something contrary to what happens with the usual
AD channel, which depopulates the excited state. It is in this
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way that we turn the AD channel into an A-AD channel.
Our sought-after process can be realized, for instance, by the
following transformation:

|ψ (t2)〉s,e = [α
√

1 − η1(1 − η2) |H〉s + β |V 〉s] |0〉e

+α
√

η1(1 − η2) |V 〉s |1〉e . (5)

Here, η2 is the running antidamping parameter, while η1

remains fixed during this step. Thus, the role played by η1

in (4) is played by 1 − η2 in (5).
Since the first step is equivalent to a completely positive

(CP) map � acting on s alone, it admits the following repre-
sentation:

ρs(t1) = �[ρs(t0)] =
1∑

i=0

Kiρs(t0)K†
i , (6)

where Ki ≡ 〈i|eUs,e(t1, t0)|0〉e are the associated Kraus opera-
tors [6]. Thus, such a process describes a Markovian evolution
in its more formal definition [2,23]. On the other hand, in the
second step we have a non-CP map for η1 �= 0 and η2 �= 0,
which corresponds to a non-Markovian dynamics [24,25].
With our choice of |V 〉 as “ground” state, the Kraus operators
for the AD channel of the first step read

K0 =
(√

1 − η1 0
0 1

)
, K1 =

(
0 0√
η1 0

)
. (7)

Since the second step we propose is intrinsically non-
Markovian, we stress that there is no Kraus decomposition
associated to Eq. (5) from t1 to t2 but only from t0 to t2
according to

K0 =
(√

1 − η1(1 − η2) 0
0 1

)
, K1 =

(
0 0√

η1(1 − η2) 0

)
.

(8)
One can easily check that for an initial maximally entan-

gled state ρa,s(t0) = 1
2 (|00〉 + |11〉)(〈00| + 〈11|), where the

system is in a completely mixed state ρs(t0) = Tr[ρa,s(t0)] =
1
2Is, the two-step evolution from t0 to t2 simply leads to

ρs(t2) = 1

2

(
1 − η1(1 − η2) 0

0 1 + η1(1 − η2)

)
. (9)

In our proposal, when the AD channel reaches its maxi-
mum level (η1 = 1) at the end of the first step, the population
of the excited state |H〉s is totally depleted and the system
is in its ground state ρs(t1) = |V 〉s〈V |. After completion of
the second step, when η2 = 1, the system is in state ρs(t2) =
1
2Is = ρs(t0). As we shall see, in cases like this the relative
entropy of coherence (Crec) goes from Crec = 1 at t0 to Crec = 0
at t1, and then back to Crec = 1 at t2. Other processes are also
possible, in which partial loss and recovery of coherence may
occur at a given rate.

C. Non-Markovian quantifier

As already stated, we start with qubits a and s in the
maximally entangled state ρa,s(t0) = |ψ (t0)〉a,s〈ψ (t0)|, where
the ancilla and system are polarization qubits: |ψ (t0)〉a,s =

1√
2
(|H〉a |H〉s + |V 〉a |V 〉s). The e qubit starts in its ground

state |0〉e, which corresponds to a propagation path. The first

FIG. 1. Diagram of the experiment. (a) SPDC source and a-
photon tomography. (b) Implementation of the two-step channel: a
SI-based AD channel (first step) and a MZI-based A-AD channel
(second step). After the angular rotation θ1(η1) made by UHWP, the
undamped (damped) light exits the SI through its bottom (top) output
mode |0〉e (|1〉e). The angular rotation θ2(η2) made by U ′

HWP sends
the damped light back to |0〉e. A tilting glass G provides the relative
phase δe = ±π/2, which is required for interference at the last beam
splitter. Another G and a thick compensation glass (CG) are used to
compensate relative time delays between |0〉e and |H〉s after θ2(η2),
while |V 〉s is filtered out from ancilla-system coincidences in the
nested MZI.

step in the evolution of the a-s state is defined by

ρ(a,s)(t1) = Tre[E1[ρ(a,s)(t0) ⊗ |0〉e〈0|]E†
1 ]

= Tre[ρ(a,s,e)(t1)], (10)

where E1 = Ia ⊗ U(s,e)(t1, t0).
The second step in the evolution of the a-s state is defined

by

ρ(a,s)(t2) = Tre[Trd (E2[ρ(a,s,e)(t1) ⊗ |0〉d〈0|]E†
2 )]

= Tre[ρ(a,s,e)(t2)], (11)

where E2 = Ia ⊗ U(s,e,d )(t2, t1) is the corresponding full op-
erator. In this case, we have to trace out both environ-
ment spaces, e and d , in order to extract the information
stored in the a-s system. Since the above dynamics leads to
Ċrec[ρa,s(t )] > 0 for t1 � t � t2, the non-Markovian quantifier
of Eq. (3) is given by

Nrec = Crec[ρa,s(t2)] − Crec[ρ(a,s)(t1)]. (12)

D. All-optical implementation

In what follows, we describe how the required unitary
transformations that correspond to the Markovian and non-
Markovian evolutions can be implemented using all-optical
setups. Figure 1 shows a scheme of the complete arrangement.

1. First step: Markovian evolution

As we said before, we can implement the AD channel by
means of a Sagnac interferometer (SI) [see Fig. 1, lower-left
corner of panel (b)]. The associated unitaries read

U (s,e)
SI (θ1) = UPBS

(
U (s,e)

HWP0(θ1)
)
UPBS,

U (s,e)
HWP0(θ1) = Hs(0) ⊗ |1〉e〈1| + Hs(θ1) ⊗ |0〉e〈0| ,

UPBS = |H〉s〈H | ⊗ Ie + |V 〉s〈V | ⊗ σ x
e , (13)
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where U (s,e)
HWP0 corresponds to the action of the half-wave plates

(HWPs) on each path of the SI, and UPBS corresponds to
the action of the polarizing beam splitter. Here, σ x

e is Pauli’s
x matrix acting on the path qubit. Hs(θ ) is the unitary that
represents the action of the half-wave plate on the system
(polarization) qubit: Hs(θ ) = cos(2θ )σ z

s + sin(2θ )σ x
s .

The total unitary that acts on the three qubits—ancilla,
system, and e path—is given by

U (a,s,e)
SI (θ1) = Ia ⊗ U (s,e)

SI (θ1). (14)

Unitary U (a,s,e)
SI (θ1) acts on the input state ρ(a,s,e)(t0) =

ρ(a,s)(t0) ⊗ |0〉e 〈0|, with ρ(a,s)(t0) = 1
2 (|HH〉 + |VV 〉)(〈HH |

+ 〈VV |). For t0 � t � t1, we then have

ρ(a,s)(θ1) = Tre
[
U (a,s,e)

SI (θ1)ρ(a,s,e)(t0)
[
U (a,s,e)

SI (θ1)
]†]

= 1

2

⎛
⎜⎜⎝

cos2 (2θ1) 0 0 − cos (2θ1)
0 sin2 (2θ1) 0 0
0 0 0 0

− cos (2θ1) 0 0 1

⎞
⎟⎟⎠.

(15)

From the eigenvalues of ρ(a,s) and its associated diagonal
matrix ρ

diag
(a,s) we obtain, as per Eq. (1),

Crec(θ1) = 1

log 16

{
ln 4 − 2 cos2(2θ1) ln

[
cos2(2θ1)

2

]

+ [3 + cos(4θ1)] ln

[
3 + cos(4θ1)

4

]}
. (16)

The values taken by Crec(θ1) in the range 0 � θ1 � π/4
correspond to a Markovian process (Nrec = 0), according to
the quantifier given by Eq. (3).

Written in terms of η1 = sin2(2θ1), the density operator
ρ(a,s) reads

ρ(a,s)(η1) = 1

2

⎛
⎜⎝

1 − η1 0 0
√

1 − η1

0 η1 0 0
0 0 0 0√

1 − η1 0 0 1

⎞
⎟⎠. (17)

As for the density matrix of the system, ρs = Tra(ρ(a,s) ), it is
given by

ρs(η1) = 1

2

(
1 − η1 0

0 1 + η1

)
. (18)

This ρs corresponds, as it should, to the evolution of ρs(0) =
1
2Is under the AD channel.

2. Second step: Non-Markovian evolution

In the second step we perform two-qubit, ancilla-system
tomography of state ρa,s(θ2) by coincidence measurements in
detectors D0 and D2. Photon beams leading to detector D1

are blocked. What remains after the SI is therefore a Mach-
Zehnder–type setup [see Fig. 1, middle part of panel (b)].
As we said before, the upper branch of this interferometric
arrangement has a HWP oriented to θ2, followed by an addi-
tional structure that consists of two polarizing beam splitters
(PBSs) and two mirrors. They serve the purpose of increasing
the optical path for vertically polarized photons by more

than the photon’s coherence length, which in our case was
experimentally estimated to be 10 μm. The above mechanism
is equivalent to enlarging the Hilbert space by including the
photon detection time (d qubit) as an additional environment
space. Unlike the vertical polarization in the upper branch,
the horizontal one and any polarization in the lower branch
are temporally balanced by the help of a HWP oriented to 0◦,
together with compensation glasses for additional adjustments
of the path lengths. Hence, only the horizontal polarization in
the upper branch can contribute to the coherent coincidences
together with the ancillary photons. It is by this polarization-
dependent coincidence detection that we implement the A-AD
channel.

The unitary action of the Mach-Zehnder (MZ)–type setup
is given by U (s,e,d )

MZ (θ2) = U (e)
BS U (s,e,d )

HWPc (θ2), where

U (e)
BS = Is ⊗ 1√

2

(
σ x

e + σ z
e

) ⊗ Id (19)

corresponds to the action of the beamsplitter on the e qubit,
leaving the s and d qubits unchanged, while

U (s,e,d )
HWPc (θ2) = U (s,e,d )

c U (s,e)
HWP(θ2) (20)

is a unitary operator that acts on the three qubits: the system
qubit (s), the path environment qubit (e), and the detection
qubit (d).

The unitary U (s,e,d )
HWPc in Eq. (20) is a product of two unitaries:

U (s,e)
HWP(θ2) = [Hs(0) ⊗ |0〉e〈0| + eiδHs(θ2) ⊗ |1〉e〈1|] ⊗ Id

U (s,e,d )
c = |V 〉s〈V | ⊗ |1〉e〈1| ⊗ σ x

d

+ |H〉s〈H | ⊗ |1〉e〈1| ⊗ Id + Is ⊗ |0〉e〈0| ⊗ Id .

(21)

U (s,e)
HWP(θ2) acts on the s and e qubits, leaving d unchanged.

Depending on the path, |0〉e or |1〉e, the s qubit is submitted to
a polarization transformation by the HWP’s unitary Hs(θ2), or
else it is left unchanged by Hs(0), whose corresponding HWP
is set on the branch belonging to qubit |0〉e to compensate
the optical-path increment associated to the other HWP. The
second action of U (s,e,d )

HWPc (θ2) is made by U (s,e,d )
c , which be-

longs to the additional setup on the upper branch of the MZI.
Here, vertically polarized photons |V 〉s traveling along path
|1〉e are submitted to a change from path |0〉d to |1〉d by σ x

d .
Horizontally polarized photons |H〉s traveling along path |1〉e
are left unchanged, as is also the case with photons traveling
along path |0〉e, the lower branch of the MZI.

In order to include the ancilla, we extend U (s,e,d )
MZ (θ2) to

U (a,s,e,d )
MZ (θ2) = Ia ⊗ U (s,e,d )

MZ (θ2). Finally, the unitary transfor-
mation that is performed by the whole setup reads

U (a,s,e,d )
T (θ1, θ2) = U (a,s,e,d )

MZ (θ2)
(
U (a,s,e)

SI (θ1) ⊗ Id
)
, (22)

where U (a,s,e)
SI (θ1) has been defined in Eq. (14).

The input state of the total system is

ρ
(in)
(a,s,e,d )(0) = |ψ〉(a,s)〈ψ | ⊗ |0〉e〈0| ⊗ |0〉d〈0| ,

|ψ〉(a,s) = 1√
2

(|H〉a |H〉s + |V 〉a |V 〉s). (23)
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The output state is then given by

ρ
(out)
(a,s,e,d )(θ1, θ2) = U (a,s,e,d )

T ρ
(in)
(a,s,e,d )(0)

(
U (a,s,e,d )

T

)†
. (24)

By tracing out the d qubit from the above output state,
we obtain ρ

(out)
(a,s,e) = Trd (ρ (out)

(a,s,e,d ) ). This state is submitted to
a coincidence measurement at detectors D0 and D2. Qubit
|1〉e corresponds to the path leading to D2. Accordingly,
we obtain the reduced, un-normalized ancilla-system state
by projecting on |1〉e and tracing out the e qubit: ρ̃

(out)
(a,s) =

Tre (ρ (out)
(a,s,e) |1〉e〈1|). The normalized ancilla-system state that

describes our measurement results is thus given by

ρ
(out)
(a,s) = ρ̃

(out)
(a,s)

Tra,s
(
ρ̃

(out)
(a,s)

) . (25)

This is the sate we use to calculate Crec(ρ(a,s) ) and Nrec [see
Eqs. (1) and (3)]. Written in terms of the damping parameters
ηi=1,2, the ancilla-system output density matrix reads

ρ
(out)
(a,s) = 1

2 − 2 cos(δ)
√

(1 − η1)η1η2

⎛
⎜⎝

1 − 2 cos(δ)
√

(1 − η1)η1η2 − η1(1 − η2) 0 0
√

1 − η1 − eiδ√η1η2

0 η1(1 − η2) 0 0
0 0 0 0√

1 − η1 − e−iδ√η1η2 0 0 1

⎞
⎟⎠.

(26)

Setting δ = π/2 and tracing over the ancilla, we get
the system state ρ (out)

s = Tra (ρ (out)
(a,s) ) that was previously

announced in Eq. (9):

ρ (out)
s = 1

2

(
1 − η1(1 − η2) 0

0 1 + η1(1 − η2)

)
. (27)

This is our sought-after result. The output system state corre-
sponds to having evolved ρs(0) = 1

2Is by an A-AD channel.
Indeed, ρ (out)

s above can be obtained from state ρs of Eq. (18)
through the replacement of η1 by η1(1 − η2). Keeping η1 fixed
while letting η2 go from zero to 1, we get an A-AD evolution.

In Fig. 2 we show the theoretically calculated Crec(ρ(out)
(a,s) )

for values of η1,2 in the range [0,1], i.e., for θ1,2 in the range
[0, π/4], and δ = π/2 [see Eq. (26)]. For fixed values of θ2

we see a coherence decrease that depends on θ1, while for any
fixed θ1 �= 0 we see a coherence revival when θ2 grows up.
This full control of coherence allows us to recover the initial
bipartite state and its associated polarization coherence during
the evolution. We should stress that any of the two output ports
of the final beamsplitter can be used for this purpose.

FIG. 2. Theoretically calculated Crec[ρa,s(t2)] for both the damp-
ing angle θ1 and the antidamping angle θ2 varying in the range
[0, π/4].

III. EXPERIMENTAL SETUP AND RESULTS

In our setup, polarization-entangled photon pairs are cre-
ated by spontaneous parametric down-conversion (SPDC) in
two barium-beta-borate (BBO) crystals having their optical
axes oriented perpendicular to one another and being pumped
with a cw laser diode (400 nm, 0.7 nm linewidth, 37.5 mW),
as shown in Fig. 1(a). The entangled s and a photons have
a wavelength of 800 nm. The a photon is directly sent to a
tomography stage composed by a quarter-wave plate (QWP),
a half-wave plate, and a consecutive polarizing beam splitter,
while the s photon is injected into the bulk-optics setup before
entering another complementary tomography stage [26]. Pho-
tons are collected with multimode fiber optics and registered
within a coincidence window of 10.42 ns by synchronized
avalanche photodetectors (APDs).

The input state ρ
(in)
(a,s) = |ψ〉(a,s)〈ψ | was produced with the

required purity, as can be seen in Fig. 3, which shows the re-
sult of a tomographic characterization. The purity of ρ

(in)
(a,s) was

better than 92% in each experimental run. To achieve this pu-
rity, we set a HWP and a tilted QWP before the BBO crystals
so as to produce states of the form |ψ〉(a,s) = cos θ |H〉|H〉 +
exp(iφ) cos θ |V 〉|V 〉. By rotating and tilting the QWP, we
could achieve the required purity of ρ

(in)
(a,s), as tested by stan-

dard two-qubit tomography assisted by maximum-likelihood
estimation [26]. This method proved to perform better than an
alternative one in which we employed a calcite crystal and a
Glan-Thompson prism.

FIG. 3. Measured density matrix of the initial state ρ
(in)
(a,s). The tar-

geted state is a pure, maximally entangled one: |ψ〉(a,s)〈ψ |. Measured
purity is better than 92%.
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FIG. 4. Experimental results of Crec(ρa,s) at the first step of the
evolution. We exhibited coherence loss by varying θ1 so as to scan
Crec(ρa,s) over a wide range of values between 1 and zero. Error bars
come from the standard deviation over ten measurements.

As for the first step of the evolution, we implemented it by
means of a displaced SI [see Fig. 1(b)]. The s photon of the
initial, bipartite state |ψ (t0)〉a,s = 1√

2
(|H〉a |H〉s + |V 〉a |V 〉s)

propagates along the upper input mode, which represents
the environment ground state |0〉e, whence the |H〉 (|V 〉)
component of the s photon circulates in the clockwise (coun-
terclockwise) trajectory inside the SI. Following [27], we
implemented the AD channel by an angular rotation θ1(η1) =
1
2 arccos(−√

1 − η1) of the half-wave plate that intersects the
clockwise trajectory. Another HWP, set to θ0 = 0, is placed
in the counterclockwise trajectory to compensate the relative
time delay. This HWP introduces only a relative phase shift of
π between H and V polarization states. Undamped light exits
the SI—after having followed the counter-clockwise path—
through the horizontal (lower) output mode of the SI’s PBS.
This mode corresponds to |0〉e, while the complementary, ver-
tical (upper) output mode is associated to |1〉e. Thereafter, we
perform the first-step’s two-qubit tomography of qubits s and
a [26]. This involves coincidence measurements at detectors
D0 and D1 (see Fig. 1). Figure 4 shows our measurements of
Crec for the first step, during which the Markovian evolution
takes place. It corresponds to coincidence measurements at
detectors D0 and D1. Only the Sagnac part of the arrangement
was involved. Here, Crec goes from one (for θ1 = 0) to zero
(for θ1 = π/4). The three beam splitters that follow the SI—
two at the lower branch and one at the upper branch—have the
sole purpose of allowing us to perform coincidence measure-
ments at detectors D0 and D1 first and at D0 and D2 afterwards,
without mounting and demounting the required setups. In this
way, having fixed all optical components, we just block the
unrequired photon beams.

The setup that implements the second step of the process
is essentially a MZI with time delay for one polarization. The
lower branch has a HWP set to 0◦, while at the upper branch
there is a second HWP set at θ2 = 1

2 arccos(−√
1 − η2), al-

lowing tuning of the damping factor η2 of the A-AD channel.
The upper branch of the MZI subdivides into two orthog-
onally polarized modes of a nested structure. Its vertically
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FIG. 5. Experimental results of Crec(ρa,s) and Nrec(ρa,s(t2)). We
scanned θ2 while the damping parameter was fixed to θ1(η1 =
1) = π/4 and θ1(η1 = 1/2) = π/8 in the dashed and solid curves,
respectively. Error bars come from the standard deviation over ten
measurements.

polarized path is longer than the horizontally polarized one
by more than the photon’s coherence length, and its time
delay is not balanced with respect to the lower branch. Then,
vertically polarized photons cannot interfere with the lower
branch when MZI closes but only the horizontally polarized
photons. This mechanism prevents any coherent contribution
to the coincidence detections between the vertically polarized
photons of the upper branch and the ancillary ones.

In Fig. 5, upper panel, we show our experimental results
for Crec in two damping regimes. These correspond to fixing
θ1 first at π/4 (solid curve) and then at π/8 (dashed curve).
The solid curve for Crec starts at zero, which is the end
value of the Markovian regime, and then it goes up to 1,
thereby recovering the starting value of the Markovian pro-
cess. Hence, the solid curve in Fig. 5, upper panel, can be seen
as a continuation of Fig. 4. By adding further Markovian and
non-Markovian steps, we would witness a periodical process.
It is worthwhile to notice that there is another periodical
process that we can obtain by using just the Sagnac part of
our setup. Indeed, if we increase θ1 beyond π/4 in Crec(θ1) of
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Fig. 4, we get the exact solid curve of Fig. 5, upper panel. This
corresponds to a case in which the s qubit and the e qubit pe-
riodically exchange one excitation. In such a case, the e qubit
is no longer modeling a reservoir but some two-state system.
A possible physical scenario, which is modeled by this setup,
could be, for instance, an ideal cavity containing a two-level
atom and a single-mode photon. η1 would then correspond to
a time parametrization of the type η1 = sin2(ωt ) instead of a
parametrization of the type η1 = 1 − e−γ t , which corresponds
to an environment having infinite modes, among which one
excitation (|1〉e) is distributed [27]. Of course, it is an inherent
feature of our setup that it leads to periodic processes, because
we produce them with rotatory elements, the wave plates. It is
by parametrizing the quantum channels in terms of transition
probabilities, ηi=1,2, that we can address decay processes as
well as oscillatory exchanges of excitations. Even though
the parameters ηi are inherently periodic in our setup, i.e.,
ηi = sin2(2θi ), we can model the two types of processes
by properly delimiting the range in which those parameters
should vary [27].

In Fig. 5, lower panel, we finally show the associated val-
ues of Nrec for the non-Markovian regimes we have explored.
As we can see, the higher the damping θ1, the higher the
accessible degree of non-Markovianity.

Despite the usual experimental imperfections, our results
were in good agreement with theoretical predictions. This was
mainly due to the purity we could achieve for the initial states,
as well as to the overall low error sensitivity of our protocol.
As already pointed out, purity of the initial states was better
than 92% in each experimental run. Another figure of merit,
even though under the previously mentioned provisos [22],
is fidelity. We obtained F = | 〈ψexp|ψ (t0)〉(a,s) |2 = 0.955 ±
0.001.

IV. CONCLUSIONS

In this work, we have shown the feasibility of an all-optical
setup that simulates open quantum system dynamics contain-
ing Markovian and non-Markovian regimes. We implemented
an ancilla-system compound state that allowed us to diag-
nose non-Markovianity in a relatively simple way. Indeed, by
starting with a maximally entangled ancilla-system state, it
is possible to employ an easily calculable quantifier of non-
Markovianity to which one has direct experimental access.
This quantifier is based on the relative entropy of coherence.
Besides its usefulness in quantum information science, this
measure appears to be a versatile tool for the study of open
quantum systems.

Our approach provides additional tools for the study of
non-Markovian processes and complements other studies.

Indeed, the AD channel has been recently employed to
study non-Markovianity in an experiment that simulates a
single-photon setting by using an intense laser beam [28].
The simulated AD channel corresponded in this case to
the damped Jaynes-Cummings model, which in the non-
Markovian regime exhibits coherence revivals. This is in
accordance with our findings, if we extend the range covered
by the damping parameter η2. Another experiment related to
ours was reported in Ref. [29]. In this case, the AD process
affects a two-level system that is in contact with a reservoir
modeled with harmonic oscillators. Non-Markovianity is di-
agnosed in terms of entanglement of formation (EOF), and
the corresponding dynamics is experimentally simulated by
mapping the time evolution to the orientation of a HWP in
an interferometric arrangement. In this case, a nonmonotonic
behavior of the EOF shows up in the non-Markovian regime.

In contrast with the above cases, our implementation of the
system-environment interaction contains a genuine stochastic
feature. This feature comes into play through the coupling be-
tween photon polarization and spatial degrees of freedom, by
which some system photons—those vertically polarized—are
stochastically excluded from optical interference and so from
contributing to the coherence revival of the final state with
respect to the input one. This polarization-dependent action
of the environment on the system somewhat resembles the
implementation of system-environment interactions in purely
dephasing processes. In these implementations, the photon
polarization represented the system, while the environment’s
role was played by the photon frequency distribution. By
making the latter depend on the polarization state, it was
possible to generate non-Markovian regimes.

Our results show that we can achieve full coherence recov-
ery under suitable conditions. This hints at the possibility of
information protection or recovery when dealing with open
quantum systems. It is an as yet unanswered question how
to translate protocols such as those reported in this work into
protocols that are well suited for dealing with information-
carrying quantities. In any case, the concrete realization of
Markovian and non-Markovian regimes helps to broaden our
understanding of the dynamics of open quantum systems.
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