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Fermionic formalism for driven-dissipative multilevel systems
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We present a fermionic description of nonequilibrium multilevel systems. Our approach uses the Keldysh
path-integral formalism and allows us to take into account periodic drives, as well as dissipative channels. The
technique is based on the Majorana fermion representation of spin-1/2 models which follows earlier applications
in the context of spin and Kondo systems. We apply this formalism to problems of increasing complexity: a
dissipative two-level system, a driven-dissipative multilevel atom, and a generalized Dicke model describing
many multilevel atoms coupled to a single cavity. We compare our theoretical predictions with recent QED
experiments and point out the features of a counterlasing transition. Our technique provides a convenient and
powerful framework for analyzing driven-dissipative quantum systems, complementary to other approaches
based on the solution of Lindblad master equations.
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I. INTRODUCTION

Driven-dissipative many-body systems are the subject
of experimental and theoretical investigations at the inter-
face of condensed-matter physics and quantum optics. In
these systems, the interplay between unitary dynamics and
dissipative channels can lead to interesting nonequilibrium
steady states that differ substantially from quantum phases
in thermal equilibrium. A recent example of such a system
involves pump-probe experiments in which driven, out-of-
equilibrium phonons give rise to superconducting correlations
at room temperature [1–5]. Atomic and molecular systems
offer another well-known example of driven-dissipative sys-
tems. Here, the interplay between driving, dissipation, and
interaction facilitates observations of phase transitions such
as the superradiant phase transition that are hard to explore in
equilibrium setups (see Ref. [6] for an introduction).

Understanding nonequilibrium phase transitions of open
quantum systems is a challenging theoretical problem. While
a number of powerful theoretical tools has been developed
for the description of equilibrium phase transitions [7], fewer
tools are available for nonequilibrium problems. The analysis
of driven-dissipative systems requires mathematical tools and
approximation schemes which treat the collective behavior
of large ensembles, strong correlations, and nonequilibrium
physics, on an equal footing. In the field of quantum optics,
master equations are commonly used, since they are well
suited to work with these types of systems [8]. However, alter-
native approaches can provide new insights, using analogies
with out-of-equilibrium solid-state systems.

Field-theoretical approaches, widely used in condensed-
matter and high-energy physics, were developed to describe
out-of-equilibrium many-body systems and are often referred
to as Keldysh path integrals [9–12]. Recent theoretical studies
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demonstrated the particular strength of the Keldysh approach
for the description of nonequilibrium phase transitions in open
quantum systems [13–20]. These works adopted a bosonic
approach, where the continuum limit of a spin model was
considered. Here, we instead opt for a fermionic approach,
which enables us to describe systems with a finite number
of allowed states, such as the lambda or W schemes. This
approach allows us to study nonequilibrium steady states
induced by the interplay between periodically driven fields
and dissipative channels.

In this paper we show how to use fermionic path integrals
to describe open quantum systems of increasing complexity
(see Fig. 1). First, in Sec. II we consider a two-level sys-
tem (spin- 1

2 ) with dissipation. We use the “drone”-fermion
approach to convert a single spin to two fermions, a Dirac
(complex) fermion and a Majorana fermion [21–31]. This
approach allows us to construct diagrammatic techniques for
the description of the steady-state properties of the system.
The Majorana representation has several advantages and does
not require any constraints, in contrast to bilinear forms of
fermions [32] and bosons (i.e., Schwinger-boson representa-
tion) [11], which require the imposition of constraints onto the
Hilbert space. Another advantage of the Majorana representa-
tion is that calculations of spin-spin correlation and response
functions can be simplified [31,33–35]. Next, in Sec. III we
consider the case of a multilevel system, namely a driven-
dissipative four-level scheme. Using fermionic path integrals,
we determine the conditions under which this system can
be effectively described as a two-level system. In Sec. IV,
we move to a yet higher degree of complexity. We consider
the coupling between many atoms and a single cavity mode,
giving rise to a driven-dissipative generalized Dicke model.
Our findings are relevant to a large number of different ex-
perimental implementations, including cavity QED [36–43],
trapped ion [44], and superconducting circuits (see Ref. [6]
and references therein). For concreteness, we focus on a
recent realization of the Dicke model [42,45], where we find
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FIG. 1. Sketch of the open quantum systems described in this paper. (a) The two-level system examined in Sec. II, coupled by dissipative
channels (green wiggly arrows). (b) The four-level atom (W scheme) considered in Sec. III A, including pumping fields (red arrows) and
dissipative processes. (c) The Dicke model considered in Sec. IV, describing the coupling between many driven-dissipative atoms and the
quantized field of an optical cavity.

signatures of an unusual lasing instability. Finally, in Sec. V
we compare our results with a mean-field approximation to
the Lindblad master equation, giving rise to a Maxwell-Bloch
description of the system [46].

II. DISSIPATIVE TWO-LEVEL SYSTEM

A. Majorana-Dirac fermion representation

In this section we provide a fermionic description of a
single spin- 1

2 coupled to two Markovian baths. This system
can be described by the following Hamiltonian:

H = ωzS
z +

∑
k,σ=L,R

νkσ
d†

k,σ
dk,σ

+
∑

k

�L

�L
λk,L(dk,LS− + d†

k,LS+)

+
∑

k

�R

�R
λk,R(dk,RS+ + d†

k,RS−), (1)

where ωz is the two-level splitting, νk,σ is the bath frequency
for a given k and polarization σ , �σ

�σ
λk,σ is the two-level to

bath coupling coefficient, d (†)
k,σ

is the annihilation (creation)
operator for a bath photon in a given k and σ , and Sα are the
spin − 1

2 operators satisfying [Sα, Sβ ] = iεαβγ Sγ and εαβγ is
the Levi-Civita symbol. The first step would be to describe the
two-level system as two fermions c1 and c2, each satisfying
[ci, c†

j ] = δi, j . This notation has the following constraint:

c†
1c1 + c†

2c2 = 1, (2)

In this notation the various spin operators (Sα) are transformed
as

Sz = c†
2c2, S+ = c†

2c1 = (S−)†. (3)

Solving this system (1) with the constraint (2) using field-
theoretical tools can become cumbersome.

We can simplify the problem by using the Majorana repre-
sentation in which the constraint is automatically fulfilled. To
achieve this goal, we represent the complex fermions c1 and
c2 as a linear combination of four Majorana fermions

c1 = 1
2 (ηz + iη0), c2 = 1

2 (ηx + iηy). (4)

Here the Majorana fermions ηi satisfy ηi = η
†
i , η2

i = 1, and
{ηi, η j} = 2δi j for all i ∈ [0, x, y, z].

By using the Majorana representation (4), we can express
the constraint (2) as

ηzη0 + ηxηy = 0. (5)

Equation (5) implies that in the physical space ηzη0|ψ〉 =
−ηxηy|ψ〉. By multiplying both sides of the equation by ηz

(from the left) and using the properties of Majorana fermions,
we obtain

η0|ψ〉 = −ηxηyηz|ψ〉. (6)

Equation (6) can now be used to eliminate the Majorana
fermion η0 from the Hamiltonian (1).

In practice, it is convenient to use the mixed Majorana-
Dirac fermion representation (“drone” fermion) [23–25,31],
where two Majoranas are combined into a single com-
plex (Dirac) fermion f = 1

2 (ηx + iηy), and a third Majorana
fermion is denoted by η ≡ ηz. Using Eqs. (4) and (6), we
express the Hamiltonian (1) through the η and f operators

c†
2c1 = f †η, c†

1c2 = η f ,

c†
2c2 = f † f , c†

1c1 = f f †. (7)

The mixed Majorana-Dirac representation can be conve-
niently mapped into a spin- 1

2 system [23–25,31]. To achieve
this task, one needs to identify the full and empty states of the
Dirac fermion, respectively, with the spin-up and spin-down
states of a spin- 1

2 system. The Majorana fermion is used to
fulfill the canonical spin commutation relations. Formally, the
mapping is given by

Sx = 1

2
( f † − f )η, Sy = − i

2
( f † + f )η,

Sz = f † f − 1

2
, (8)

or equivalently

Sx = 1

2
( f † + f )τx = 1

2
ηxτx,

Sy = − i

2
( f † − f )τx = −1

2
ηyτx,

Sz = 1

2
ητx = 1

2
ηzτx. (9)
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Here we defined τx = −iηxηyηz = (1 − 2 f † f )η. Note that the
“copy-switching” operator τx (for discussion see Ref. [31])
commutes with the Hamiltonian (1) and is thus time in-
dependent. This property will allow us to simplify the
calculation of some spin-spin correlation and response
functions [31,33–35].

B. Dissipation of a single spin

Using the mixed Majorana-Dirac representation introduced
in the previous section, we can rewrite the effective Hamilto-
nian (1) as

H(0) = ωz f † f +
∑

k,σ={L,R}
νkσ

d†
k,σ

dk,σ

+
∑

k

�R

�R
λk,R(dk,R f †η + d†

k,Rη f )

+
∑

k

�L

�L
λk,L(dk,Lη f + d†

k,L f †η), (10)

where the Majorana η and Dirac (complex) f fermions are
introduced using Eq. (7).

We now study the properties of the system using the
Green’s functions on the Keldysh contour [9,10]. In particular,
we are interested in the description of the nonequilibrium
steady state which is the result of the interplay between
driving and dissipation processes.

Bosonic bath. We describe the bosonic bath using the
greater and lesser Green’s functions on the Keldysh contour

D>
k,L(t, t ′) = −i〈dk,σ (t )d†

k,σ
(t )〉,

D<
k,L(t, t ′) = −i〈d†

k,σ
(t ′)dk,σ (t )〉. (11)

In this work, we focus on Markovian baths, characterized
by Ak,σ (ω) = Sk,σ (ω) (see also Sec. III B below). Because, by
definition D<

k,σ (ω) = Ak,σ (ω) − Sk,σ (ω), lesser Green’s func-
tions of Markovian baths are identically equal to zero. Hence
the integral effect of all bosonic modes can be described by
introducing the effective parameters γ↑ and γ↓:

∑
k

�2
Lλ2

k,L

8�2
L

D>
k,L(ω) = −iγ↑,

∑
k

�2
Rλ2

k,R

8�2
R

D>
k,R(ω) = −iγ↓. (12)

Fermions. The Green’s functions of the f and η fermions
are defined as

G>
η (t, t ′) = −i〈η(t )η(t ′)〉, G<

η (t, t ′) = i〈η(t ′)η(t )〉,
G>

f (t, t ′) = −i〈 f (t ) f †(t ′)〉, G<
f (t, t ′) = i〈 f †(t ′) f (t )〉.

(13)

In a steady state, the Green’s functions only depend on the
time differences and one can introduce the function h f (ω) and
the spectral function ρ f (ω), such that the Fourier transformed
Green’s functions read [47,48]

G>
f (ω) = −iπ [1 + h f (ω)]ρ f (ω),

G<
f (ω) = iπ [1 − h f (ω)]ρ f (ω), (14)

FIG. 2. Self-energies for the f and η fermions, � f and �η.
Solid lines correspond to the Dirac fermion Green’s function and
dashed lines to the Majorana fermion Green’s functions; wiggly lines
represent the Green’s functions of the bosonic bath.

where h f (ω) is connected to the occupation function
of the f -fermion n f (ω) by h f (ω) = 1 − 2n f (ω);
ρ f (ω) is the spectral function of f -fermion ρ f (ω) =
−1/(2π ) Im [G>

f (ω) − G<
f (ω)]. Similarly, the Majorana

Green’s function is defined as

G>
η (ω) = −iπρη(ω), (15)

where ρη(ω) is the spectral function of η-fermion ρη(ω) =
−1/(2π ) Im [G>

η (ω) − G<
η (ω)]. Note that the anticommuta-

tion relations { f , f †} = 1 and {η, η†} = 2η2 = 2 imply that∫
dω ρ f (ω) = 1 and

∫
dω ρη(ω) = 2.

Our diagrammatic approach starts from the bare Hamilto-
nian H = ωz f † f , which is equivalent to

ρ f (ω) = δ(ω − ωz ), h f (ω) = 1 − 2n f (0),

ρη(ω) = δ(ω). (16)

Here n f (0) can be understood as the occupation of fermions
before coupling to the bath. It will not be important for the
subsequent analysis.

Self-energy corrections. We now calculate the impact of
the dissipative bath coupled to the atoms. We consider the
correction to the Green’s function of the f -fermion and η-
Majorana particle. The self-energy of the f -fermion due to the
interaction with the bath is given by the following expression
(see the detailed derivation in Appendix A; see also Fig. 2):

�R
f (ω) − �A

f (ω) = −i(γ↑ + γ↓),

�K
f (ω) = −i(γ↓ − γ↑). (17)

In the steady state, the ratio between the self-energies on the
Keldysh contour defines the function h f (ω)

h f (ω) = �K
f (ω)

�R
f (ω) − �A

f (ω)
= γ↓ − γ↑

γ↑ + γ↓
. (18)
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The polarization of the system is given by the equal time
greater Green’s function:

sz(t ) ≡ 1

2
[2 f †(t ) f (t ) − 1] = 1

2
(−2iG<

f (t, t ) − 1)

= 1

2

(
−2i

∫
dω

2π
G<

f (ω) − 1

)
. (19)

By substituting the Greens’ function G<
f (ω) given by Eq. (14)

with h f defined by Eq. (18) and taking the integral, we obtain

sz = −1

2

γ↓ − γ↑
γ↑ + γ↓

. (20)

Equation (20) has a simple interpretation in terms of the
spin model; by definition [see Eq. (8)] sz ≡ 〈Sz〉 and the spin
magnetization in the stationary state depends only on the ratio
between the effective rate of the two dissipation channels.

The self-energy of the η-fermion due to the interaction
with the bath is given by the following expressions (see
Appendix A):

�K
η (ω) = −2i(γ↑ + γ↓)

(
h f (ω) − γ↑ − γ↓

γ↑ + γ↓

)
,

�R
η (ω) − �A

η (ω) = −2i(γ↑ + γ↓)

(
1 − h f (ω)

γ↓ − γ↑
γ↑ + γ↓

)
.

(21)

Substituting h f (ω) given by Eq. (18), we obtain

�K
η (ω) = 0,

�R
η (ω) − �A

η (ω) = −2i(γ↑ + γ↓)

[
1 −

(
γ↓ − γ↑
γ↑ + γ↓

)2
]
. (22)

Note that when the bath does not have any coherence between
its left and right part, it does not induce any anomalous terms
in the f -fermion Green’s functions, i.e., 〈 f f 〉 = 〈 f η〉 = 0.

C. Spin-spin correlation functions

We now show how to use the Majorana fermion represen-
tation to compute the correlation functions of spin operators.
This calculation involves two distinct methods, depending
on whether the expectation value of the spin operator under
consideration is zero or nonzero. In the former case, the
spin-spin correlation function can be expressed as a single
Green’s function, while in the latter case, the convolution of
two Green’s functions is required. This distinction was not
fully appreciated in the earlier literature [31,33–35].

In the Majorana fermion language, spin-spin correlations
correspond to four-point correlation functions [see Eq. (9)]:

〈Sα (t )Sβ (t ′)〉 = (−1)nα+nβ

4
〈ηα (t )τx(t )ηβ (t ′)τx(t ′)〉, (23)

where nx = 1, ny = 2, and nz = 3. For the sake of con-
creteness, we consider two spin operators, Sx and Sz, whose
expectation values respectively equal zero and nonzero.

For the former operator, 〈Sx(t )〉 = 1
2 〈ηx(t )τx(t )〉 = 0. This

implies that τx and ηx fermions are uncorrelated and one can
factorize their correlations. This allows us to break down

the four operator average into the product of two operator
averages:

〈Sx(t )Sx(t ′)〉 = 1
4 〈τx(t )τx(t ′)〉〈[ f (t ) + f †(t )]

× [ f (t ′) + f †(t ′)]〉. (24)

Because τx commutes with the Hamiltonian (1), it is invariant
in time and 〈τx(t )τx(t ′)〉 = 〈τ 2

x 〉 = 1. Thus, in the frequency
domain, the correlation function can be represented solely by
the f -fermion Green’s function:

F[〈Sx(t )Sx(t ′)〉] = i

4
G>

f (ω) − i

4
G<

f (−ω). (25)

Substituting the expression for the lesser and greater
Green’s functions we obtain (see the detailed derivation in
Appendix B)

F[〈Sx(t )Sx(t ′)〉] = γ↓
2

1

(ω − ωz )2 + (γ↓ + γ↑)2

+ γ↑
2

1

(ω + ωz )2 + (γ↓ + γ↑)2
. (26)

In the case of correlation function 〈Sz(t )Sz(t ′)〉, the ex-
pectation value of the spin is finite, 〈Sz〉 	= 0, and given by
Eq. (20). Thus, in this case, we are not allowed to decom-
pose the four-fermion Green’s function in the same way as
in Eq. (24). To circumvent the difficulty of accounting for
correlation between the τx and η fermions we express the
spin operator in terms of f fermions, as Sz = f † f − 1

2 . Since
there are no vertex corrections of second order in the coupling
parameter λ, we can express the spin-spin correlation function
as the product of two Green’s functions:

〈Sz(t )Sz(t ′)〉 = 〈Sz(t )〉〈Sz(t ′)〉 + G<
f (t ′, t )G>

f (t, t ′). (27)

In the stationary state we calculate the Fourier transform of
the spin-spin correlation function, substitute the expressions
for G>

f (ω) and G<
f (ω), and convolve two Green’s functions to

obtain (see the detailed derivation in Appendix B)

F[〈Sz(t )Sz(t ′)〉] = 2π〈Sz〉2δ(ω) +
(

1

4
− 〈Sz〉2

)

× 4(γ↑ + γ↓)

ω2 + 4(γ↑ + γ↓)2
. (28)

These results are in agreement with the Lindblad approach
analysis we provide in Sec. V.

III. DRIVEN-DISSIPATIVE FOUR-LEVEL SCHEME

A. Model

In this section, we investigate a system consisting of a
multilevel atom, coupled to a dissipative environment and
driven externally by laser fields. Specifically, we consider
an atom with an internal structure represented by four states
with energies εn. Figure 1(b) shows the sketch of the system.
Two pairs of states—|1〉, |3〉 and |2〉, |4〉—are coupled using
a coherent drive with frequencies ωR and ωL and matrix
elements �R and �L. In addition to the coherent drive, this
four-level system is coupled to incoherent bosonic baths that
describe the decay of the states |3〉 and |4〉 to the states |1〉 and
|2〉, respectively. The resulting scheme is often referred to as
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double-� scheme, or W scheme, and was used by Ref. [45]
to offer a possible realization of the Dicke phase transition.
The model was recently realized in a cavity QED experiment
by Ref. [42]. The same scheme was used by Ref. [49] as a
proposal to realize a spin-squeezed state: see their Supplemen-
tal Material for two specific physical realizations using 87Rb
atoms.

Our goal is to demonstrate how to treat coherent and
dissipative processes on equal footing using nonequilibrium
diagrammatic methods [9]. As a practical application of our
method, we show how to use diagrammatic techniques to map
this multilevel system to an effective Hamiltonian of a two-
level system with dissipation. At equilibrium, this mapping
can be justified when the temperature is much smaller than
the energy separation between ground and excited states. In
the present nonequilibrium case, the temperature is not well
defined. Nevertheless, the excited states can be integrated out
if one assumes that (i) the atoms are initially prepared in the
ground states |1〉 and |2〉 and (ii) the driving fields are far
detuned from the resonances to states |3〉 and |4〉. Using the
aforementioned conditions, we will demonstrate that we can
integrate out virtually occupied degrees of freedom, and the
rest of the system can be mapped to an effective two-level
system with dissipation.

The Hamiltonian of the system can be written as the sum
of Hamiltonians corresponding to all processes under consid-
eration, Hab(t ) = Ha(t ) + Hb + Hab,int . Here Ha(t ) stands for
the Hamiltonian of the atom

Ha(t ) =
4∑

n=1

εnc†
ncn + (�LeiωLt c†

1c4 + �ReiωRt c†
2c3 + H.c.),

(29)

where H.c. is the Hermitian conjugate. This Hamiltonian
includes processes induced by the external driving.

In Eq. (29) we use the Schwinger-fermion representation
of the states of the system. Here the operators c†

n create an
electron in the state |n〉. Note that using these notations we
should keep track of the number of electrons in the system
which should be conserved and equal to one,

4∑
n

c†
ncn = 1. (30)

In the following, we will derive an effective model and
rewrite it using the Majorana fermion representation without
requiring any constraints on the Hilbert space.

The coupling of the atomic system to the bosonic bath, Hb,
is described though the interaction term Hab,int , where

Hb =
∑

k,σ={L,R}
νkd†

k,σ
dk,σ ,

Hab,int =
∑

k

λL(d†
k,L + dk,L )(c†

2c4 + c†
4c2)

+
∑

k

λR(d†
k,R + dk,R)(c†

1c3 + c†
3c1). (31)

Here the bosonic operators d†
k,σ

and dk,σ describe the pro-
cesses of creation and annihilation of photons with frequency

νk and polarization σ = {L, R}. The coupling between the
atomic system and the photons is described by the interac-
tion constants λL, λR, which are assumed to be small. For
simplicity, we assume that the emitted photons have different
polarization in the left and right channels and do not interfere
with each other.

The operators dk,σ describe free EM modes with thermal
occupation defined by temperature T . Their physical prop-
erties are then captured by the correlation function (greater
Green’s function) D>

b,σ (0, t ) = ∑
k λ2

σ 〈dk,σ (t )d†
k,σ

(0)〉. This
function can be written as a sum of its symmetric
Sσ (t ) = Sσ (−t ) and antisymmetric Aσ (t ) = −Aσ (−t ) parts,
D>

b,σ (0, t ) = Aσ (t ) + Sσ (t ). The components Aσ (t ) and Sσ (t )
are associated with dissipation and fluctuations of the bosonic
bath, respectively. At thermal equilibrium, these functions are
related by the fluctuation-dissipation theorem [12]

Sσ (ω)

Aσ (ω)
= coth

( ω

2T

)
, (32)

where Aσ (ω) and Sσ (ω) are the Fourier transform of the cor-
responding time-dependent functions. Although the d modes
are assumed to be at thermal equilibrium, the entire system is
out of equilibrium due to the time-dependent driving term in
Eq. (29).

B. Rotating wave approximation

In the laboratory frame, the Hamiltonian describing the
driven-dissipative system, Hab(t ), is explicitly time-dependent
due to the coherent driving. To obtain an effective time-
independent description of the problem, we now move to a
frame that rotates at the frequency ωdr = 1

2 (ωR + ωL ). Mathe-
matically, the transition to the rotating frame is performed by
the transformation

c1 → c1, c2 → c2e−i ωL−ωR
2 t ,

c3 → c3e−iωdrt , c4 → c4e−iωLt ,

dk,σ → dk,σ e−iωdrt . (33)

Under this transformation, the Heisenberg equation of motion
of the new variables is determined by the following Hamilto-
nian, H ′

ab = H ′
a + H ′

b + H ′
ab,int:

H ′
a =

4∑
n=1

�nc†
ncn + �L(c†

1c4 + c†
4c1) + �R(c†

2c3 + c†
3c2),

H ′
b =

∑
σ,k

ν ′
k,σ d†

k,σ
dk,σ ,

H ′
ab,int =

∑
k

λL(d†
k,Lc†

2c4 + dk,Lc†
4c2)

+
∑

k

λR(d†
k,Rc†

1c3 + dk,Rc†
3c1), (34)

where �1 = ε1, �2 = ε2 − (ωL − ωR)/2, �3 = ε3 −
(ωL + ωR)/2, and �4 = ε4 − ωL. Here we neglected the
counter-rotating terms of the light-matter interaction Hint

which oscillate at the optical frequency ωdr (see Appendix C
for more details).

In the rotating frame, the eigenfrequencies of the bosonic
baths are shifted from the original ones by ν ′

k,σ = νk,σ − ωdr .
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This results in a modified fluctuation-dissipation relation:
Eq. (32) becomes

S′
σ (ω)

A′
σ (ω)

= Sσ (ω + ωdr )

Aσ (ω + ωdr )
= coth

(
ω + ωdr

2T

)
. (35)

In quantum optical systems, the driving frequency ωdr ∼
1015 Hz is the largest frequency in the system, and in par-
ticular it is much larger than the typical interaction scale
ω ∼ 103–109 Hz and the temperature of the bath T ≈ 300 K
∼1012 Hz (for room temperature experiments). Under these
two conditions one can safely approximate coth (ωdr/2T ) ≈
1. This approximation is equivalent to the common Born-
Markov approximation used in the master equations’
approach [8].

Under this approximation, the following relations between
the antisymmetrized and symmetrized parts of the correlation
function of the two baths can be established:

A′
σ (ω) = S′

σ (ω) = A(ωdr ). (36)

Let us stress that both A′
σ (ω) and S′

σ (ω) are symmetric with
respect to ω → −ω. This makes the Markovian bath different
from zero-temperature ones, where S(ω) = A(ω)sgn(ω) and
their product is always antisymmetric.

C. Two-level effective model: Adiabatic elimination approach

We now assume that only two states of the atomic system
are physically occupied. This allows us to derive an effective
two-level model with dissipation. We eliminate the virtually
occupied states, |3〉 and |4〉, by using an elimination proce-
dure based on the path-integral technique [50]. This step is
equivalent to the common “adiabatic elimination” used in the
context of Markovian master equations [8,51]. Specifically,
we represent the system using Grassmann variables in the
path-integral approach. The part of the action containing states
|3〉 and |4〉 is quadratic in the corresponding fermions c3

and c4 with a linear coupling to the other states. We use the
Gaussian integral identity,∫

dc̄ dc e−i
∫

C c̄ G−1
c c+c̄ V +V̄ c = det G−1

c e−i
∫

C V̄ GcV , (37)

where c and c̄ are Grassmann variables, Gc(t, t ′) is the
unperturbed (bare) Green’s function corresponding to these
variables, and V (t ) represents linear couplings to the rest of
the other degrees of freedom of the system. The integral

∫
C

represents the integration along the Keldysh contour.
With the help of Eq. (37) we integrate the variables that

correspond to states |3〉 and |4〉. If the integration is performed
exactly, the problem becomes non-Hamiltonian due to retar-
dation effects that come into play. This complication can be
avoided if the pumping drives are far detuned from the excited
state. In particular, the bare Green’s function of the fermions
c3 and c4 in the rotating frame reads

GR
c (ω) = 1

(ω − �c)
, (38)

where �c is the detuning of the corresponding state. When
the detuning �3(�4) is larger than all relevant energies, ω 

�, the Green’s function (38) can be approximated with an

expression local in time:

Gc(ω) ≈ 1

�c
→ Gc(t, t ′) ≈ 1

�c
δ(t − t ′). (39)

In this approximation, there are no retardation effects and
the problem remains Hamiltonian (see Appendix D for more
details). This derivation also shows how to extend our analysis
to the non-Markovian case by taking into account higher-
order terms in ω. This is the Keldysh analog of the com-
mon derivation using master equations, where the nontrivial
Nakajima-Zwanzig formalism is required to take into account
higher-order terms [52].

Using expression (37) and approximation (39) we obtain
the new effective Hamiltonian. We recast it in the following
form, Hab = Ha + Hb + Hab,int:

Ha = ωzc
†
2c2,

Hb =
∑
σ,k

ωk,σ d†
k,σ

dk,σ ,

Hab,int =
∑

k

�L

�L
λL(d†

k,Lc†
2c1 + dk,Lc†

1c2)

+
∑

k

�R

�R
λR(d†

k,Rc†
1c2 + dk,Rc†

2c1), (40)

where we introduced ωz = �2 − �1 + �2
R

�R
− �2

L
�L

. After the
adiabatic elimination, the term related to the bosonic bath, Hb,
remains unchanged.

Note that the constraint in Eq. (30) should be fulfilled.
After the elimination of the states |3〉 and |4〉, this constraint
reads

c†
1c1 + c†

2c2 = 1. (41)

It shrinks our physical Hilbert space to the two states |n1 =
1, n2 = 0〉 and |n1 = 0, n2 = 1〉. The Hamiltonian (40) and
the constraint (41) is equivalent to a spin-1/2 system coupled
to Markovian baths and can be analyzed with the tools devel-
oped in Sec. II.

IV. ENSEMBLE OF ATOMS INTERACTING WITH
A SINGLE-MODE OPTICAL CAVITY

A. Effective model

In the previous Secs. II and III, we discussed the diagram-
matic description of a single multilevel system coupled to a
dissipative bath driven by an external field. We demonstrated
how to describe properties of the system using the fermionic
representation of the system. This formalism is readily ap-
plicable to the description of driven-dissipative ensembles of
atoms interacting with bosonic fields. In particular, we provide
an example of an open quantum system of N four-level atoms
interacting with a single optical mode cavity. We consider the
dissipation of the cavity, as well as the dissipation of each
four-level atom. Figure 1(c) shows a sketch of the system. The
scheme was proposed as a realization of the generalized Dicke
model in Refs. [45,53].

We describe the system with the Hamiltonian consisting of
three parts, H = Ha + Hc + Hint, where the atomic part of the
system, the optical cavity, and the interaction are characterized
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by Ha, Hc, and Hint correspondingly. The atomic part of the
system is a sum over independent single atom Hamiltonians
interacting with a dissipative bath Ha = ∑N

n Ha,0, where Ha,0

is given by Eq. (29). The optical mode is described as a
single harmonic oscillator with frequency ω0, coupled to a
dissipative bath, described by the Hamiltonian

Hc = ω0a†a+
∑

k

ωb
kb†

kbk +
∑

k

κk (b†
ka + bka†). (42)

Here the operators a† and a represent the creation and annihi-
lation of the cavity photons; b†

k and bk represent the creation
and annihilation operators for the cavity bath. The coupling κk

is defined such that
∑

k
κ2

k
8 B>

k (ω) = −iκ , where B>(k) is the
larger Green’s function of the bath and κ is the cavity decay
rate, in analogy to Eq. (12).

The interaction of the atomic system with the cavity mode
is analogous to the atom-bath Hamiltonian (31):

Hint =
N∑

n=1

ηL(a†c†
n,2cn,4 + ac†

n,4cn,2)

+
N∑

n=1

ηR(a†c†
n,1cn,3 + ac†

n,3cn,1), (43)

where ηL and ηR are the atomic couplings between the high-
energy and low-energy states. The coupling between the
atoms and the cavity field (43) is similar to the coupling to
dissipative channels in Eq. (40), but there is an important
distinction. The difference concerns the coherence between
the right and left part of the system. The dissipative modes
typically do not show any coherence between the photons
spontaneously emitted in the right and left atomic dissipation
channels. In contrast, here we assume that the cavity photons
emitted in the right and left channels are coherent.

We now proceed in full analogy with the derivation in
Sec. III. First, we rewrite the Hamiltonian in the rotating frame
and use the rotating wave approximation. Second, we elim-
inate the virtual states and derive an effective Hamiltonian.
Lastly, we rewrite this Hamiltonian using the mixed Majo-
rana fermions representation. After these transformations, the
atomic Hamiltonian Ha becomes equivalent to a sum over
terms of the form of Eq. (10), the cavity frequency is shifted to

ωc = ω0 − ωdr + η2
R

�R
− η2

L

�L
, (44)

and the interaction term becomes

Hint =
N∑
n

λ(a†ηn fn + a f †
n ηn)

+
N∑
n

λ′(aηn fn + a† f †
n ηn), (45)

where the effective couplings are λ = �RηR�−1
R and λ′ =

�LηL�−1
L respectively for the rotating and counter-rotating

terms. This Hamiltonian can be written more compactly
using the Nambu notation. If we represent the creation
and annihilation operators of fermions and bosons with the
vectors fT = ( f , f †) and aT = (a, a†) correspondingly, we

can rewrite Eq. (45) as

Hint = a†�f η, � =
(−λ λ′

−λ′ λ

)
, (46)

where � is the interaction matrix.
To help the comparison with related works, we point out

that the resulting Hamiltonian can be written in the spin
notation as

H = Ha + Hc + Hint, (47)

with

Ha =
N∑
n

ωzS
z
n +

∑
σ,k

ν ′
k,σ d†

k,σ
dk,σ

+ 2
N∑
n

∑
k

�L

�L
λL(d†

k,LS+
n + dk,LS−

n )

+ 2
N∑
n

∑
k

�R

�R
λR(d†

k,RS−
n + dk,RS+

n ),

Hc = ωca†a+
∑

k

ν ′
kb†

kbk +
∑

k

κk (b†
ka + bka†),

Hint =
N∑
n

2λ(a†S−
n + aS+

n ) +
N∑
n

2λ′(aS−
n + a†S+

n ). (48)

This Hamiltonian is known as the generalized open Dicke
model [45,53] and has two important limiting cases: (i) λ = λ′
is the limit of the Dicke model [54,55] and (ii) in the limit λ′ =
0 the model is equivalent to the Tavis-Cumming model [56],
the many-body version of the Jaynes-Cummings model [57].

B. Diagrammatic approach

We are interested in the description of the steady-state
phase diagram of the system. In particular, in the limit of
the Dicke model, λ = λ′, there is a phase transition between
a normal and a superradiant phase [14,15,46,53,58–68]. The
transition takes place when the interaction of the cavity mode
with the atomic system softens the cavity mode. At the tran-
sition the system becomes unstable with respect to the normal
phase; thus the cavity gains a macroscopic occupation.

In Fig. 3, we show the self-energy contributions to the
cavity photons, and the Majorana and Dirac fermion Green’s
functions (�a, �η,n, and � f ,n). These contributions come
from the various processes described by the Hamiltonian H ,
which includes the cavity-atom coupling (45), as well as the
coupling of the atoms and of the cavity to incoherent bosonic
baths. Note that the self-energies of the Dirac fermions � f ,n

and the cavity photon �a are matrices whose elements are
calculated by the matrix multiplication of the interaction con-
stant � [Eq. (46)] with the corresponding Green’s function.
In contrast, the self-energy of the Majorana fermion is a
scalar; it is given by the trace of the corresponding self-energy
matrix.

Different contributions to the self-energies are classified
according to their scaling with the coupling strength � and
the number of atoms N (see Fig. 3). In particular, the cavity
photons are coupled to the atomic system by the generalized
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FIG. 3. Self-energy contributions to the Green’s functions of the
cavity photons, �a, the Majorana fermions, �η,n, and the Dirac
fermions, � f ,n.

Dicke interaction term (45). The contribution from each atom
is proportional to λ2. Under realistic assumptions, λ is very
small and the self-energy contributions from a single atom
are negligible. However, by summing up the contributions
from N atoms, one obtains a self-energy proportional to N�2.
For N � 1, this collective contribution can have a significant
effect on the cavity [69].

The Dirac fermion’s self-energy has two types of con-
tributions. The first contribution comes from the interaction
with the cavity photon and is proportional to λ2. The second
contribution comes from the interaction of the atom with the
incoherent bosonic bath and does not depend on the coupling
strength. Thus, in the limit of small λ, the first contribution
can be neglected.

The scaling arguments presented above can be put on a
solid theoretical ground by introducing the rescaled effective
couplings g = √

Nλ and g′ = √
Nλ′. Using this notation, the

interaction term in Eq. (48) reads

Hint =
N∑
n

2g√
N

(a†S−
n + aS+

n ) +
N∑
n

2g′
√

N
(aS−

n + a†S+
n ).

(49)

The model is then studied in the limit of N → ∞, while
keeping fixed g and g′. This procedure allows one to perform
a controlled resummation of a specific subset of diagrams,
whose prefactor does not tend to zero in the limit of N → ∞
[14,17,18,70,71]. From a physical perspective, this “large-N”
approximation is equivalent to neglecting the feedback of the
cavity on the spins.

We now focus on the nonequilibrium steady state of
the system in the long-time limit. The equations for the
out-equilibrium dynamics of the system are provided in
Appendix E. In practice, the calculation should be organized
as follows. First, the correction to the Green’s functions of
the fermions due to the interaction with the dissipative bath
should be calculated. Then those Green’s functions are used
for calculating the correction to the cavity photon Green’s
function.

In Sec. II B, we provided the calculation of the self-
energies of the fermion interaction with the dissipative bath.
We use those calculations as an initial point for calculating the
self-energy of the cavity photons. We notice that in the lowest
order

[
�R

a (ω)
]
αα′ =

N∑
n

∑
ββ ′

�T
αβ

∫
dε

[
GK

f ,n(ω − ε)
]
ββ ′G

R
η,n(ε)�β ′α′ , (50)

where the Greek indexes correspond to the matrix elements in the Nambu space and � is defined above in Eq. (46). In fact, we
notice that the self-energy of the cavity photon can be interpreted in terms of spin-spin correlation functions [18]. Indeed, using
the connection between fermion and spin representations (8) we can rewrite the self-energy as

[
�R

a (ω)
]
αα′ = 8

N∑
n

∑
ββ ′

�T
αβ

[(F[〈[S−(0), S+(t )]〉] 0

0 F[〈[S+(0), S−(t )]〉]
)]

ββ ′
�β ′α′ , (51)

where F[〈[S−(0), S+(t )]〉] is the spin response function at frequency ω. As we showed previously in Sec. II C, the calculation
of the spin-spin correlation functions can be simplified using the Majorana fermions representation. In particular, for the case of
the spin response function, we have F[〈[S−(0), S+(t )]〉] = GK

f (ω)/4.
Substituting GK

f (ω) in Eq. (51) we obtain the following expression for the self-energy of the cavity photons:

[
�R

a (ω)
]
αα′ = 2

N∑
n

∑
ββ ′

�T
αβ

[(
sz

ω−ωz+i� 0

0 sz

ω+ωz+i�

)]
ββ ′

�β ′α′ , (52)

where � = γ↑ + γ↓ is the relaxation rate of the 〈[Sx(0), Sx(t )]〉 response function. Note that, as in the calculation of the response
functions, only the poles in the lower complex half plane contribute to Eq. (52).

We calculate the Green’s function of the cavity photons using the Schwinger-Dyson equation [72,73], D−1
a = �a + D−1

a,0

(where D−1
a,0 is the inverse bare Green’s function):

[(
DR

a (ω)
)−1]

αα′ = [
�R

a (ω)
]
αα′ +

[(
ω − ωc + iκ 0

0 −ω − ωc − iκ

)]
αα′

. (53)
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Here the coefficient κ includes all the cavity leaking
processes.

C. Superradiant transition

One of the key properties of the Dicke model is the
presence of a phase transition between a normal phase and
a superradiant phase, known as the superradiant transition of
the Dicke model. (Not to be confused with Dicke superradi-
ant which occurs in free space—see also Ref. [6] for more
details.) The phase transition manifests itself as a dynamical
instability of the cavity and, hence, can be detected by con-
sidering its response function, namely the retarded Green’s
function GR

a . At the superradiant phase transition one of the
poles of the Green’s function crosses the origin of the complex
plane and acquires a positive imaginary value. At this point,
the response becomes an exponentially growing function of
time, indicating a dynamical instability. For a Gaussian theory,
the poles of the retarded Green’s function GR correspond to
the zeros of the inverse Green’s function DR, leading to the
following condition for the superradiant transition:

lim
ω→0

det
[
DR

a (ω)
] = 0. (54)

Substituting the Green’s function (53) into this expression
we obtain the following algebraic equation for the superradi-
ant phase transition:

4s2
z [g2 − (g′)2]2 + (

κ2 + ω2
c

)(
�2 + ω2

z

)
+ 4ωcωzsz[g

2 + (g′)2] − 4κ�sz[g
2 − (g′)2] = 0, (55)

where we introduced the total decay rate � = γ↑ + γ↓, and we
recall that sz is given by Eq. (19). The latter two parameters
are controlled by the incoherent bosonic bath which is coupled
to the atomic system. Solving Eq. (55) for g and g′ with fixed
parameters �, sz, κ , ωc, and ωz provides a critical line of the
superradiant transition.

For a fixed g/g′ ratio, Eq. (55) predicts that the Dicke
transition occurs at

g2
crit = (R − 1)(ωcωz + Rκ�)

4R2sz

×
⎛
⎝1 −

√
1 − R2

(
ω2

c + κ2
)(

�2 + ω2
z

)
(ωcωz + Rκ�)2

⎞
⎠, (56)

where R = [1 − (g′/g)2]/[1 + (g′/g)2].
In the limit g → g′, R → 0 and Eq. (56) reproduces the

expression for the critical coupling g2
crit = − (ω2

c +κ2 )(�2+ω2
z )

8ωcωzsz
for

the Dicke model with the cavity and spin dissipation processes
[18,46,66]. For g′ = 0 (R = 1), the critical coupling does not
have real solutions. Thus we recover the result of the Tavis-
Cummings model, which does not have a transition in the
presence of dissipation [74].

In Fig. 4 we show the critical lines of the generalized Dicke
model with dissipation for parameters relevant to the experi-
ment of Ref. [42] (see the discussion in Sec. IV E). We show
how the values of g and g′ vary with the spin decoherence rate
� and polarization sz. We specifically consider three limiting
cases: (i) the limit of zero atomic dissipation � = 0 and fully
polarized initial state sz = −1/2, (ii) zero atomic dissipation

FIG. 4. Critical line of the generalized Dicke model with dis-
sipation. Different colors represent different parameters of the sys-
tem. We considered the cavity mode with frequency ωc = 100 kHz
and dissipation κ = 100 kHz, with the two-level splitting ωz =
77.2 kHz. The solid blue line corresponds to the case � = 0, sz =
−0.5. The dashed red line is � = 0, sz = −0.25 and the dotted
dashed green line � = 50 kHz, sz = −0.25.

� = 0 and partially polarized initial state sz = −0.25, and
(iii) small atomic dissipation with a steady-state polarization
sz = −0.25. The critical line for different polarization and
dissipation rates shows a qualitatively similar behavior. The
minimal critical coupling is achieved when g = g′, which cor-
responds to the case of the Dicke model. The critical coupling
increases when the ratio between the rotating and counter-
rotating terms becomes either larger or smaller than 1. Indeed,
in both limits of g/g′ � 1 and g/g′ 
 1, the systems become
equivalent to the Tavis-Cumming model and superradiance
cannot be achieved. Furthermore, when initially the system
is not in the fully polarized state, the critical line is shifted to
the higher coupling strength. This effect is ultimately due to
the fact that the spin response function F[〈[S∓(0), S±(t )]〉]
is proportional to the polarization of the system; see, e.g.,
Eq. (52). Thus it is natural to expect that partially polarized
systems are less superradiant. Adding the dissipation makes
the critical line less symmetric with respect to the g = g′
line. By its nature, atomic dissipation decreases the effect
of the counter-rotating terms. Hence larger coupling to the
counter-rotating terms g′ is required to get to the superradiant
phase.

D. Stability diagram

The superradiant transition discussed in the previous sec-
tions is similar to the phase transition of the Dicke model at
thermal equilibrium. For example, the critical exponents of
the driven-dissipative model are the same as an equilibrium
one at a finite effective temperature [14,18]. An important
question is whether this model can display properties that have
no equilibrium counterpart [75]. In this section, we identify
one instance of a genuine nonequilibrium effect, namely a
dynamical instability of the system, which cannot be mapped
to a Dicke transition.

Dynamical instabilities can be studied by observing the
position of the poles of the dressed Green’s function of the
cavity, DR

a (ω). The function is given by Eq. (53) and has four
poles. Note that by the construction of the Green’s function
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FIG. 5. Left panel: stability diagram of the generalized Dicke model with dissipation and cavity losses. Here we use the same parameters
as in Fig. 6. Colors decode different phases which we characterize by the position of the poles of the cavity photon’s Green’s function DR

a (ω)
(53). Phase (0) is white in the main figure. Positions of the poles corresponding to different phases are depicted in the right panel (see also
Table I for details). Phases (0 and 1) are stable; phases (2–6) are unstable. The Dicke-type transition obtained from Eq. (55) is shown with a
solid line. The “counterlasing” instability calculated from Eq. (57) is shown with an arrow.

in Nambu space, the poles either occur on the imaginary axis
or come in pairs with the same imaginary part and opposite
real parts, ωp ↔ −ω∗

p. A phase is stable if the imaginary parts
of all the poles are negative, such that GR

a (t − t ′ → ∞) → 0.
This property leads to two fundamentally different types of
instabilities, depending on the number of poles that cross the
real axis. In the Dicke transition, a single, pure imaginary pole
crosses the origin of the complex plane. Alternatively, one can
have a pair of poles that (contemporarily) cross the real axis,
giving rise to a distinct type of instability.

Figure 5(a) shows the complete phase diagram of the
generalized Dicke model with dissipation. This phase diagram
demonstrates several different phases including the normal
and superradiant phases. See also Table I for the characteri-
zation of all phases. The black solid line represents the points
where the Green’s function has a pole at zero frequency,
Eq. (55). Note that this line can either separate a stable phase
from an unstable one (like in the case of the Dicke transition
between phases 1 and 6) or two unstable phases [see the upper
part of Fig. 5(a), where the black line separates the unstable
phases 5 and 4].

In addition to the Dicke transition, the present driven-
dissipative Dicke model shows a second instability line be-
tween phase 0 (white area, stable) and phase 2 (light-blue area,

unstable). As shown in Fig. 6(b), this transition involves the
simultaneous transition of two poles across the real axis.

In order to gain a physical understanding of this instability,
we now derive analytic expressions for the instability in two
limiting cases: (i) no rotating terms g = 0; (ii) zero dissipation
� = 0 case. In both cases, we find simple analytic expressions
for the transition, by looking for the point where the imaginary
part of the relevant eigenvalues vanishes. As we will see, the
instability occurs when counter-rotating terms overcome the
cumulative effect of dissipation and rotating terms, and will
be referred to as a “counterlasing” transition. Signatures of
this transition were recently observed in the experiments of
Ref. [42], and are presented in the next section.

We start with the description of the counterlasing instabil-
ity with finite dissipation and g = 0. This instability has been
observed in [43] and referred to as a single beam threshold. In
this case, the transition occurs at the critical coupling

g′
crit =

√
−�κ[(� + κ )2 + (ωz + ωc)2]

2sz(� + κ )2
, (57)

where we are assuming that sz < 0. This point is indicated by
an arrow in Fig. 5(a).

TABLE I. Phases of the generalized Dicke model classified according to the position of the poles of the retarded Green’s function of the
cavity photon DR

a (ω) (53). For fixed g and g′ the Green’s function DR
a (ω) has four different poles.

0 Normal Re[ωα] 	= 0, Im[ωα] < 0 for all α

1 Damped Re[ω1,2] 	= 0, Im[ω1,2] < 0, Re[ω3,4] = 0, Im[ω3,4] < 0

2 Unstable oscillatory Re[ω1,2] 	= 0, Im[ω1,2] < 0, Re[ω3,4] 	= 0, Im[ω3,4] > 0

3 Unstable Re[ω1,2] 	= 0, Im[ω1,2] < 0, Re[ω3,4] = 0, Im[ω3,4] > 0

4 Unstable Re [ω1,2] = 0, Im [ω1,2] < 0, Re [ω3,4] = 0, Im [ω3,4] > 0

5 Unstable superradiant Re [ω1,2,3] = 0, Im [ω1,2,3] < 0, Re [ω4] = 0, Im [ω4] > 0

6 Unstable superradiant Re[ω1,2] 	= 0, Im[ω1,2] < 0, Re[ω3] = 0, Im[ω3] < 0, Re[ω4] = 0, Im[ω4] > 0
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FIG. 6. Comparison between (a) experimental and (b),(c) theo-
retical phase transition diagrams for the generalized Dicke system.
N, SR, and U denotes normal, superradiant, and unstable phases cor-
respondingly. Parameters used for theoretical calculation correspond
to the experimental data: cavity mode frequency ωc = 100 kHz,
dissipation κ = 107 kHz, and energy splitting ωz = 77.2 kHz. In
theoretical calculations, we consider that the atomic interaction with
the incoherent bath partially polarizes the system, sz = −0.25, and
the strength of dissipation is � = 30 kHz (b) and � = 0 kHz (c).

To understand the nature of the transition, let us now
focus on the case of a small cavity decay � � κ , and assume
that all the atoms are initially polarized down sz = −1/2.
The instability can be easily understood by considering a
single atom coupled to the cavity via the interaction H ′ =
2g(S+a + S−a†) + 2g′(S+a† + S−a). Because the model
does not have rotating terms, photons can be created only by
the term g′S+a†. According to Fermi’s golden rule, the rate
of this process is (g′)2ρa(ωc), where ρa(ωc) = Im[1/(ωc −
ωz + i�)] is the atomic density of states. The system becomes
unstable when this rate is larger than the photon decay rate
κ , or

g′
crit =

√
−κ[�2 + (ωz + ωc)2]

2sz�
for � � κ. (58)

This expression is indeed the limit of Eq. (57) for � � κ .
This instability is equivalent to a lasing transition, where the
rate of photon generation becomes larger than the rate of
photon decay. Unlike the usual lasing transition, the present
instability is driven by counter-rotating terms.

Let us now consider the case of zero atomic dissipation
� = 0, where the instability occurs at

g

g′ =
√

1 − 4ωzωc

κ2 + (ωz + ωc)2
. (59)

If we assume the cavity to be initially empty (Markovian
bath), only two terms of H ′ can act on the state, namely
2gS−a† and 2g′S+a†. These two terms respectively flip the
spin from down to up and vice versa. Their rates are respec-
tively given by γeff,↓ = (g′)2ρc(ωz ) and γeff,↑ = g2ρc(−ωz ),
where ρc = Im[1/(ω − ωc + iκ )] is the density of states of
the cavity. The system becomes unstable when the effective
flip rate upwards is larger than the downwards flip rate. Thus
this instability occurs when γeff,↑ = γeff,↓. This condition is
equivalent to Eq. (59).

E. Comparison with experiments

We now compare the result of our calculation with a recent
experimental realization of the generalized Dicke model using
a gas of ultracold 87Rb atoms confined to a high finesse
cavity [42]. The atomic system used in the experiment has a
multilevel structure which is similar to the four-level scheme
considered in this paper [see the sketch in Fig. 1(b)]. The main
difference is that, after adiabatic elimination, the experimental
system maps onto the spin-1 generalized Dicke model, while
in this paper we consider a system where the atoms are
effectively described as spin- 1

2 models. As the atoms are
highly polarized in the normal phase, we expect the spin-1
and spin- 1

2 models to behave similarly.
Figure 6 shows the comparison between the experimentally

observed phase diagram and the theoretical calculations with
and without atomic dissipation. The choice of the somewhat
unnatural axes [“g/g′” vs “Max(g, g′)”] is determined by
the details of the experimental protocol, in which g and g′
are adiabatically turned on at a fixed ratio (i.e., along the
horizontal lines of Fig. 6). The threshold to instability was
experimentally determined as the value of the parameters at
which a jump in the number of photons was observed. The
experimentally observed phase diagram [Fig. 6(a)] includes
three distinct regions, which we identify with the normal
(white), the superradiant (orange), and the so-called “coun-
terlasing” (light-blue) phases [42].

Our calculations demonstrate the importance of the sin-
gle atom decay and dephasing channels, modeled by �. In
Figs. 6(b) and 6(c), we compare the theoretical predictions
without dissipation, � = 0 kHz, and with a weak atomic dis-
sipation, � = 30 kHz. According to Eq. (59), in the absence of
dissipation, the region where g/g′ < 0.53 is unstable, for any
value of g′. A similar result was obtained in [42]. This theoret-
ical prediction is inconsistent with the experimental findings,
which found a sudden jump in the number of photons at a
finite value of g′. Figure 6(b) shows that, when dissipation is
present in the system, the “counterlasing” transition occurs at
a finite value of g′. Moreover, the instability threshold shown
in Fig. 6(b) allows us to indirectly access the microscopic
parameters of the model using Eq. (57). Our theory provides
the best fit to the experimental results with � = 30 kHz.
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V. COMPARISON WITH LINDBLAD MASTER EQUATIONS

A. Spin-spin correlations of a dissipative two-level system

We now use the Lindblad master equation to compute the
spin-spin correlation functions for a two-level system with
decay rates γ↓ and γ↑. As we will show, the results of this
approach are the same as those obtained in Sec. II C using
fermionic path integrals. According to the quantum regression
theorem [52], in the case of Markovian master equations,
the spin-spin correlation functions can be directly computed
from the evolution of the spin operators. In the absence of
spin-cavity coupling (g = g′ = 0), one obtains

Sz
i (t ) = e−2�(t−t ′ )[Sz

i (t ′) − sz
] + sz,

Sx
i (t ) = e−�(t−t ′ )(Sx

i (t ′) cos [ωz(t − t ′)]

− Sy
i (t ′) sin [ωz(t − t ′)]

)
. (60)

To obtain the spin-spin correlation functions it is now suf-
ficient to multiply both sides of Eqs. (60) by the rele-
vant spin operator at time t ′. Finally, by using the iden-
tities 〈Sn

i (t ′)Sn
i (t ′)〉 = 1

4 , 〈Sn
i (t ′)Sm

i (t ′)〉 = 1
2 iεnml〈Sl

i (t ′)〉, and
〈Sz

i (t ′)〉 = sz, we find

〈
Sz

i (t )Sz
i (t ′)

〉 = e−2�(t−t ′ )

4
+ s2

z

(
e−2�(t−t ′ ) − 1

)
,

〈
Sx

i (t )Sx
i (t ′)

〉 = e−�(t−t ′ )

4
(cos[ωz(t − t ′)]

− 2isz sin[ωz(t − t ′)]). (61)

This expression agrees with the diagrammatic approach,
Eqs. (26) and (28) (shown in Fourier space).

B. Lindblad master equation of the generalized Dicke model

In this section, we compare our results obtained using
Keldysh formalism with the predictions of the Lindblad ap-
proach. Our starting point is the generalized Dicke model,

Eq. (47). We focus on the steady state of the system, induced
by the interplay between this Hamiltonian and the dissipative
channels associated with the cavity decay κ , and the single-
atom losses γ↑/↓. In the rotating frame, the system can be
described by the Lindblad master equation:

dρ

dt
= −i[H, ρ] + κD[a] +

N∑
i

(γ↑D[S+
i ] + γ↓D[S−

i ]),

(62)

where D[x] ≡ 2xρx† − {x†x, ρ}. Following Ref. [46], we first
use Eq. (62) to derive the equations for the collective variables
a, Sx, Sy, and Sz, where Sn ≡ ∑N

i Sn
i /N . Using the commuta-

tion relations [a, a†] = 1 and [Sn, Sm] = iεnmlSl/N , we obtain

∂t a = −(iωc + κ )a − i(g + g′)
√

NSx + (g′ − g)
√

NSy,

∂t S
x = −ωzS

y − i(g′ − g)√
N

Sz(a − a†) − �Sx,

∂t S
y = ωzS

x − (g + g′)√
N

Sz(a + a†) − �Sy,

∂t S
z = −2γ↓

(
1

2
+ Sz

)
+ 2γ↑

(
1

2
− Sz

)

+ (g + g′)√
N

Sy(a + a†) + i(g′ − g)√
N

Sx(a − a†), (63)

where � = γ↑ + γ↓.
We now determine the phase diagram of the model by

studying the linear stability of Eqs. (63), around their nor-
mal phase, defined by 〈a〉 = 〈Sx〉 = 〈Sy〉 = 0. The resulting
equations of motion are best described in terms of the vector
δRT = (δa, δa†, δSx, δSy, δSz ), where we have defined δSα =
Sα − 〈Sα〉 and δa = a − 〈a〉. Up to first order in δR, Eqs. (63)
lead to

−i∂tδR = MδR, (64)

where the linear response matrix M is defined by

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−ωc + iκ 0 −(g + g′)
√

N i(g − g′)
√

N 0

0 ωc + iκ (g + g′)
√

N i(g − g′)
√

N 0
(g−g′ )√

N
sz − (g−g′ )√

N
sz i� iωz 0

i(g+g′ )√
N

sz
i(g+g′ )√

N
sz −iωz i� 0

0 0 0 0 2i�

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(65)

and sz ≡ 〈Sz
i 〉 = 〈Sz〉 is given by Eq. (20).

C. Superradiant transition

Following the analysis in Sec. IV C we define the superra-
diant transition with the condition that one of the eigenvalues
of M is exactly equal to zero. Equivalently this condition
can be written as det[M] = 0. Taking the determinant of
the matrix M, we obtain the condition for the superradiant
transition, which is identical to the one obtained using Green’s
functions, Eq. (55).

VI. CONCLUSIONS AND OUTLOOK

In this paper, we presented a fermionic path-integral anal-
ysis of driven-dissipative atomic systems. Our goal was to
demonstrate that the Keldysh diagrammatic technique is suit-
able for the analysis of many-body atomic systems that have
a multilevel structure and interact with both coherent and
incoherent photonic modes.

First, we showed that the Majorana fermion representation
can simplify the calculation of spin-spin correlation functions.
We demonstrated that, when the expectation value of the
spin in the steady state is zero (〈Sα〉 = 0), the corresponding

013817-12



FERMIONIC FORMALISM FOR DRIVEN-DISSIPATIVE … PHYSICAL REVIEW A 101, 013817 (2020)

spin-spin correlation function [〈Sα (t )Sα (t ′)〉] can be calcu-
lated as a single Green’s function. This is in contrast with
the case where the expectation value is finite (〈Sα〉 	= 0) and
the corresponding spin-spin correlation function needs to be
calculated from the convolution of two Green’s functions.
This observation explains contradictory results reported in the
literature.

Next, we demonstrated that the fermionic language is nat-
ural for the description of the interaction of an atomic system
with an incoherent dissipative bath when the system is driven
by an external field. We showed that the adiabatic elimination
of the far detuned states can be done with the help of Gaussian
integrals. We specifically considered situations where the far-
detuned states do not introduce any retardation effects. In the
general case, those effects can be naturally included with the
use of nonequilibrium field theory and can lead to additional
non-Markovian correlations in the effective bath.

After considering the impact of dissipation on a single
atom, we extended our formalism to the case of a N-atom
system inside of an optical resonator. We considered the case
where the atoms are pumped with an external field and interact
with a dissipative environment. By analogy with the results
for a single driven atom interacting with a dissipative bath, we
introduced an effective Hamiltonian for this problem and used
a diagrammatic technique to describe the steady state of the
system. We classified the self-energy contributions according
to their scaling with the effective coupling strength g = λ

√
N .

In particular, we observed that the back action of the cavity on
the spin system scales as λ2 = g2/N and can be neglected in
the leading-order approximation.

The Green’s functions are convenient tools to describe the
instabilities of the system: The Dicke transition is signaled by
a pole of the Green’s function approaching zero frequency.
In contrast, when two conjugated poles simultaneously cross
the real axis, the system shows a distinct type of instability.
One example is given by the “counterlasing” instability, which
occurs when the counter-rotating terms overcome the atomic
and photonic decay channels. We highlighted the nature of
this instability by considering some limiting cases, where
its position could be determined based on simple physical
arguments.

We compared our theoretical prediction with the experi-
mental observation of the Dicke phase transition by Ref. [42]
in a cavity QED system. Our analysis offers a better de-
scription of the experimental situation when compared to the
previous analysis, which neglected single-atom decay chan-
nels. We demonstrated the importance of atomic dissipation
by comparing the experiment to the theoretical calculations
with and without dissipation. Moreover, we concluded that
a “counterlasing” instability was observed experimentally.
The instability threshold allows us to indirectly access the
microscopic parameters of the model.

Lastly, we showed that our theoretical results are in
agreement with Lindblad master equation calculations. We
showed how our results obtained using diagrammatic formal-
ism translate to the language of master equations. Our study
demonstrates the applicability of fermionic path integrals to
multilevel atomic systems. This result opens the way to the
discussion of non-Markovian dissipative baths, higher-order

corrections from atom-cavity interactions, interactions be-
tween atoms, and effects of disorder. Importantly, the present
path-integral approach is not limited to steady-state config-
urations. To study the real-time dynamics of the model it is
sufficient to consider Green’s functions that depend on two
times. Their time evolution is determined by the Kadanoff-
Baym equations (see Appendix E), which need to be solved
self-consistently. This approach allows one to take into ac-
count time evolution and retardation on equal footing.

Note added. Recently, we became aware of an independent
study [76], where the counterlasing transition was discussed.
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APPENDIX A: DERIVATION OF THE SPIN DISSIPATION

In this Appendix, we provide a detailed calculation of the
self-energies of the f and η fermions from Sec. II B. The
diagrams shown in Fig. 2 correspond to the interaction of
fermions with an effective dissipative bosonic environment.

In order to evaluate the diagrams, we recall the definitions
of the spectral functions of the bath in the rotating frame,
which we previously introduced in the main text,

∑
k

i�2
Lλ2

k,L

8�2
L

D>
k,L(ω) = γ↑,

∑
k

i�2
Lλ2

k,L

8�2
L

D<
k,L(ω) = 0,

∑
k

i�2
Rλ2

k,R

8�2
R

D>
k,R(ω) = γ↓,

∑
k

i�2
Rλ2

k,R

8�2
R

D<
k,R(ω) = 0.

(A1)

Note that the sum of the lesser Green’s functions of the bosons
is zero. This is the result of the Markovian approximation.

f -fermion self-energy. First, we calculate the self-energy of
the f fermion. Using the Langreth rules, we write the greater
and lesser parts of the self-energy function:

�>
f (ω) = i

2

∑
k

�2
R

�2
R

λ2
k,R

∫
dε

2π
G>

η (ε)D<
k,R(ω − ε)

+ i

2

∑
k

�2
L

�2
L

λ2
k,L

∫
dε

2π
G>

η (ε)D>
k,L(ω − ε), (A2)

�<
f (ω) = i

2

∑
k

�2
R

�2
R

λ2
k,R

∫
dε

2π
G<

η (ε)D>
k,R(ω − ε)

+ i

2

∑
k

�2
L

�2
L

λ2
k,L

∫
dε

2π
G<

η (ε)D<
k,L(ω − ε). (A3)

We calculate the retarded and Keldysh components of
the self-energy by adding and subtracting greater and lesser
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self-energies

�R
f (ω) − �A

f (ω) = �>
f (ω) − �<

f (ω),

�K
f (ω) = �>

f (ω) + �<
f (ω). (A4)

Substituting Eq. (A2) we obtain

�R
f (ω) − �A

f (ω) = 2γ↓
∫

dε

π
G>

η (ε) − 2γ↑
∫

dε

π
G<

η (ε),

�K
f (ω) = 2γ↓

∫
dε

2π
G>

η (ε) + 2γ↑
∫

dε

π
G<

η (ε).

(A5)

By definition, the greater and lesser Majorana Green’s
functions are not independent, G>

η (ω) = −G<
η (−ω). The in-

tegral over the greater Majorana functions is a constant
2

∫
dε
π

G>
η (ε) = −i. Thus the self-energies read

�R
f (ω) − �A

f (ω) = −i(γ↓ + γ↑),

�K
f (ω) = −i(γ↓ − γ↑). (A6)

Using the self-energies (A6), we calculate the ratio be-
tween them [assuming �K

f (ω) 	= 0 and �R
f (ω) − �A

f (ω) 	=
0]:

h f (ω) = �>
f (ω) + �>

f (ω)

�>
f (ω) − �<

f (ω)
= γ↓ − γ↑

γ↓ + γ↑
. (A7)

In the stationary state, the solution of the Dyson equation for
greater and lesser Green’s functions reads

G>
f (ω) = GR

f (ω)�>
f (ω)GA

f (ω),

G<
f (ω) = GR

f (ω)�<
f (ω)GA

f (ω). (A8)

We multiply numerator and denominator by GR
f (from the

left) and GA
f (from the right), and obtain the expression

that connects the greater and lesser Green’s functions in the
stationary state (also known as the nonequilibrium fluctuation-
dissipation relation):

h f (ω) = G>
f (ω) + G<

f (ω)

G>
f (ω) − G<

f (ω)
. (A9)

Summing up, the expressions for the greater and lesser f -
fermion Green’s functions are

G>
f (ω) = −iπ [1 + h f (ω)]ρ f (ω),

G<
f (ω) = iπ [1 − h f (ω)]ρ f (ω),

ρ f (ω) = 1

π

γ↑ + γ↓
(ω − ωz )2 + (γ↑ + γ↓)2

. (A10)

η-fermion self-energy. We now examine the self-energy of
the η fermion. Using the Langreth rules we write the greater
and lesser components of the self-energies:

�>
η (ω) = i

∑
k

�2
R

�2
R

λ2
k,R

∫
dε

2π
G>

f (ε)D>
k,R(ω − ε)

+ i
∑

k

�2
L

�2
L

λ2
k,L

∫
dε

2π
G>

f (ε)D<
k,L(ω − ε), (A11)

�<
η (ω) = i

∑
k

�2
R

�2
R

λ2
k,R

∫
dε

2π
G<

f (ε)D<
k,R(ω − ε)

+ i
∑

k

�2
L

�2
L

λ2
k,L

∫
dε

2π
G<

f (ε)D>
k,L(ω − ε). (A12)

We calculate the retarded and Keldysh components of the
self-energy:

�R
η (ω) − �A

η (ω) = �>
η (ω) − �<

η (ω),

�K
η (ω) = �>

η (ω) + �<
η (ω). (A13)

Substituting (A12) we obtain

�R
η (ω) − �A

η (ω) = 4γ↑
∫

dε

π
G>

f (ε) − 4γ↓
∫

dε

π
G<

f (ε),

�K
η (ω) = 4γ↑

∫
dε

π
G>

f (ε) + 4γ↓
∫

dε

π
G<

f (ε).

Substituting the Green’s functions of the f fermion (A10), we
obtain

�R
η (ω) − �A

η (ω) = −2i[(γ↑ − γ↓)h f + (γ↑ + γ↓)]

= −2i(γ↑ + γ↓)

[
1 −

(
γ↓ − γ↑
γ↓ + γ↑

)2
]
,

�K
η (ω) = −2i[(γ↑ + γ↓)h f + (γ↑ − γ↓)] = 0.

(A14)

APPENDIX B: SPIN-SPIN CORRELATION FUNCTIONS

We now provide a detailed calculation of the spin-spin cor-
relation functions 〈Sx(t )Sx(t ′)〉 and 〈Sz(t )Sz(t ′)〉 introduced
in Sec. II C. First, we express the effective spin correlation
functions in terms of fermions using Eq. (23) in the main
text. And then, using the equations for the greater and lesser
Green’s functions Eq. (A10), we simplify those expressions.

〈Sx(t )Sx(t ′)〉 correlations. We express the correlation func-
tion using f and τx fermions. As we discussed in the main
text, it simplifies the calculation

〈Sx(t )Sx(t ′)〉 = 1
4 〈τx(t )[ f (t ) + f †(t )]τx(t ′)[ f (t ′) + f †(t ′)]〉.

(B1)

We use Wick’s theorem and express Eq. (B1) in terms of
Green’s functions

〈Sx(t )Sx(t ′)〉 = i

4
G>

f (t, t ′) − i

4
G<

f (t ′, t ). (B2)

We transform Eq. (B2) to the frequency domain and use the
expressions for the f -fermion Green’s functions Eq. (A10)

F[〈Sx(t )Sx(t ′)〉] = i

4
G>

f (ω) − i

4
G<

f (−ω)

= π

4
[1 + h f (ω)]ρ f (ω)

+ π

4
[1 − h f (−ω)]ρ f (−ω). (B3)
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Substituting the expression for ρ f (ω) and h f (ω) we obtain

F[〈Sx(t )Sx(t ′)〉] = γ↓
2

1

(ω − ωz )2 + (γ↓ + γ↑)2

+ γ↑
2

1

(ω + ωz )2 + (γ↓ + γ↑)2
. (B4)

We take the inverse Fourier transform (by closing the integra-
tion contour in the lower half plane) and we get the expression
in the time domain

〈Sx(t + τ )Sx(t )〉

= 1

4
e(γ↓+γ↑ )τ

(
cos(τωz ) − i

γ↓ − γ↑
γ↓ + γ↑

sin(τωz )

)
. (B5)

This expression is equivalent to the Eq. (61) obtained with the
Lindblad approach in Sec. V.

〈Sz(t )Sz(t ′)〉 correlations. We define the correlation func-
tion using the f fermions:

〈Sz(t )Sz(t ′)〉 = 〈(
f †(t ) f (t ) − 1

2

)(
f †(t ′) f (t ′) − 1

2

)〉
= 〈 f †(t ) f (t ) f †(t ′) f (t ′)〉 − 1

2 〈 f †(t ) f (t )〉
− 1

2 〈 f †(t ′) f (t ′)〉 + 1
4 . (B6)

We use Wick’s theorem and express Eq. (B6) in terms of
Green’s functions:

〈Sz(t )Sz(t ′)〉 = 〈Sz(t )〉〈Sz(t ′)〉 + G<
f (t ′, t )G>

f (t, t ′). (B7)

In the steady state, the correlation function depends only on
the time difference. Hence we write it in the frequency domain

F[〈Sz(t )Sz(t ′)〉] = 2π〈Sz〉2δ(ω) +
∫

dε

2π
G<

f (ε)G>
f (ω + ε).

(B8)

Substituting the expression for the greater and lesser Green’s
functions (A10), we obtain

F[〈Sz(t )Sz(t ′)〉] = 2π〈Sz〉2δ(ω) + (π )2
(
1 − h2

f

)
×

∫
dε

2π
ρ f (ε)ρ f (ω + ε). (B9)

Taking the integral in the previous equation, we obtain

F[〈Sz(t )Sz(t ′)〉] = 2π〈Sz〉2δ(ω) +
(

1

4
− 〈Sz〉2

)

× 4(γ↑ + γ↓)

ω2 + 4(γ↑ + γ↓)2
. (B10)

We take the inverse Fourier transform (by closing the integra-
tion contour in the lower half plane) and obtain the expression
in the time domain

〈Sz(t + τ )Sz(t )〉 = 〈Sz〉2 − e−2(γ↑+γ↓ )τ
(

1
4 − 〈Sz〉2

)
. (B11)

This expression is equivalent to the Eq. (61) obtained with the
Lindblad approach in Sec. V.

APPENDIX C: ROTATING WAVE APPROXIMATION

In this Appendix we give details on the rotating wave
approximation (RWA) presented in Sec. III B. This transfor-
mation will take us from Eqs. (29) and (31) to Eq. (34).

The RWA consists of two steps: we first apply a unitary
transformation to the Hamiltonian [Eqs. (29) and (31)] and
then neglect the fast oscillating terms.

Let us begin by examining the Schrödinger equation:

i∂t |ψ〉 = H (t )|ψ〉. (C1)

If we will apply a unitary transformation U (t ) to the state |ψ〉,
we obtain a state |ψ ′〉 = U (t )|ψ〉, which is governed by the
Schrödinger equation:

i∂t |ψ ′〉 = i∂t [U (t )|ψ〉]
= iU (t )∂t |ψ〉 + i∂tU (t )|ψ〉
= U (t )H (t )|ψ〉 + iU̇ (t )|ψ〉
= U (t )H (t )U †(t )|ψ ′〉 + iU̇ (t )U †(t )|ψ ′〉
= H̃ (t )|ψ ′〉. (C2)

Here we defined a new Hamiltonian H̃ (t ) =
U (t )H (t )U †(t ) + iU̇ (t )U †(t ). In Sec. III B we used the
following transformation:

U (t ) =
4∏

i=1

Uci (t )
∏
k,σ

Udk,σ
(t ), (C3)

where

Uc1 (t ) = I, Uc2 (t ) = ei ωL−ωR
2 c†

2c2t ,

Uc3 (t ) = eiωdr c†
3c3t , Uc4 (t ) = eiωLc†

4c4t ,

Udk,σ
(t ) = eiωdr d†

k,σ
dk,σ

t . (C4)

Under this transformation, the operators are transformed as
follows:

U (t )c1U
†(t ) = c1,

U (t )c2U
†(t ) = c2e−i ωL−ωR

2 t ,

U (t )c3U
†(t ) = c3e−iωdrt ,

U (t )c4U
†(t ) = c4e−iωLt ,

U (t )dk,σU †(t ) = dk,σ e−iωdrt . (C5)

The time derivative of U (t ) gives rise to an additional term in
the Hamiltonian:

U̇ (t )U −1(t ) = i
ωL − ωR

2
c†

2c2 + iωdrc†
3c3 + iωLc†

4c4

+
∑
k,σ

iωdrd†
k,σ

dk,σ
. (C6)

Plugging Eqs. (C5) and (C6) into Eq. (C2), we obtain

H ′
a(t ) =

4∑
i=1

�ic
†
i ci + �L(c†

1c4 + H.c.) + �R(c†
2c3 + H.c.),

(C7)

H ′
b(t ) =

∑
k,σ

ν
′
k,σ

d†
k,σ

dk,σ
, (C8)
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H ′
ab,int =

∑
k

λL(d†
k,Lc†

2c4 + dk,Lc†
4c2)

+
∑

k

λL(e−2iωdrt dk,Lc†
2c4 + e2iωdrt d†

k,Lc†
4c2)

+
∑

k

λR(d†
k,Rc†

1c3 + dk,Rc†
3c1)

+
∑

k

λR(e−2iωdrt dk,Rc†
1c3 + e2iωdrt d†

k,Rc†
3c1). (C9)

This concludes the first step of the RWA. We now move to the
second step: neglecting the fast oscillating terms that appear
in the interaction part between the bath and the atom, H ′

ab,int .
These terms oscillate at twice the driving frequency, 2ωdr .
Because ωdr is the largest energy scale in the problem, we
can neglect these terms and obtain Eq. (34).

APPENDIX D: INTEGRATING DEGREES OF FREEDOM

In this Appendix we give detail on the integration of
rapidly oscillating degrees of freedom used in Sec. III C.
This operation, also known as “adiabatic elimination,” can be
performed by converting a given Hamiltonian to an action, and
integrating the selected degrees of freedom.

The Hamiltonian we use to exemplify this procedure is
given by

H = ε1c†
1c1 + g12(c†

1c2 + H.c.) + g13(c†
1c3 + H.c.), (D1)

where c(†)
i is the annihilation (creation) operator for the

fermion i and gi j is the coupling between the fermions i and
j. This Hamiltonian has exactly the same structure as the one
used in this manuscript [see Eq. (34)].

We now show how to adiabatically eliminate the fermion
c1 and obtain an effective coupling between the fermions c2

and c3. First, we use the Legendre transformation to compute
the Lagrangian of Eq. (D1):

L(t ) =
3∑

i=1

ic†
i ċi − ε1c†

1c1 − g12(c†
1c2 + H.c.)

− g13(c†
1c3 + H.c.). (D2)

Next, we use Keldysh path integrals to integrate out the c1
degree of freedom from the partition function:

Z =
∫

D[ci, c†
i ]ei

∫
C L(t ). (D3)

To achieve this goal, we first move to the Fourier domain and
rewrite Eq. (D2) as

L(ω) =
3∑

i=2

ωc†
i ci + c†

1(ω − ε1)c1

− [c†
1(g12c2 + g13c3) + H.c.]. (D4)

Note that this expression has a form analogous to Eq. (37).
Let us define G−1

0 = ω − ε1 and a new operator V = g12c2 +
g13c3, such that we can split the Lagrangian to three

parts:

L(ω) = L1(ω) − Lint (ω) + L23(ω), (D5)

L1(ω) = c†
1G−1

0 c1, (D6)

Lint (ω) = c†
1V + H.c., (D7)

L23(ω) =
3∑

i=2

ωc†
i ci. (D8)

In order to integrate c1 out, we “complete the square” of the
sum of L1(ω) and Lint (ω):

L1(ω) − Lint (ω) = (c†
1 − V †G0)G−1

0 (c1 − G0V ) − V †G0V ,

(D9)

converting the partition function to the following:

Z =
∫

D[ci, c†
i ] exp

(
i
∫

C
L1(ω) − Lint (ω)

)

× exp

(
i
∫

C
L23(ω)

)
. (D10)

Equation (D10) allows us to use the shifted Gaussian integral
identity [see Eq. (37)] and obtain

Z ≈
∫

D[ci, c†
i ] exp

(
−i

∫
C

V †G0V

)
exp

(
i
∫

C
L23(ω)

)

≈
∫

D[ci, c†
i ] exp

(
−i

∫
C

V †G0V + L23(ω)

)

≈
∫

D[ci, c†
i ] exp

(
i
∫

C
Leff (ω)

)
. (D11)

Here we define a new Lagrangian Leff (ω) = L23(ω) −
V †G0V . We also note that the definition of G0 matches the
one of Eq. (38). By making the same assumption, ω 
 ε1, the
new effective Lagrangian is given by

Leff (ω) =
3∑

i=2

ωc†
i ci − g12g13

ε1

(c†
2c3 + H.c.), (D12)

Leff (t ) =
3∑

i=2

ic†
i ċi − g12g13

ε1

(c†
3c2 + H.c.). (D13)

Using the Legendre transformation again we obtain

Heff (t ) = g12g13

ε1

(c†
3c2 + H.c.). (D14)

In summary, by integrating out the fermion 1, we obtained
an effective model with direct coupling between fermions 2
and 3.

Using this method, one can transform Eqs. (34) into
Eqs. (40).

APPENDIX E: NONEQUILIBRIUM DYNAMICS OF
THE GENERALIZED DICKE MODEL

In this Appendix, we provide the equations describing the
real-time dynamics of the generalized Dicke model (47),(48)
with atomic and cavity dissipations.
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1. Green’s functions

f -fermion Green’s function. As introduced in the main text,
the lesser, greater, and retarded Green’s functions of the f
fermion read

G<
f (t, t ′) = i〈 f †(t ′) f (t )〉,

G>
f (t, t ′) = −i〈 f (t ) f †(t ′)〉,

GR
f (t, t ′) = −iθ (t − t ′)〈{ f (t ), f †(t ′)}〉. (E1)

Under the bare Hamiltonian H0 = ω0 f † f the fermionic op-
erators in the interaction picture evolve as f (t ) = f (0)e−iω0t .
This gives us the bare Green’s functions

G<
f ,0(t, t ′) = i cos[ω0(t − t ′)] − in f (0)eiω0(t−t ′ ),

G>
f ,0(t, t ′) = − sin[ω0(t − t ′)] − in f (0)eiω0(t−t ′ ),

GR
f ,0(t, t ′) = −iθ (t − t ′)e−iω0(t−t ′ ). (E2)

At time t ′ = t = 0, these equations set the initial conditions
for the time evolution of the corresponding Green’s functions.

In the dynamics, only two Green’s functions on the
Keldysh contour are linearly independent, e.g., the lesser
G<

f (t, t ′) and the retarded GR
f (t, t ′) Green’s functions. We can

express the greater one using the following identity:

G>
f (t, t ′) = G<

f (t, t ′) + GR
f (t, t ′) − [

GR
f (t ′, t )

]†
. (E3)

η-fermion Green’s function. Majorana fermions satisfy the
condition {η(t ), η(t ′)} = {η, η} = 2. Thus the Green’s func-
tions have the following form:

G<
η (t, t ′) = i〈η(t ′)η(t )〉,

G>
η (t, t ′) = −i〈η(t )η(t ′)〉,

GR
η (t, t ′) = −iθ (t − t ′). (E4)

In the initial state, before coupling to the bath and cavity
mode, the Green’s function reads

G<
η,0(t, t ′) = i, G>

η,0(t, t ′) = −i,

GR
η,0(t, t ′) = −iθ (t − t ′). (E5)

One Majorana Green’s function is independent and con-
tains information about physical properties of the system, e.g.,

the greater one G>
η (t, t ′). The lesser Green’s function is

G<
η (t ′, t ) = −G>

η (t, t ′). (E6)

Cavity photon’s Green’s function. When considering the
solution of the generalized Dicke model, we should keep track
of the anomalous terms of the cavity photon’s Green’s func-
tion. As in the main text, we describe this Green’s function
with a 4 × 4 matrix in Keldysh-Nambu space. The lesser and
retarded Green’s functions are defined as

D<
a (t, t ′) = −i

( 〈a†(t ′)a(t )〉 〈a(t ′)a(t )〉
〈a†(t ′)a†(t )〉 〈a(t ′)a†(t )〉

)
,

DR
a (t, t ′) = iθ (t − t ′)

( 〈[a(t ), a(t ′)†]〉 〈[a(t ), a(t ′)]〉
〈[a†(t ), a†(t ′)]〉 〈[a†(t ), a(t ′)]〉

)
.

(E7)
The bosonic operators in the interaction picture evolve as
[a(t ) = a(0)eiωct ]. This gives us the bare Green’s functions

DR
a,0(t, t ′) = iθ (t − t ′)

(
eiωc (t−t ′ ) 0

0 eiωc (t ′−t )

)
,

D<
a,0(t, t ′) = −i

(
na(0)eiωc (t ′−t ) 0

0 [na(0) + 1]eiωc (t−t ′ )

)
. (E8)

Green’s functions of the dissipative bath. Following the
definitions from Appendix A for the greater and lesser Green’s
functions of the dissipative baths (A1) in frequency domain,
the corresponding Green’s functions in real time read

∑
k

i�2
Lλ2

k,L

8�2
L

D>
k,L(t, t ′) = γ↑δ(t − t ′),

∑
k

i�2
Lλ2

k,L

8�2
L

D<
k,L(t, t ′) = 0,

∑
k

i�2
Rλ2

k,R

8�2
R

D>
k,R(t, t ′) = γ↓δ(t − t ′),

∑
k

i�2
Rλ2

k,R

8�2
R

D<
k,R(t, t ′) = 0. (E9)

2. Kadanoff-Byam equations

Inverting the bare Green’s function using the Leibnitz rule,
we obtain the equations of motion for the retarded and lesser
Green’s functions:

(
i
∂

∂t
− ω0

)
GR

f (t, t ′) = δ(t − t ′) +
∫ t

t ′
ds �R

f (t, s)GR
f (s, t ′),

(
i
∂

∂t
− ω0

)
G<

f (t, t ′) =
∫ t

0
ds �R

f (t, s)G<
f (s, t ′) +

∫ t ′

0
ds �<

f (t, s)
[
GR

f (t ′, s)
]†

,

(
i
∂

∂t

)
GR

η (t, t ′) = δ(t − t ′) +
∫ t

t ′
ds �R

η (t, s)GR
η (s, t ′),

(
i
∂

∂t

)
G<

η (t, t ′) =
∫ t

0
ds �R

η (t, s)G<
η (s, t ′) +

∫ t ′

0
ds �<

η (t, s)
[
GR

η (t ′, s)
]†

,
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[(
i
∂

∂t
+ iκ

)
σz − ωc

]
DR

a (t, t ′) = δ(t − t ′) +
∫ t

t ′
ds �R

a (t, s)DR
a (s, t ′),

[(
i
∂

∂t
+ iκ

)
σz − ωc

]
D<

a (t, t ′) =
∫ t

0
ds �R

a (t, s)D<
a (s, t ′) +

∫ t ′

0
ds �<

a (t, s)
[
DR

a (t ′, s)
]†

, (E10)

where σz is the Pauli matrix.
We define the self-energies using the diagrams shown in Fig. 3 in the main text. In the leading order, the self-energy of the f

and η fermions contain only the contribution proportional to the Green’s functions of the dissipative bath. For the f fermion we
obtain the following expressions:

�<
f (t, t ′) = i

2

∑
k

�2
L

�2
L

λ2
kD<

k,L(t, t ′)G<
η (t, t ′) + i

2

∑
k

�2
R

�2
R

λ2
kD>

k,R(t, t ′)G<
η (t, t ′),

�>
f (t, t ′) = i

2

∑
k

�2
L

�2
L

λ2
kD>

k,L(t, t ′)G>
η (t, t ′) + i

2

∑
k

�2
R

�2
R

λ2
kD<

k,R(t, t ′)G>
η (t, t ′). (E11)

Substituting Eq. (E9), Eqs. (E11) simplify to

�<
f (t, t ′) = γ↑δ(t − t ′)G<

η (t, t ′),

�R
f (t, t ′) = −(γ↓ + γ↑)δ(t − t ′)G<

η (t, t ′). (E12)

Note that we didn’t use Nambu notation to describe the f fermion. In the leading order, the Green’s function of the f fermion
doesn’t acquire any anomalous terms in the transient dynamics.

Similarly, we calculate the self-energies of the η fermion

�<
η (t, t ′) = i

∑
k

�2
R

�2
R

λ2
kD<

k,R(t, t ′)G<
f (t, t ′) + i

∑
k

�2
L

�2
L

λ2
kD>

k,L(t, t ′)G<
f (t, t ′),

�>
η (t, t ′) = i

∑
k

�2
R

�2
R

λ2
kD>

k,R(t, t ′)G>
f (t, t ′) + i

∑
k

�2
L

�2
L

λ2
kD<

k,L(t, t ′)G>
f (t, t ′). (E13)

Substituting Eq. (E9), we obtain

�<
η (t, t ′) = 2γ↓δ(t − t ′)G<

f (t, t ′),

�R
η (t, t ′) = 2γ↑δ(t − t ′)G>

f (t, t ′) − 2γ↓δ(t − t ′)G<
f (t, t ′). (E14)

By analogy with the cavity photon’s polarization operator in the steady state (50), we have the following expressions of the
polarization operator in the transient dynamics:

�<
a (t, t ′) = i

2
�T

(
G<

f (t, t ′)G>
η (t ′, t ) 0

0 G<
η (t, t ′)G>

f (t ′, t )

)
�,

�R
a (t, t ′) = i

2
�T

(
G<

f (t, t ′)GA
η (t ′, t ) + GR

f (t, t ′)G<
η (t ′, t ) 0

0 G<
η (t, t ′)GA

f (t ′, t ) + GR
η (t, t ′)G<

f (t ′, t )

)
�, (E15)

where � is the interaction vertex given by Eq. (46). Solution of Eqs. (E10) with self-energies (E14) and (E15) will describe the
dynamics of the generalized Dicke model after instantaneous coupling to the bath and cavity modes.
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