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Spin-noise spectrum of hot vapor atoms in an anti-relaxation-coated cell
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We study the spin-noise spectrum (SNS) of unpolarized Rb vapor in an evacuated anti-relaxation-coated cell
using parametric Faraday rotation of a flat-top probe beam with variable diameter. We identify a distinct structure
in the spectrum, called the Ramsey peak. We find that the power of the Ramsey peak is inversely proportional
to the total number of atoms in the cell, and the power of the total spin noise is inversely proportional to the
number of atoms within the probe beam. We further present a full theoretical analysis of the SNS by comparing
three models of spin diffusion: Fickian diffusion, the ballistic flight, and Langevin’s diffusion. We find that
Fickian diffusion fails, while the ballistic flight is acceptable. However, Langevin’s diffusion yields a remarkable
agreement with the experimental spectrum.

DOI: 10.1103/PhysRevA.101.013821

I. INTRODUCTION

Spin-polarized atoms are the workhorse in many areas of
precision measurements, such as the magnetometer [1–3], the
gyroscope [4,5], tests of fundamental symmetry [6,7], and
search of new physics [8,9]. Under ideal technical conditions,
the measurement sensitivity is limited by the spin projection
noise (SPN) of the atom and the photon shot noise (PSN)
of the probe light. As one can increase the ratio of signal to
PSN by increasing the spin polarization and the optical depth,
SPN ultimately becomes the fundamental limit. For atomic
magnetometry, suppose an atomic ensemble of spin J is fully
polarized along the x direction, the B field to be measured is
in the y direction, and the z component of spin polarization is
used to estimate the field. If the total measurement time tM is
much longer than the spin’s transverse relaxation time T2, then
the SPN limited sensitivity is given by [3,10]

δBy = 1

∂Jz/∂By
δJz

1√
tM/T2

= 1

γ T2J

√
J

2N

1√
tM/T2

, (1)

where γ is the gyromagnetic ratio of the spin, N is the total
number of measured spins.

One of the most important spin relaxation mechanisms
in atomic vapor cells is the wall relaxation due to atoms
colliding with the inner surface of the cell. One way to
suppress the wall relaxation is to fill the cell with high-
pressure inert buffer gases to slow down the diffusion of atoms
towards the cell wall. Another way is to coat the cell wall
with some anti-relaxation material such as paraffin, alkene,
or octadecyltrichlorosilane (OTS), which can preserve the
atomic spin coherence over hundreds to millions of wall col-
lisions [11–15]. Anti-relaxation-coated cells (ACCs) play an
important role in magnetometry [15–18], frequency standard
[19,20], and testing new ideas of quantum information and
quantum metrology [17,21,22]. Compared to buffer-gas-filled
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cells, the ACC has several advantages. The signals are much
larger without the pressure broadening of optical resonances
caused by buffer gases. Atoms diffuse in the cell so fast that
all of them can be pumped without the need to expand the
pump beam to cover the entire cell. Fast atomic diffusions also
reduce by motional narrowing, the broadening of magnetic
resonance in the case of inhomogeneous field or light shift.
Finally, it seems to be accepted without experimental evidence
that the fundamental sensitivity of magnetometry in the ACC
is independent of the probe beam area [15,23]. The argument
is that because atoms can collide many times with the cell
wall and spread over the entire cell without losing their spin
coherences, all of them are detected by the probe within the
relaxation time T2; hence the N in Eq. (1) represents the
total number of atoms in the cell. Whereas in buffer-gas-filled
cells, it was experimentally demonstrated that the power of
spin noise is inversely proportional to the area of the probe
beam [24].

Spin noise spectrum (SNS) provides rich information about
the physical properties of unperturbed spin systems [25–27]
from vapor atoms [24,28–30] to semiconductors [31–33].
The effects of spin diffusion on SNS was first studied for
quantum wells [34]. Theories of the two-beam method have
also been proposed for studying spin transport, diffusion, and
spatial correlations [35,36]. SNS of vapor atoms in buffer-
gas-filled cells has been thoroughly studied recently, yielding
the analytical expression of the spin diffusion time-correlation
function and the spectrum line shape [37,38]. However, there
is no corresponding study on the SNS of atoms in ACCs,
where not only the behavior of spin diffusion could be very
different, but also boundary effects have to be included.

Here, we report a quantitative study on the SNS of an
unpolarized atomic vapor in an OTS-coated cell using a flat-
top probe beam with variable diameter. We first show that the
total power of the SNS is inversely proportional to the beam
area, whereas the power, as well as the shape of a substructure
of the SNS, called the Ramsey peak, is independent of the
beam area. The ratio between the two powers is equal to
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FIG. 1. Experimental setup. PBS, polarizing beam splitter; Laser
lock, laser frequency locking module; λ/2, half-wave plate; π

shaper, optical system converting a Gaussian beam into a flat-top
beam; LP, linear polarizer; BE, beam expander; Iris, diaphragm for
adjusting beam area; WP, Wollaston prism; CL, converging lens;
BPD, balanced photon detector; SA, spectrum analyzer. Inset: probe
frequency and the energy diagram of the 87Rb D1 transition.

the ratio between the cross-sectional area of the cell and
the beam. Then, we give a full analysis of the SNS in the
ACC by comparing three different models of bounded spin
diffusion, including Fickian diffusion, ballistic flight, and
Langevin’s diffusion. All three models reproduce the same
power relation. However, bounded Langevin’s diffusion gives
the best agreement of line shape between the theory and the
experiment.

II. EXPERIMENTAL PROCEDURES

Our experimental setup is shown in Fig. 1.
A cubic Pyrex cell of 22 mm inner length containing

isotopically enriched 87Rb without buffer gas is placed in a
ceramic oven, which is heated by a nonmagnetic wire with an
ac of 71 kHz. The oven is designed to keep the cell’s tip, which
contains the Rb reservoir, a few degrees cooler than the body.
The inner wall of the cell is coated with OTS [39] capable
of preserving Rb spin coherences over several hundred wall
collisions. A 30-cm-diameter Helmholtz coil controlled by
a low-noise current source (ADC6156) provides a constant
B field in the y direction. The whole system resides in a
four-layer μ-metal shield with a residue field of several nT.
The probe beam comes from a Toptica diode laser with its
frequency locked about 1.8 GHz below the F = 2 to F ′ = 1
transition of the 87Rb D1 line by a dichroic atomic vapor laser
lock (DAVLL) system [40]. The probe is converted to a flat-
top beam of 18 mm diameter by a single-mode optical fiber, a
π shaper, and a beam expander. A variable diaphragm adjusts
the beam’s diameter d . A Wollaston prism, together with
a balanced photon detector, measures the Faraday rotation
(FR) θ of the probe at the exit of the cell. The FR signal is
fed into a spectrum analyzer (SRS760) for power spectrum

FIG. 2. Probe beam area dependence of the spin-noise spectrum
taken at 0.024 G. The cell’s tip and body temperatures are 104.4 ◦C
and 107.1 ◦C, respectively. All data are taken with a constant probe
power of 60 μW. (a) The SNS for different probe beam diameters.
The main plot shows the SNS from a full frequency scan (100 kHz)
of the SA. The resonance amplitude decreases with increasing probe
beam diameter from 2 (black), 3 (red), 4 (blue), 5 (pink), and 6
(green) to 7 (purple) mm. The inset shows the SNSs of a 3.125-kHz
frequency scan around the Ramsey peak with their transit bases
subtracted.

density (PSD) measurement. All spectra are averaged 5000
times. The SNS is obtained by subtracting the background
PSD measured at B = 0.45 G from the PSD measured at
B = 0.024 G.

We keep a constant light power for beams of different
diameters so that the spin relaxation rate due to probe photon
absorption stays the same. Such concern is unnecessary for
large frequency detuning since the absorption relaxation is
negligible compared to other relaxation processes. Thus, the
same experimental results can be obtained by using probe
beams of different diameters with constant intensity.

The main plot of Fig. 2 shows that the SNS consists of a
broad base and a narrow tip at the Larmor frequency of the
B field. Since the probe does not cover the vapor cell, the
precession signal of a spin fluctuation is interrupted by atoms
flying out of the beam, creating the transit broadening base in
the SNS. However, those atoms having moved out of the probe
beam are bounced back by the coated wall without losing their
coherence and return to the probe beam again and again until
they are relaxed by atom-atom or atom-wall collisions. Such
alternation of optical detection and coherent spin evolution
in the dark is closely related to the successive oscillatory
fields method first proposed by Ramsey [41], leading to the
so-called wall-induced Ramsey effect [42,43] manifested by
the narrow peak on top of the transit base. The shape of
the Ramsey peak in the main plot is not accurate, because
the SA can only plot 400 frequency bins corresponding to a
resolution of 250 Hz, which is comparable to the width of
the Ramsey peak. The inset shows the undistorted Ramsey
peaks from a narrower scan around the resonance center
with a frequency resolution of 7.8 Hz and with transit bases
subtracted. Interestingly, the Ramsey peaks for different beam
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FIG. 3. The probe beam area dependence of the power of SPN.
The black square represents the power of the total SPN, and the
solid line is a linear fit. The red triangle represents the power of the
Ramsey peak.

sizes are of equal size and can be fitted by a Lorentzian
function with a full width of about 270 Hz.

By integrating the SNS, we obtain the probe beam area AP

dependence of the power of total spin noise δ2θ and of the
Ramsey peak δ2θR. As shown in Fig. 3, while δ2θ is inversely
proportional to AP, δ2θR is independent of AP. Moreover,
the ratio of δ2θR to δ2θ is equal to the ratio of AP to the
cross-section area of the vapor cell AC for all probe beam
sizes, as shown in Table I.

III. THEORETICAL ANALYSIS

A. Power of SNS

We first give a simple and intuitive explanation for our
experimental results on the power of the SNS.

As shown in the inset of Fig. 1, the probe’s frequency
satisfies ν − νb,F ′ � ν − νa,F ′ � δν, where νF,F ′ is the op-
tical transition frequency between the F and F ′ hyperfine
sublevels and δν represents the homogeneous linewidth of the
D1 transition. Thus, only the polarization on the hyperfine
level a = I + 1/2 is detected, where I = 3/2 is the nuclear
spin of 87Rb. For the simplicity of notation, we will use the
symbol Fz to represent the atomic spin only on sublevel a in
the following text. The probe’s FR is given by [38,44]

θ = β(ν)nAl
〈Fz〉

2I + 1
, (2)

TABLE I. δ2θR/δ2θ vs AP/AC for different beam sizes.

d (mm) AP/AC δ2θR/δ2θ

2 0.65% 0.67%
3 1.5% 1.5%
4 2.6% 2.5%
5 4.1% 3.9%
6 5.9% 6.0%
7 7.9% 7.9%

where nA is the number density of 87Rb atoms, l is the cell
length, and 〈Fz〉 is averaged for atoms within the probe beam.
The FR interaction cross section β(ν) is given by

β(ν) ≈ rec f

(
1

4

1

ν − νa,a′
+ 3

4

1

ν − νa,b′

)
, (3)

where re is the classical electron radius, c is the speed of light,
and f is the oscillator strength of the 87Rb D1 transition. Then
the SPN limited uncertainty of the FR is

δθ = ∂θ

∂〈Fz〉δFz = βnAl

2I + 1

√〈
F 2

z

〉
. (4)

For an unpolarized ensemble, the mean variance of Fz

observed by the probe is given by〈
F 2

z

〉 = 2a + 1

2(2I + 1)

a(a + 1)

3

1

nAlAP
, (5)

where the first term is the fraction of atoms on the sublevel a,
the second is the variance of Fz for a single atom, and nAlAP

is the number of atoms within the probe beam. Therefore, the
noise power of FR due to SPN is

δ2θ =
(

βnAl

2I + 1

)2〈
F 2

z

〉 = β2nAl

AP

(I + 1)(2I + 3)

12(2I + 1)2 . (6)

Apply this equation to the linear fit of total noise power in
Fig. 3, and we obtain the value of nA to be 7.5 × 1012 cm−3,
corresponding to about 104 ◦C at the Rb reservoir according
to Killian’s formula [45]. This temperature is very close to
the measured temperature at the cell’s tip. At this density,
the spin-exchange (SE) broadening is qnAσSEvrel/π = 255 Hz,
where q = 1/8 is the nuclear slowing-down factor for the
F = 2 hyperfine level, σSE = 2 × 10−14 cm2 is the SE cross
section, and vrel = 4.3 × 104 cm/s is the relative velocity be-
tween Rb atoms [46]. Subtracting the SE broadening from
the full width of the Ramsey peak yields the wall relaxation
broadening to be about 15 Hz.

The above result gives the power of total spin noise con-
tributed by the average instantaneous fluctuation of polariza-
tion of all the atoms within the probe beam. As atoms quickly
redistribute uniformly over the entire cell due to their thermal
motion and coherence preserving wall collisions, the density
of the atoms which have contributed to the initial polarization
fluctuation and are still within the probe beam is diluted by a
factor of AP/AC. Thus the power of the Ramsey peak can be
calculated by merely changing nA to nAAP/AC in Eq. (6),

δ2θR = δ2θ
AP

AC
= β2nAl

AC

(I + 1)(2I + 3)

12(2I + 1)2 . (7)

Therefore, δ2θR is independent of the probe beam area and
δ2θR/δ2θ = AP/AC, in complete agreement with our experi-
mental results, as shown in Fig. 3 and Table I.

B. Line shape of the SNS

Having understood the power of spin noise, we next turn
to the line shape of the SNS. In this section, we first apply the
derivation of Refs. [34,38] for a flat-top probe beam to give the
general expression of the diffusion autocorrelation function
and the SNS. Then we compare three different theoretical
models of atomic spin diffusion with the experimental SNS.
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According to the Wiener-Khinchin theorem, the SNS S( f )
rendered by the PSD of Faraday rotation is the Fourier trans-
form of the time autocorrelation of the FR signal θ (t ):

S( f ) =
∫ ∞

0
2〈θ (0)θ (τ )〉 cos(2π f τ )dτ , (8)

where the average is carried out over all the initial time zero.
The FR signal θ for a flat-top probe beam is given by

θ (t ) =
∫

I (r)θ0(r, t )dr2∫
I (r)dr2

=
∫

θ0(r, t )dr2

AP
, (9)

where the integration is over the cross section of the probe
beam, I (r) is the intensity distribution of the probe beam, and
θ0(r) is the mean FR for a beam of a unit area centered at r on
the cross-sectional plane of the probe. The FR is related to the
spin polarization by

θ0(r, t ) = β(ν)nAl
〈Fz(r, t )〉0

2I + 1
, (10)

where 〈Fz(r, t )〉0 is the mean atomic spin within a beam of a
unit area. Therefore, we have

〈θ (0)θ (τ )〉 =
[

β(ν)nAl

(2I + 1)AP

]2

×
∫

〈Fz(r1, 0)Fz(r2, τ )〉0d2r1d2r2. (11)

Including the effects of the transverse magnetic field, spin
diffusions, and intrinsic spin relaxation [35], the spin covari-
ance function is given by

〈Fz(r1, 0)Fz(r2, τ )〉0 = 〈
F 2

z

〉
0G(r1 − r2, τ ) cos(ωLτ )e−τ2 ,

(12)

where 2 ≡ 1/T2 is the intrinsic transverse relaxation rate,
G(r1 − r2, τ ) is the Green’s function of spin diffusion, and,
similar to Eq. (5),〈

F 2
z

〉
0 = 2a + 1

2(2I + 1)

a(a + 1)

3nAl
= (I + 1)(2I + 3)

12

1

nAl
. (13)

Substituting Eq. (11) into (8) and using Eq. (6), we have

S( f ) = δ2θ

∫ ∞

0
2Cd (τ )cos(ωLτ )e−τ2 cos(2π f τ )dτ , (14)

where ωL is the Larmor frequency of spins under field By

and Cd (τ ) is the normalized spin diffusion autocorrelation
function given by

Cd (τ ) =
∫

G(r1 − r2, τ )d2r1d2r2

AP
. (15)

Physically, Cd (τ ) represents the probability of atoms that
are within the probe beam at time zero remaining inside
the probe at τ , including those that leave and return to the
probe beam by collisions with the cell wall or other atoms.
Rigorously speaking, Cd (τ ) should also take care of spin re-
laxations on the cell wall. However, in an evacuated ACC, wall
relaxations have little effect on Cd (τ ), compared to atomic
diffusions, because the relaxation time due to wall collision is
hundreds or even thousands of times longer than the diffusion
time of an atom through the cell. Many experiments made
in ACCs have confirmed that observed spin relaxations due

to wall collisions approach a single-exponential decay near
equilibrium, and wall relaxations can be described by an
effective intrinsic relaxation rate W.

Therefore, we approximate the cell surface as a perfect
reflecting boundary and treat the wall relaxation as part of the
intrinsic relaxation, 2 = W + SE, where SE represents
the relaxation rate due to the spin-exchange collision, which is
a real intrinsic relaxation process. Also, since the cross section
of the probe beam is a circle, in order to take advantage of the
cylindrical symmetry, we approximate the cross section of the
vapor cell by an equivalent circle with an area equal to that of
the actual square one. These approximations greatly simplify
the theoretical calculation of Cd (τ ).

It should be mentioned that S( f ) is an even function with
the normalization condition given by∫ ∞

−∞
S( f )df =

∫ ∞

0
2S( f )df = δ2θ. (16)

The experimental PSD produced by the spectrum analyzer
has only a positive frequency part containing the same power
as its two-sided theoretical counterpart. Thus, the measured
PSD is equal to 2S( f ).

According to Eq. (14), the central task to obtain the SNS
is to find the spin diffusion autocorrelation function, which
depends on a correct model of spin diffusion within the ACC.

1. Fickian diffusion

Recent studies have shown that evacuated paraffin-coated
Rb vapor cells contain non-negligible background gases with
estimated diffusion mean free path (MFP) of Rb atoms to
be about 1–2 mm or less [47,48]. Not knowing the MFP in
our OTS-coated cell, we first try to use the normal diffusion,
which is also called Fickian diffusion, to describe the spin
transport in our system. Under this assumption, the spatial and
temporal variation of the normalized spin-polarization density
ρ(r, t ) on the cross-sectional plane of the cell is given by the
Fick’s diffusion equation in polar coordinates,

∂ρ(r, t )

∂t
= D

1

r

∂

∂r

(
r
∂ρ

∂r

)
, (17)

where D represents the diffusion constant. The initial and
boundary conditions are, respectively, given by

ρ(r, 0) =
{

1
/
πR2

P, r � RP

0, r > RP
, (18)

and

∂ρ

∂r
(RC, t ) = 0, (19)

where RP is the radius of the probe beam, and RC = 12.4 mm
is the equivalent radius of the cell’s cross section. The solution
for the above equation is

ρ(r, t ) = 1

πR2
C

+
∞∑

n=1

kne−Dt( j1,n/RC)2

J0

(
j1,n

RC
r

)
,

kn = 2

πRPRC j1,nJ2
0 ( j1,n)

J1

(
j1,n

RC
RP

)
, (20)
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FIG. 4. The SNS fitted by the Fickian diffusion model. The inset
is a zoom-in around the Ramsey peak. Empty shapes of different
color represent experiment data for different probe diameters from 2
(black), 3 (red), 4 (blue), 5 (pink), and 6 (green), to 7 (purple) mm.
Each solid line of the same color is the corresponding theoretical
spectrum given by 2S( f ). Each experimental curve is obtained from
the spectrum of a 100-kHz scan with its data points around the
resonance center being replaced by the spectrum of a 3.125-kHz scan
around the resonance. The theoretical curves are generated using
D = 0.15 m2/s.

where Jm(x) is the Bessel function of the first kind of order m,
and j1,n is the nth nonzero root of the Bessel function of order
1. The diffusion correlation function is then given by

Cd (τ ) =
∫ RP

0
ρ(r, τ )2πrdr,

= R2
P

R2
C

+
∞∑

n=1

4J2
1

( j1,nRP

RC

)
j2
1,nJ2

0 ( j1,n)
e
−

(
j1,n
RC

)2
Dτ

, (21)

where the Bessel function formula,
∫

xJ0(x)dx = xJ1(x), is
used. Substitute the above expression of Cd (τ ) into Eq. (14),
and we obtain the SNS. We can see that in the final expression
of S( f ), the first term of Cd (τ ) in Eq. (21) leads to a spectrum
of pure Lorentzian with a full width of 2/π and an integrated
area precisely equal to the power of the Ramsey peak given
by Eq. (7). Therefore, the first term of Cd (τ ) must represent
the contribution of the Ramsey effect, and the second term the
transit effect.

The numerical fitting of experimental SNS by the Fickian
diffusion model is shown in Fig. 4. The first 50 j1,ns are used
to calculate Cd (τ ), large enough for Cd (0) to be within 5% of
unity. Only one set of data corresponding to the 4-mm beam
diameter (RP = 2 mm) is fitted using three independent fitting
parameters: 2, nA, and D. The total intrinsic relaxation rate
2 = 270 π s−1 is obtained from the full width of the Ramsey
peak. The number density nA has already been determined
from the total power of the spectrum. Therefore, only the
diffusion constant D needs to be adjusted to fit the data curve.
Once these three parameters are obtained, the theoretical
spectra for other beam sizes are automatically generated based
on their values of RP. As shown in Fig. 4, Fickian diffusion
fails to describe the spin motion in the ACC.

FIG. 5. Schematics of an atom’s flying path in the cell. RC: radius
of the cell; RP: radius of the probe beam; r: initial position of an
atom; v: atom’s initial velocity; φ: the relative angle between v and
r; LP: distance the atom travels to exit the probe; LC: distance the
atom travels to reach the cell wall.

2. Ballistic flight

In this section, we assume that atoms take ballistic flight in
the cell between successive wall collisions. A similar model
has been used to study the absorption profile of electromagnet-
ically induced transparency in paraffin-coated cells [49]. Here,
the velocity of the atom obeys Maxwell distribution, which, in
two-dimensional cases, is given by

f2(v) = 1

2π
〈
v2

x

〉 exp

(
− v2

2
〈
v2

x

〉
)

,

〈
v2

x

〉 = kBT
/

m, (22)

where 〈v2
x 〉 is the atom’s one-dimensional mean square veloc-

ity, kB is the Boltzmann constant, m is the mass of an 87Rb
atom and T is the temperature of the vapor, which is equal to
the cell’s body temperature.

As shown in Fig. 5, suppose an atom’s initial position is at
r from the center of the probe and initial velocity is given by
(v, φ) in the polar coordinate shown in the figure; the distance
it needs to travel to exit the probe beam is given by

LP(r, φ) =
√

R2
P − r2sin2φ − r cos(φ). (23)

Averaging the atoms’ velocity distribution and initial po-
sitions, we obtained the probability for atoms initially within
the probe beam to keep staying inside the beam at τ :

PS(τ ) =
∫ RP

0

2πrdr

πR2
P

∫ 2π

0
dφ

∫ LP (r,φ)/τ

0
ν f2(v)dv. (24)

Besides the atoms that never leave the probe beam, we also
need to count the atoms that exit and then return to the probe
by colliding with the cell wall. Since an atom’s velocity is
thermalized after bouncing off the coated cell wall [50], to a
first rough approximation, we assume that once an atom hits
the wall, it is suddenly redistributed uniformly inside the cell.
Then its probability of residing within the probe beam is equal
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FIG. 6. The SNS fitted by the ballistic flight model. The inset
shows a zoom-in around the Ramsey peak. The color coding is the
same as that of Fig. 4.

to the ratio between the cross-sectional areas of the beam and
the cell, AP/AC. Therefore, Cd (τ ) can be written as

Cd (τ ) ≈ PS(τ ) + PB(τ )
AP

AC
, (25)

where PB(τ ) is the probability for atoms initially within the
probe beam of having hit the cell wall by time τ :

PB(τ ) =
∫ RP

0

2πrdr

πR2
P

∫ 2π

0
dφ

∫ ∞

LC(r,φ)/τ
ν f2(v)dv, (26)

where LC(r, φ) represents the distance the atom needs to travel
to hit the cell wall:

LC(r, φ) =
√

R2
C − r2sin2φ − r cos(φ). (27)

Substituting Cd (t ) into Eq. (14), we obtain the final SNS.
Note, we have assumed a sudden redistribution of atoms

upon their arrival at the cell wall. However, an atom needs
to travel more distance to return to the probe. A better
approximation would be to construct a fictitious circle of
radius Rf larger than RC, and to allow atoms to fly through
the cell wall and be suddenly redistributed upon hitting this
fictitious boundary. By choosing RC as the boundary of sudden
redistribution in Eq. (27), we effectively increase the value of
PB(τ ) and cause Cd (τ ) to decay more slowly, according to
Eq.(25).

The fitting procedure is similar to the Fickian diffusion
model, except that there are now only two independent pa-
rameters: 2 and nA, which have the same value as before. As
shown in Fig. 6, the fitting looks much better than that of Fick-
ian diffusion. However, we can still see that the transit base of
the theoretical curve is slightly broader than the experimental
one, especially on the left shoulder. Since a broader spectrum
corresponds to a faster decay, this means that the theoretical
Cd (τ ) decays more quickly than the experimental one. To
improve the fitting, we need to change RC in Eq. (27) to a
smaller radius to let Rb atoms return to the probe before they
reach the cell wall. This inconsistency of the ballistic flight
model indicates the existence of non-negligible background

gases, yet the superiority of the ballistic flight model over
the Fickian diffusion also suggests that the atomic MFP is
probably larger than the diameter of the probe beam so that
the probe sees more straight flights than zigzag diffusions of
the atoms.

3. Langevin’s diffusion

According to the theory of Brownian motion, if the dis-
tance scale of interest such as the probe beam’s diameter
is comparable or smaller than the mean free path, then the
atomic motion should be better described by Langevin’s the-
ory of diffusion, which we will examine in this section.

The Green’s function for an unrestricted one-dimensional
Langevin’s diffusion starting from the origin is given by [51]

G(x, t ) = 1√
2π〈x2(t )〉

exp

[
− x2

2〈x2(t )〉
]
, (28)

where 〈x2(t )〉 = 2D[t − τD(1 − e−t/τD )] and τD = Dm/kBT .
Relating the partial derivatives of G(x, t ) with respect to t and
x yields the following equation:

∂G(x, t )

∂t
= D(1 − e−t/τD )

∂2G

∂x2
. (29)

Regarding this as the one-dimensional Langevin’s diffu-
sion equation, we can then change G(x, t ) to ρ(x, t ), and
generalize the equation to its two-dimensional polar form,

∂ρ(r, t )

∂t
= D(1 − e−t/τD )

1

r

∂

∂r

(
r
∂ρ

∂r

)
, (30)

with the same initial and boundary conditions as Eqs. (18) and
(19), respectively. The solution of Eq. (30) is

ρ(r, t ) = 1

πR2
C

+
∞∑

n=1

kne−D(t+τDe−t/τD )(
j1,n
RC

)
2

J0

(
j1,n

RC
r

)
,

kn = 2eDτD( j1,n/RC)2

πRPRC j1,nJ2
0 ( j1,n)

J1

(
j1,n

RC
RP

)
. (31)

FIG. 7. The SNS fitted by Langevin’s diffusion model. The inset
shows a zoom-in at the Ramsey peak. The color coding is the same
as that of Fig. 4.
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FIG. 8. Calculated diffusion correlation functions of different
models for the 2-mm beam radius. They belong to Fickian diffusion
(blue dash), ballistic flight with Rf = RC (red dash-dot) and Rf =
2 mm (green dot), and Langevin’s diffusion (black solid).

We notice that the solution of Langevin’s diffusion can be
obtained from that of the Fickian diffusion by replacing Dt in
the latter with D[t − τD(1 − e−t/τD )]. Similar to Eq. (21), the
diffusion correlation function is found to be

Cd (τ ) = R2
P

R2
C

+
∞∑

n=1

4J2
1

(
j1,n

RP
RC

)
j2
1,nJ2

0 ( j1,n)
e−(

j1,n
RC

)
2
D[τ−τD(1−e−τ/τD )]

. (32)

The fitting of the experimental SNS using the Langevin’s
diffusion model is shown in Fig. 7. The fitting procedure is the
same as that of the Fickian diffusion, and the first two inde-
pendent parameters, 2 and nA, remain the same as before.
The best fit yields D = 0.6 m2/s, corresponding to a mean
free path λ = 6 mm by the relation λ = 3D/v̄, where v̄ is the
mean thermal speed. As shown in Fig. 7, the simultaneous
match between the theoretical and the experimental SNS for
different beam sizes with a single value of D is remarkable.
The content of the background gas in OTS-coated cells has
been found to be mostly light hydrocarbon molecules [52].
If the cross section of velocity changing collision σC ∼ 1 ×
10−14 cm2, the pressure of the background gas is given by
p = kBT /λσC ∼ 0.8 Pa [47].

In Fig. 8, we compare the calculated diffusion correlation
functions of all three models for the case of RP = 2 mm. It is
interesting to see that by reducing the radius of the fictitious
boundary for the ballistic flight model, we can change its
Cd (τ ) to be very close to that of Langevin’s diffusion.

As a last note, we can easily verify that in all three models,
if RP → RC, then Cd (τ ) → 1. The SNS will then reduce to a
single Lorentzian Ramsey peak with no transit base. Because
the previous vapor cell is bigger than the optical window of
the cell oven, we have made another OTS-coated cell with a
cross section of 8 mm × 8 mm, allowing the probe beam to
cover the entire cell, and the above prediction is confirmed.

IV. CONCLUSIONS

In summary, we experimentally studied the spin-noise
spectrum (SNS) of hot 87Rb vapor atoms inside an anti-
relaxation OTS-coated cell with flat-top probe beams of dif-
ferent diameters. We found that SNS consists of two distinct
parts, which are a broad transit base and a narrow Ramsey
peak. The power of the total spin noise is inversely propor-
tional to the probe beam area while the power, as well as the
line shape of the Ramsey peak, is independent of the probe
beam size. The ratio between the two powers is equal to the
ratio between the cross-sectional areas of the vapor cell and
the probe beam. A simple theoretical explanation is given.
Combining with the fact that the field response of a magne-
tometer is independent of the probe beam size, we conclude
that the fundamental sensitivity limit of a magnetometer in an
anti-relaxation-coated cell depends on the probe beam area.

To give a full account of the line shape of the SNS,
we examined three theoretical models of diffusion: Fickian
diffusion, ballistic flight, and Langevin’s diffusion. Fickian
diffusion fails to fit the line shape. The ballistic flight model
gives satisfactory fitting results and can be further improved
by assuming atoms bouncing off from a fictitious boundary
inside the cell, which is not consistent with its original as-
sumption. Langevin’s diffusion yields the best agreement with
the experiment while being self-consistent. A mean free path
(MFP) of 6 mm is found in our cell by this model. The fact that
this MFP is larger than or comparable to the probe beam size
but smaller than the cell size is precisely the reason Langevin’s
diffusion is required. If the MFP is much larger than the cell
diameter, then the ballistic flight model will be excellent. If it
is much smaller than the probe beam size, such as in ACCs
filled with a small amount (several Torrs) of N2 quenching
gas, then the normal Fickian diffusion model will be valid.

Despite giving different spectrum line shapes, all three dif-
fusion models yield the same result for the power of the spin
noise. This is because they adopt the same approximation,
where we regard the cell wall as a perfect reflecting boundary
and treat the wall relaxation as part of the intrinsic relax-
ation instead of entailing it in the boundary condition. Such
approximation is valid for high-quality coated cells where
the relaxation probability for a single wall collision is much
smaller than the ratio of MFP to the average cell diameter
[53]. We also notice that the independence of the total spin
noise power on the detailed mechanisms of spin diffusion and
relaxation as indicated by Eq. (6) suggests a simple method
for determining the number density of thick atomic vapors.
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