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Quantum multilateration: Subdiffraction emitter pair localization via three spatially
separate Hanbury Brown and Twiss measurements
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Typically, optical microscopy uses the wavelike properties of light to image a scene. However, photon arrival
times provide more information about emitter properties than the classical intensity alone. Here we show that
the Hanbury Brown and Twiss experiment (second-order correlation function) measures the relative brightness
of two single-photon emitters. By combining the total number of detected photons with the zero-lag value of
the correlation function, the positions and relative brightness of two emitters in two dimensions can be resolved
from only three measurement positions: trilateration. This result is impossible to achieve on the basis of classical
intensity measurements alone and represents a minimal demonstration of the advantage gained using quantum
measurements over conventional classical microscopy. The effective point-spread function for imaging scales
approximately as the inverse square root of the acquisition time.
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I. INTRODUCTION

Optical microscopy is one of the most important tools
for the understanding of biology. Conventional microscopy
is limited by the wavelike nature of light, and the associated
diffraction limit which imposes a fundamental restriction on
imaging resolution in the absence of a priori information of
the system being imaged. There are now many techniques
to beat the diffraction limit, defining the emerging field of
optical nanoscopy. Such techniques either use nonlinear op-
tical processes, blinking, ansätzer about the system, or quan-
tum techniques to derive subwavelength information. Inter-
estingly, all of the standard super-resolution techniques [1–3]
appear to have a qualitatively similar scaling law of resolution
with probe intensity (1/

√
N ), suggesting that a common

framework exists for understanding the fundamental limits of
resolution in microscopy [4,5]. Heisenberg resolution scaling
(1/N) is possible in certain circumstances [6,7]. However,
such scaling requires indistinguishable photons and (usually)
nontrivial quantum entanglement, which makes those pro-
tocols unsuitable for conventional confocal microscopy, as
discussed here.

Quantum correlations are an intriguing resource for optical
nanoscopy. The Hanbury Brown and Twiss (HBT) experiment
was initially developed as a method of determining stellar
parallax [8] and was the first experiment to definitively prove
the quantization of the electromagnetic field. In its simplest
form, HBT uses two single-photon detectors that receive sig-
nals from the same optical point-spread function (PSF). When
an emitter produces no more than one photon at any given
time, quantization of the field means that the photon cannot
be detected at both detectors simultaneously, and therefore the
cross-correlated signal must go to zero at zero time delay.
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Quantum correlation microscopy (QCM) uses measure-
ments derived from HBT signals across multiple emitters to
improve microscopy resolution [9]. This scheme was first
introduced in a confocal setup by Hell et al. [10], experi-
mentally demonstrated to higher orders in wide-field imaging
by Schwarz and Oron [11], and with confocal microscopy by
Monticone et al. [12]. By considering higher-order correlation
functions of the field, the effective point-spread function is
raised to the power of the order of the correlation. This
leads to a reduction in the width of the point-spread function
[10,13]. Alternatively, we may view the correlation function
as providing information about the number of emitters, which
can be used in centroid-type fitting algorithms [14–16], and
this is the approach taken here. In both approaches, using
quantum correlations of the field provides an improvement in
confocal and wide-field resolution that scales as

√
k, where

k is the order of the quantum correlation. Related, but dis-
tinct methods of super-resolution imaging using correlated
photon detection at different locations have been studied for
enhancing spatial resolution for thermal sources, including
pointlike and extended sources, and spatial mode demulti-
plexing [17–21]. A review covering quantum measurement
approaches applied to imaging can be found in Ref. [22].

Trilateration is the determination of the position of an
object in two dimensions on the basis of the intersec-
tion of three structures with circular or spherical symme-
try and finds practical application in fields such as survey-
ing and satellite global positioning systems [23,24]. The
task of locating a single-photon emitter or emitters on a
two-dimensional plane using confocal microscopy [25–27]
can also be described as a problem in (multi)lateration
[28], although it is usually not investigated as such.1 For
brevity, we consider the PSF to represent the product of the

1Confocal microscopy is not inherently lateration as it does not rely
on photon times of arrival (PTOA), which in the context of lateration
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illumination and collection point-spread functions. Under-
standing the minimum requirements on the number of mea-
surement locations (PSFs) is important as conventional scan-
ning confocal techniques are known to be suboptimal for
search [29].

Here we show that quantum measurements from three
locations suffice to determine the location of two particles
separated by less than the Rayleigh limit, in two dimen-
sions in the plane perpendicular to the optical axis. Such a
determination on the basis of intensity-only measurements
is impossible as there are five unknown quantities (the x
and y locations of each emitter and their relative brightness)
and only three measurement results. Our result constitutes a
minimal demonstration of the advantage that QCM provides
over conventional microscopy, and represents an example
demonstration that is impossible for classical (intensity-only)
imaging. We construct explicit simulations of the HBT cross-
correlation function for the case of two emitters of unequal
brightness and show their predicted origins relative to simple
measurements of the intensity. We focus on the ideal case
here; however, this work is specifically useful in studying
problems such as dimerization, which is important in certain
biochemical reactions [30–33]. We also explore the effects of
increasing the number of measurement locations, comparing
the efficiency of the quantum schemes with intensity-based
imaging.

This paper is organized as follows. We begin by describ-
ing the expected HBT signals for varying source conditions,
highlighting the cross-correlation function as a measure of the
emitter brightness asymmetry and of background emission.
We then show trilateration/multilateration for two emitters,
including the predicted resolution as a function of measure-
ment time. Finally, we show the expected scalings for the pro-
tocol, including results for up to 24 measurement locations.

II. PROPERTIES OF THE HANBURY BROWN AND TWISS
EXPERIMENT FOR TWO OR MORE PARTICLES

The HBT experiment measures photon-detection coinci-
dences between two detectors (D1, D2) monitoring the same
spatial region as a function of time. This experiment is de-
picted schematically in Fig. 1(a), where the excitation light
source has not been shown, but would usually be applied
confocally. Analytically obtained HBT results are shown in
Fig. 1(b) for the case of two emitters of unequal brightness,
and a single emitter.

The coincidence rate is expressed as a function g(2) of
the time delay τ between photon detections at the different
detectors, where the number of coincidences detected at τ

is normalized by the uncorrelated coincidences at τ = ±∞.
The uncorrelated coincidences are in turn a measure of the
total number of single-photon clicks, i.e., the intensity I . Here,

is usually used to measure the distance from the source to object to
detector. Instead, confocal microscopy aggregates signals for each
image pixel. Although PTOA is not usually available in microscopy,
the variation in brightness of the emitter within a circularly symmet-
ric PSF acts as a proxy for distance determination.

FIG. 1. (a) Schematic of a single HBT apparatus with two detec-
tors (D1, D2) which interrogate two emitters (E1, E2), with unequal
brightness and different positions within the point-spread function.
The same PSF, indicated by the 2D Gaussian, is monitored by two
single-photon detectors that are monitored in coincidence. The solid
circle depicts the standard deviation of the Gaussian PSF. (b) HBT
output for (a): Second-order correlation function (normally shown as
a function of τ , the delay time between photon arrival times) having
relative brightness of α = 0.3 and the same spontaneous emission
rate � as a function of the normalized time lag between photon arrival
times, τ�. Also highlighted is the well-known result of g(2)(0) = 0.5
(dot-dashed line) for two equal brightness emitters, and the dotted
line shows the result for a single emitter for comparison.

we are most concerned with the coincidences at τ = 0, i.e.,
g(2)(0).

It is often erroneously claimed that g(2)(0) < 0.5 implies
that one single-photon emitter is being observed. This claim
is due to the well-known result that for n co-located emitters
of equal brightness, g(2)

n (0) = (1 − 1/n). However, this result
does not hold in the case that the intensities as measured
from the emitters are not equal. For two emitters of unequal
brightness,

g(2)
2 (0) = 2P1P2

(P1 + P2)2 = 2α

(1 + α)2 , (1)

where we have introduced α = P2/P1 as the ratio of the
probability of detecting a photon from particle 2 (P2) to the
probability of detecting a photon from reference particle 1
(P1). As the probability of photon detection is directly propor-
tional to the received power from a given emitter, this result
demonstrates the role of the HBT measurement in determining
brightness asymmetry.
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By exploring the partial derivative

∂g(2)
2 (0)

∂α
= 2(1 − α)

(1 + α)3
, (2)

we observe that g(2)
2 (0) is most sensitive to the brightness

asymmetry when α is small, although it should be noted that
the absolute number of recorded coincidences will also be
small in this limit.

The difference in the measured brightness of the emitters
can be from any cause, for example, because the two emitters
are of different species. Equally, however, the difference in
brightness could be due to the two emitters being located
at different positions relative to the center of the PSF used
to interrogate them, and it is this that provides a method
of localization. Figure 2(a) shows the relation between α

and g(2)
2 (0), which highlights the singular case where g(2)

2 (0)
achieves its maximum value of 0.5 when α = 1.

To move our result from an observation about HBT signals
to a mechanism for particle localization, we define P0,i as
the maximum probability of detecting a photon from emitter
i = 1, 2, when that emitter is positioned at the center of
the detection PSF. We term P0,i the intrinsic brightness of
emitter i. The P0,i are directly proportional to the brightness
of the emitters and we assume that the overall measurement
efficiency of the microscope is the same for each particle.
For simplicity, we treat the microscope PSF as a Gaussian,
which is good for two dimensions [34]. Although such a
treatment is not ideal for practical microscopy [35], it serves
to illustrate our method and the use of more complicated
PSFs will not alter our results significantly. More generally,
our methodology could be used for any PSF, for example,
structured illumination [13], although we do not consider such
cases here.

Considering the effects of a Gaussian PSF, the probability
of detecting a photon from emitter i is

Pi = P0,i exp
[−r2

i /(2σ 2)
]
, (3)

where ri is the in-plane distance from the emitter to the
origin of the detection PSF and σ ≈ 0.21λ/NA is the standard
deviation of the effective Gaussian PSF for wavelength λ and
numerical aperture NA. By comparing g(2)

2 (0) with the total
intensity which is proportional to the sum of probabilities of
detecting photons at a given time, I ∝ P1 + P2, we observe
that the two techniques provide qualitatively different infor-
mation. Figure 2(b) shows I/(P0,1 + P0,2) with g(2)

2 (0) as func-
tions of r1 and r2 for the case α = 1. A given measurement
of both I/(P0,1 + P0,2) and g(2)

2 (0) therefore determines both
r1 and r2 up to ambiguity in the labeling. The case is only
slightly more complicated for α �= 1 [Fig. 2(c), which shows
the corresponding contours for α = 0.5], where the symmetry
between r1 and r2 is broken.

Before we discuss the significance of our results for imag-
ing protocols, we first discuss the results expected for HBT
experiments under different conditions.

The first case to consider is when the number of particles
is not exactly two. This is important as in practical imaging
cases, the number of emitters will not be known a priori
and must be determined during the course of experimentation.
Here the use of HBT, and especially higher-order correlations,

FIG. 2. (a) Cross-correlation function g(2)(0) for two particles as
a function of relative brightness, α. The maximum value of g(2)(0) =
0.5 is achieved for equal brightness particles. (b) Overlapped contour
plots of I (r1, r2, α) [magenta (gray)] and g(2)(τ = 0, r1, r2, α) [cyan
(light gray)] for α = 1, and (c) α = 0.5 where radial distance is
measured in units of the standard deviation of the PSF of the
illumination and collection optics. By comparing both I and g(2),
more information about the particles’ positions is obtained than is
possible using intensity alone. When α �= 1, the symmetry between
the contours for r1 and r2 is broken and can be seen in the line of
constant g(2) (black dashed line).
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can be beneficial, as trivially g(m)
n (0) = 0 when m > n. How-

ever, in practice, the time taken to experimentally determine
that a high-order correlation is zero, especially in the presence
of noise, can be prohibitive, e.g., due to dark counts. For that
reason, we will restrict our subsequent localization protocols
to the case of second-order correlations only, although we
present some of the more general results here for complete-
ness.

We assume N single-photon emitters, labeled without loss
of generality from highest intrinsic brightness, 1, to lowest, N .
The second-order correlation function is given by the sum of
the possible ways that we can observe detector clicks at τ = 0,
divided by the possible ways to observe uncorrelated detector
clicks (i.e., τ = ±∞),

g(2)
N = 2

∑N−1
i=1

∑N
j=i+1 PiPj∑N

i=1

∑N
j=1 PiPj

. (4)

We explore Eq. (4) for two important cases: three particles in
the field of view and two particles against some background.

For the case of three emitters, Eq. (4) reduces to

g(2)
3 = 2(P1P2 + P1P3 + P2P3)

(P1 + P2 + P3)2 = 2(α + β + αβ )

(1 + α + β )2 , (5)

where we have introduced α = P2/P1 and β = P3/P1.
Considering the case of a background of weak single-

photon emitters, we assume N background emitters, each
with relative emission probability γ = Pbg/P1 where γ � 1,

but Nγ � α and is therefore non-negligible,

g(2)
bg (0) = 2

[
α + (1 + α)Nγ + (Nγ )2

2

]
(1 + α)2 + (1 + α)Nγ + (Nγ )2 . (6)

Dark counts can be accounted for using the same treatment
assuming that the dark-count rate on each detector is equal.

Lastly, although our subsequent results do not use the full
time dependence of the HBT signal, we present them here
for completeness. Additionally, any practical experimental
system will have a finite resolution, so that the number of
counts registered in the τ = 0 bin will in fact be from some
finite range 0 < τ < δ. We assume that we are pumping the
single-photon emitters well below saturation. In this limit,
conditional on the emitter having emitted at τ = 0, the proba-
bility of detecting a second photon at time delay τ is

P′
i (τ ) = Pi(τ = 0)[1 − exp (−�i|τ |)], (7)

where Pi(τ = 0) is the same probability of detection used
above, �i is the spontaneous-emission rate of emitter i, and
the dash is used to denote the fact that this probability is
conditional on emission at τ = 0. In the case that τ < 0,
the first photon is detected before the second at τ = 0;
however, the conditional rates are the same as for τ > 0. In
general, one would not decouple the detection probability and
spontaneous-emission rate as we have done here; however, it
is very convenient to treat these as independent parameters as
the probability of photon detection given photon emission is
often very small in confocal systems. Under these conditions,
the HBT result as a function of τ is given by

g(2)
2 (τ ) = P1(0)P′

1(τ ) + P1(0)P2(τ ) + P2(0)P1(τ ) + P2(0)P′
2(τ )

P1(0)P1(∞) + P1(0)P2(∞) + P2(0)P1(∞) + P2(0)P2(∞)
. (8)

Because we are assuming that the two emitters are well below saturation, Pi(0) = Pi(τ ) = Pi > P′
i (τ ), Eq. (8) reduces to

g(2)
2 (τ ) = 2P1P2 + P2

1 [1 − exp (−�1|τ |)] + P2
2 [1 − exp (−�2|τ |)]

(P1 + P2)2 . (9)

This result was shown in Fig. 1(b) for the case α = 0.3 and
�1 = �2.

By considering finite bin width, we may integrate the
number of expected coincidences around τ = 0 over a time
bin from 0 to δ relative to the number of coincidences in a bin
for large τ to obtain the modified result expected for g2

2 due to
finite binning, which we write as

g
(2)
2 (δ) = 1 + (e−δ�1 − 1)P2

1

δ�1(P1 + P2)2
+ (e−δ�2 − 1)P2

2

δ�2(P1 + P2)2
(10)

= 2P1P2

(P1 + P2)2
+

(
�1P2

1 + �2P2
2

)
δ

2(P1 + P2)2
+ O[δ2]. (11)

These analytical results show some of the experimental
details that are practically necessary for implementing trilat-
eration. However, in what follows, we assume no background,
no finite time bin, and only two emitters in the field of view
for clarity.

III. MINIMUM MEASUREMENT LOCATIONS:
HBT TRILATERATION

On the basis of three measurement locations and six mea-
surement outcomes [three intensity and three g(2)

2 (0)] taken at
the detector locations, our approach computes the least-square
error between predicted values of the measured quantities and
trial locations for two emitters. We stress that the intensity
result can be obtained simply from the square root of the
number of coincidences obtained at τ = ±∞, and so does
not require an additional detector or detector channel. Al-
ternatively, all of the required data could be obtained from
a photon-resolving detector at each measurement location
where g(2)

2 (0) is given by the number of two-photon measure-
ments per unit time divided by the square of the number of
single-photon measurements per unit time, with only minor
changes to the equations above. Nevertheless, the standard
HBT two-detector setup is the most common experimental
apparatus for performing such measurements, so that is our
focus here.
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Without optimizing the detector locations, we note the
following heuristics for their placement relative to the emit-
ters. For our scheme to be beneficial compared to standard
methods, we require the emitters to be close with respect
to the diffraction limit, so as to be unresolved by conven-
tional means, and so that we obtain a significant number of
coincidence detections. For simplicity, we place the detector
locations at the vertices of an equilateral triangle spaced one
standard deviation σ apart based on the illumination PSF.

Our simulation stochastically assigns real-space locations
to two single-photon emitters inside one standard deviation
of the PSF, σ , with all position results scaled in units of σ .
Additionally, we randomly choose the relative power of the
emitters, 0 � α � 1, without loss of generality (if we have
α > 1, relabeling the emitters retrieves α < 1). As a first treat-
ment of experimental noise, we introduce a relative error in all
of our simulated measurements of η. This error rate is a simple
proxy for measurement noise, which is expected to scale as
1/

√
N , where N is the number of detected coincidences for

g(2)(0). For simplicity, we also use this same value to apply
noise to I; this is a considerable overestimation of the intensity
noise.

Using the analytical results from Eqs. (1) and (3), our code
adds relative errors at the level η, i.e., for each detector posi-
tion j = 1, 2, 3, we generate simulated measurement results,

G(k)
j = [1 + ηRANDN]g(k)

j (12)

where RANDN is the MATLAB [36] function generating a nor-
mally distributed random value with mean 0 and standard
deviation 1, k = 1 (2) denotes intensity (HBT), and we have
dropped the (0) from the g(2)(0) and G(2)(0). Using these
synthetic measurement results, we then attempt to determine
the emitter positions and relative intensity that minimize the
sum of the squared errors, i.e.,

χ2 = i, j
[
G (k)

j (x1, y1, x2, y2, α) − G(k)
j

]2
, (13)

where G (k
j (x1, y1, x2, y2, α) is the expected value of k = 1

intensity or k = 2 HBT coincidence, for detector location j
for the trial values x1 . . . α.

The results of performing such a trial are shown in Fig. 3
where two emitters were randomly placed at (x1, y1) =
(−0.6300,−0.1276), (x2, y2) = (0.5146,−0.5573),
α = 0.3617, and η = 0.1. Figure 3(a) shows the expected
results of performing a standard confocal scan (normalized
with the maximum powers of the emitters) I/(P0,1 + P0,2):
the two emitters are not resolved. Figure 3(b) shows contours
of g(2)(0), such as would be obtained by scanning an HBT
setup. The contours of constant g(2)(0) are parallel to each
other and we conclude that for two emitters, there is a
significant amount of redundant information in the full g(2)

map. The optimal measurement strategy for two-particle
localization is therefore still unclear when considering more
than the minimal number of measurement locations that we
demonstrate here.

For quantum trilateration, we consider three detector po-
sitions, (0,1), (

√
3/2,−0.5), and (−√

3/2,−0.5). We then
compute 501 trials using the method outlined in Eq. (12)
and independently determined the expected emitter locations
using the MATLAB routine FMINSEARCH to gauge the error. The

FIG. 3. Imaging of two single-photon emitters at (x1, y1) =
(−0.6300, −0.1276), (x2, y2) = (0.5146, −0.5573), α = 0.3617,
and η = 0.1. The emitters are shown by the plus symbols in each
subfigure. (a) Pseudo-color plot showing a predicted confocal map
for a single detector, scanned over the emitters. The exact location of
the emitters is not well resolved. (b) Contours of g(2)(0) for a scanned
HBT apparatus. The contours are perpendicular to the line joining
the two emitters. Although g(2)(0) provides some information on
particle locations, there is significant redundancy. (c) Results of 501
trilateration reconstructions. Black open circles mark the detector
locations and the dots are the calculated locations of emitters 1 and
2, respectively, for each numerical experiment where the confidence
intervals represent 39.5% of closest reconstructions. The effective
PSFs are shown by the irregular polygons. All subfigures have the
same x axis.
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FIG. 4. Histograms showing average PSF width, w̄eff, after ap-
plying the trilateration protocol for randomly chosen emitters for
each η. The color of each precision-η point shows the fraction that
precision was achieved under those noise conditions. Observe the
presence of two bands within the results. The lower band is obtained
for α � 0.5, and the upper for cases where 0.5 � α � 1.

results of individual runs are shown by the blue (gray) and
orange (light gray) dots for emitter 1 and emitter 2, respec-
tively, which accord well with the true locations. Occasionally,
pathological cases can greatly skew the fitting [37].

To provide a fair comparison with conventional mi-
croscopy, we define an effective width of the distribution of
the reconstructions. To achieve this, we order the inferred
particle positions by radial distance to the centroid of the re-
constructions. Then we determine the radial distance between
the centroid of the inferred positions and the position of the
	(1 − 1/

√
e)N
th reconstruction, ρ39.5%. If this distribution

were perfectly Gaussian, then ρ39.5% would correspond to the
standard deviation of the PSF, with 2ρ39.5% being the width of
the PSF. In our case, it is not a given that the distribution of
the reconstructions will be Gaussian. Accordingly, we instead
determine the area that includes the closest 39.5% of the
reconstructions, which we write as A39.5%. We then define the
effective width of the trilateration reconstruction as

weff ≡ 2

√
A39.5%

π
. (14)

As we obtain an effective width for each emitter, we take the
average of the widths, w̄eff = (weff,1 + weff,2)/2, to determine
the effectiveness of the protocol. This width can then be used
to determine the super-resolution improvement factor where
that exists, by comparing with the original confocal PSF width
wcf = 2σ . In the case provided in Fig. 3(c), we find the widths
of the effective PSFs, weff,1 = 0.3724 and weff,2 = 0.6415.
The average width of the effective PSF in this case is w̄eff =
0.5069, which corresponds to a modest improvement over the
diffraction limit for a Gaussian PSF of 1.97 times.

To quantify the scaling of our protocol’s precision with
detection noise, we show a series of histograms (Fig. 4)
of w̄eff for an ensemble of 720 randomly chosen emitter
locations and relative brightnesses (x1, y1, x2, y2, α), trialed

501 times apiece per value of system noise 0 � η � 0.20.
When α � 0.05, our protocol fails to locate the less bright
emitter, although the brighter emitter is localized. Note that
for small η, the relative frequency in some of the histogram
bins exceeds 14% and the maximum bin occupancy is 60%.

Clearly noticeable are two distinct bands of data. The
lower of the two bands corresponds to the case where α �
0.5, which demonstrates a linear scaling of localization with
η or, equivalently, with 1/

√
N , as the main uncertainty is

counting statistics. The upper band, attained for 0.5 � α <

1, is more interesting. We see that for comparable η, the
localization error is greater. This indicates that when there is a
large difference in the intrinsic brightness of the emitters, the
protocol shows better scaling than when the two emitters are
of comparable brightness. This result is in keeping with the
analysis around the rate of change from Eq. (2).

The above method for incorporating errors is simple to un-
derstand and provides an approximation to a proper treatment
of noise from sources including (especially in our context) the
counting statistics due to a finite number of events. However,
it does not fully capture the physics of the situation, including
the differences in the number of events expected for bright
and dim particles, and the different number of events detected
at each detector as a function of the relative positions of the
emitters within the PSF. Accordingly, we have recalculated
the data by setting a detection time interval t , and for each
random instance determined the received numbers of counts
for emitter i, ci, and coincidences c12 received at each detector,

c1 = POISSRND(P1t ), (15)

c2 = POISSRND(P2t ), (16)

c12 = POISSRND(P1P2t2), (17)

[u
n
it

s 
of

10−3

FIG. 5. Histograms showing average PSF width, w̄eff, after ap-
plying the trilateration protocol for randomly chosen emitters for
increasing detection time. As with Fig. 4, the color of each pixel
shows the relative occurrence of that localization precision within the
total number of (randomly) selected configurations. The two bands
with α are still visible here, with α � 0.5 yielding significantly better
localization than α > 0.5. Note that the P0,1t axis starts at 10, not 0.
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FIG. 6. Localization as a function of measurement time in units
of inverse photon arrival rate. The two cases show the expected
uncertainties for 501 reconstructions for times of P0,1t = 10, 100,
1000, 10 000 and 100 000 at each detector location. Particle locations
were (x1, y1) = (−0.1, −0, 1) and (x2, y2) = (0.1, 0.1) with (a) α =
0.3617 and (b) α = 0.8000. As before, the detector locations are
shown by open circles, and the ground truth particle locations are
indicated with plus signs. The orange (light gray) contours show
the effective point-spread function for particle 1, and the blue (dark
gray) contours show the effective point-spread function for particle 2.
The contours are labeled by the appropriate P0,1t product, except
for the innermost P0,1t = 100 000. Full results are shown in Table I.
Note that the contours do not always easily resolve, especially in the
case of (b), which is a consequence of the stochastic nature of the
noise used in the protocol.

where POISSRND is the MATLAB [36] function to generate a
Poisson-distributed random variable. These counts are then
used to generate the G(2)

j = 2c12/(c1 + c2)2 at each detector
location, and the fitting proceeds as before.

The result of performing such counting-based reconstruc-
tions is shown in Fig. 5 as a function of acquisition time,
where t = 1/P0,1 corresponds to the mean time for a photon to
be detected from particle 1 if it were located in the maximum

of a PSF. As before, the two bands for different α are visible.
The overall scaling with t will be discussed in the next section.

To illustrate the scaling of the effective width with in-
creased measurement time, Fig. 6 shows two cases for close
emitters located at (x1, y1) = (−0.1,−0, 1) and (x2, y2) =
(0.1, 0.1), for α = 0.3617 [Fig. 6(a)] and α = 0.8000
[Fig. 6(b)]. The trilateration results for these configurations
are presented in Table I. As the case in Fig. 6(a) has α � 0.5,
we observe significantly better convergence of the protocol
than the case in Fig. 6(b), in keeping with the intuition
developed from Eq. (2) and Figs. 4 and 5.

IV. EFFECTS OF INCREASING THE NUMBER OF
MEASUREMENT LOCATIONS: MULTILATERATION

Although the trilateration case is interesting for exploring
a minimal condition necessary for demonstrating quantum
superiority over classical localization for two particles, it is
not obvious that it is, in any way, optimal. As such, here we
illustrate the effect of increasing the number of measurement
locations, considering four, five, and six locations. Because
there are many possible configurations and possibly an (un-
known) optimal set of measurement locations, for simplicity
we restrict ourselves to a case that affords easy compari-
son between the different configurations. We therefore set
the measurement locations to be equally spaced around the
circumference of a circle of diameter 2σ . The locations are
depicted schematically in Fig. 7.

As with the case of trilateration, we perform a series of
numerical experiments, 640 randomly chosen configurations
of position and relative intrinsic brightness, for increasing
measurement time. The resulting histograms for four, five, and
six locations are presented in Fig. 8, which shows qualitatively
similar improvements in localization with increasing the num-
ber of measurement locations.

To quantify the scalings, in Fig. 9 we show the w̄eff of the
mode of the histograms, i.e., the most likely scaling of the
average effective PSF averaged over all configurations. We
also provide a comparison with a comparable intensity-only
localization method (discussed below). This scaling gives
an effective heuristic to predict the scaling for “reasonable”
configurations (noting that certain cases have worse scaling
than this). We fit this scaling with a straight line on a log-log
plot. This gave scaling laws of the form

w̄eff, j = 10a j t b j , (18)

where a j and b j were determined by the fits, and j denotes the
number of detector locations.

The values empirically determined from the fits for latera-
tion in Fig. 9 are

a03 = 0.7893, b03 = −0.4952,

a04 = 0.7402, b04 = −0.5023,

a08 = 0.5592, b08 = −0.4908,

a09 = 0.5551, b09 = −0.4981,

a11 = 0.5203, b11 = −0.5005,

a12 = 0.5202, b12 = −0.5044,

a24 = 0.3586, b24 = −0.5009.
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TABLE I. The ground truth and algorithmically determined parameters for the cases shown in Fig. 6. As expected, the case for α � 0.5
shows greater precision (enhanced localization) compared with the case 0.5 � α. SF is the predicted super-resolution factor.

Time (x1, y1) (x2, y2) α weff,1 weff,1 w̄eff SF

Ground truth (a) (−0.1, −0.1) (0.1,0.1) 0.3617
10 (0.4638, −0.1234) (−0.6781, 0.0614) 0.3565 1.1603 0.5382 0.8493 1.1774
100 (−0.3435, −0.5961) (0.2430, 0.3595) 0.4158 0.6186 0.4437 0.5311 1.8829
1000 (0.0313, −0.1288) (−0.0316, 0.1167) 0.3658 0.1943 0.1732 0.1838 5.4407
10 000 (−0.1396, −0.1000) (0.1377, 0.1087) 0.3622 0.0618 0.0601 0.0609 16.4204
100 000 (−0.1255, −0.1066) (0.1247, 0.1046) 0.3617 0.0196 0.0207 0.0201 49.7512
Ground truth (b) (−0.1, −0.1) (0.1,0.1) 0.8000
10 (−0.1972, 0.7567) (0.1097, −0.1028) 0.5309 1.3265 0.4110 0.8688 1.1510
100 (−0.1369, 0.0408) (0.0671, −0.0095) 0.6663 0.6785 0.3698 0.5241 1.9080
1000 (0.2648, 0.3235) (−0.2664, −0.3145) 0.7706 0.3999 0.3079 0.3539 2.8257
10 000 (−0.1579, 0.0719) (0.1470, −0.0735) 0.8079 0.1980 0.1764 0.1872 5.3419
100 000 (−0.0853, −0.0729) (0.0860, 0.0728) 0.8010 0.0758 0.0703 0.0730 13.6986

These values show approximately 1/
√

t scaling for the
precision, independent of the number of detector locations
as expected, and it is likely that increasing the number of
histograms will yield scaling closer to b = −0.5.

Figure 9 shows scaling comparisons between intensity only
(upper band of data) and lateration (lower band of data).
For consistency between the methods, both use the detector
geometry as shown in Fig. 7. For intensity-only localization,
the trends show worse than 1/

√
t scaling. This shows that

for the same number of detectors in the same collection time,
lateration provides greater localization of emitters. One reason
for the poor scaling of the intensity-only localization in our
configuration is that intensity-only localization requires many
measurement locations and benefits from a rectangular grid.
Nevertheless, our results show that quantum lateration is supe-

FIG. 7. Schematic of the relative positions of the detector loca-
tions used to explore the scaling with increasing number of detector
locations. The detectors were equally spaced around the circumfer-
ence of a circle of diameter 2σ , corresponding to the original width
of the point-spread function.

rior to intensity-only for comparable measurement locations.
We find that the intensity-only protocol fails to localize the
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FIG. 8. Histograms showing effective PSF width, w̄eff, for ran-
domly chosen emitters as a function of total measurement time for
(a) four, (b) five, and (c) six measurement locations. The modal
scaling has been highlighted with the white line. In all cases, we
observe qualitatively similar improvements in effective PSF with
increasing measurement time. Note that the P0,1t axis starts at 10,
not 0.
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FIG. 9. Scaling of the mode of the histogram of w̄eff as a function
of total measurement time, which is a measure for the expected
location’s scaling. The green (upper) band depicts classical intensity-
only precision localization scaling with 7, 8, 9, 10, 11, and 12
detectors. The blue or purple (lower) band depicts scaling for our
quantum lateration model for 3, 4, 8, 9, 11, 12, and 24 measurement
locations. The histogram mode data are shown by dots, whereas the
solid lines are the fits. For the multilateration cases, each histogram
mode is the result from 10 000 random measurement locations. We
observe an improvement with more detector locations, as well as
consistent, approximately 1/

√
t scaling in the localization precision,

independent of the number of locations.

second emitter with high precision, which reduces the over-
all average effective point-spread function. We can see that
with comparable measurement locations, lateration provides
greater emitter localization than intensity localization.

To clarify this point, consider the time required to achieve
the same precision (on average) with three and four detector
locations (assuming that the bi = −1/2). This implies that

t3
t4

=
(

10a3

10a4

)2

. (19)

However, measuring at four detector locations either uses one
HBT system for 4/3 times longer or uses an additional HBT
setup in parallel. If we just take the case of a single HBT
system that is moved between the (predetermined) locations,
by comparing the results for j < k detector locations, we
should conclude that it is preferable to use more detector
locations if

(
10a j

10ak

)2

>
k

j
. (20)

We explore this inequality by calculating ( 10a j

10ak
)
2 − k

j for
multilateration:

aj/ak 4 8 9 11 12 24

3 −0.2615 −1.0442 −1.1488 −1.3765 −1.4617 −2.4574
4 −0.7550 −0.8470 −1.0556 −1.1294 −2.0341
8 −0.0700 −0.2582 −0.3105 −1.1019
9 −0.1825 −0.2318 −0.9969
11 −0.0447 −0.7879
12 −0.7249

The multilateration inequalities imply that in this test,
more measurements equate to better localization. However,
as mentioned, our heuristic approach does not guarantee
optimal (information-theoretic and adaptable) placement of
those locations, and thus a fair comparison is not necessarily
achieved. Further work is required to establish the optimal
detector locations for a given system.

V. CONCLUSIONS

Our results present a minimal demonstration of the advan-
tage achieved using QCM. We have shown that by combin-
ing quantum correlation with conventional intensity measure-
ments, it is possible to solve the quantum multilateration prob-
lem for two particles of unknown relative intensity: a problem
impossible to solve on the basis of intensity measurements
alone. This methodology highlights the additional information
accessible to Hanbury Brown and Twiss measurements that
is not present in conventional confocal-type measurements,
thereby clarifying the origin of the speedup seen in quantum
microscopy [1–3,11,12,38–40].

Although all three measurement locations are necessary for
the localization of the two particles, it is important to stress
that in general, the HBT signal provides little nonredundant
information. For example, the HBT signal is trivially zero
at every point where there is no received intensity, and even
when the intensity is nonzero, there are many points where
the HBT result gives the same value. Indeed, for two particles
that are exactly, or almost, co-located, there is little variation
in the HBT value over the scene (see contours in Fig. 2).
Nevertheless, the three unique measurement locations are
still necessary for the two-particle trilateration protocol. This
leaves open the issue of the optimal light budget to localize
the particles with the least total number of measurements.

By showing that only three measurement locations are
required for super-resolution localization of two particles,
our results are significant in the search for optimal strategies
for microscopy. Optimal microscopy is necessary, as effects
such as phototoxicity limit the application of super-resolution
methods in biology, and it is therefore necessary to quantify
the total photon budget necessary to obtain a desired resolu-
tion in any experiment.

Our results are normalized in units of the excitation
field PSF. However, although we have compared our re-
sults with standard confocal microscopy, there is no restric-
tion on the microscopy technique. So quantum multilater-
ation could be combined with other super-resolution tech-
niques, for example, stimulated emission depletion (STED)
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microscopy, and our approach would provide commensu-
rate increases to the obtained STED resolution, as shown
above.

We also show that increasing the number of detector
locations provides improved resolution, and that this im-
provement is better than would be expected simply on
the basis of taking more measurements at fewer loca-
tions. We also note that this process may be further op-
timized through information-theoretic and adaptive tech-
niques, e.g., deep learning and artificial intelligence, which
have been demonstrated in super-resolution single-molecule
microscopy [41].
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