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Dynamical phase transition in Floquet optical bistable systems: An approach from finite-size
quantum systems
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We study a dynamical phase transition in optical bistable systems subject to a time-periodic driving field. The
phase transition occurs in the structure of a limit cycle as a function of the frequency of the driving field. In the
thermodynamic limit, a single limit cycle is divided into two separated limit cycles at the transition point. In
finite-size systems, however, there is always a single limit cycle due to the quantum tunneling effect. We use a
Floquet dissipative map, which is a time-evolution operator over one period in dynamics given by a quantum
master equation, and discuss the decay rate of relaxation dynamics into the limit cycle based on the dominant
eigenvalue of the map. We found that the decay rate exhibits qualitatively different system-size dependence
before and after the phase transition and it shows a finite-size scaling of spinodal phenomena around the transition
point. The present paper provides a systematic way of studying a dynamical phase transition observed in time-
periodically driven open systems in terms of the Floquet dissipative map.
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I. INTRODUCTION

With progressive advances in quantum technologies, it
becomes important to understand quantum many-body sys-
tems subject to a time-periodic driving and in contact with a
dissipative environment [1–3]. The time evolution of a system
coupled to an environment can be described by a quantum
master equation [4,5]. The system is usually relaxed to a
time-periodic state with a period of the driving due to the
dissipation. The periodic state is an analog of the limit cycle
in classical systems.

The dynamical phase transition in structures of the limit
cycles appears in bistable systems. The optical bistability has
been found in cavity systems with an external laser field
[6–11]. As a function of laser intensity, there is a finite interval
with bistability of a high transmission state (HTS) and a low
transmission state (LTS). When the intensity of the input laser
is time-periodically modulated beyond the bistable regime,
the response of the system is qualitatively different depending
on the period of the modulation. For a slow modulation,
the system stays in a different stable state depending on
whether the laser intensity is increasing or decreasing. Thus,
the system has a large limit cycle including the HTS and
the LTS. On the other hand, for a fast modulation, the limit
cycle of the trajectory is kept in either the HTS or the LTS
because there is no sufficient time for making the transition
between the states. Thus there exist two separated limit cycles.
The analogous situation in classical systems was discussed
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in Ising models with a time-periodically oscillating magnetic
field [12–14].

In the present paper, we show that the Floquet dissipative
map is useful to characterize the above-mentioned phase
transition. The Floquet dissipative map is given by a time-
evolution operator of the quantum master equation [2] and
it characterizes the limit cycle and the decay rate of the
relaxation dynamics. In the study of finite systems, there is
always a single limit cycle, because the quantum tunneling
between the HTS and the LTS causes the mixing of them to
a hybridized state. However, the transition point is estimated
by looking at the system-size dependence of the decay rate as
a function of the period of the driving field. The decay rate is
exponentially small for a fast modulation, while it is finite for
a slow modulation. Around the transition point, the decay rate
exhibits finite-size scaling, which is consistent with the one of
classical (conventional) spinodal phenomenon. Two separated
limit cycles appear in the thermodynamic limit, which we
study by a mean-field (MF) analysis.

The composition of this paper is given as follows. Sec-
tion II gives a brief review of the Floquet dissipative map.
Section III explains the model of cavity systems. Section IV
provides an analysis of the phase transition in the structure of
the limit cycle by using the Floquet dissipative map. Section V
concludes the paper with a future direction.

II. FLOQUET DISSIPATIVE MAP

In this section, we give a brief review of the Floquet
dissipative map [2] to fix the notation. We consider a system
which is subject to a time-periodic driving and in contact
with environmental systems. We denote Ĥ (t ) and ρ the
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Hamiltonian and the reduced density matrix of the system of
interest, respectively. The dynamics of ρ is assumed to obey
the Lindblad equation [15],

dρ

dt
= L(t )ρ = −i[Ĥ (t ), ρ] + Dρ,

Dρ =
d∑

a=1

γa[2L̂aρL̂†
a − {L̂†

aL̂a, ρ}], (1)

where [·, ·] and {·, ·} are the commutator and the anticom-
mutator, respectively. We set h̄ = 1. The Hamiltonian has a
period of T :

Ĥ (t ) = Ĥ (t + T ). (2)

The dissipator D is given by Lindblad operators {L̂a}a={1,··· ,d}
and the dissipation strength denoted by {γa}a={1,··· ,d}. Here, we
assume that each environmental system labeled by an index
a is independent of each other. The superoperator L(t ) is
referred to as the Liouville operator and it has the same period
as the Hamiltonian, i.e., L(t ) = L(t + T ).

The dissipative Floquet map F is defined by the time-
evolution operator over one period,

F := T exp

(∫ T

0
L(t )dt

)
, (3)

where T is the time-ordering operator. Owing to the time
periodicity of L(t ), the state of the system at t = nT (n ∈ N0)
is described by

ρ(nT ) = T exp

(∫ nT

0
L(t )dt

)
ρ(0),

=
[

T exp

(∫ T

0
L(t )dt

)]n

ρ(0) = Fnρ(0). (4)

In this way, the dissipative Floquet map describes the strobo-
scopic dynamics. We denote eigenvalues and eigenmodes of
F by {λm} and {ρm}, respectively. The eigenvalues of F are
ordered as

1 = λ0 � |λ1| � · · · . (5)

Note that λ0 = 1, which represents the stationary state of the
dissipative Floquet map F .

The trajectory of the limit cycle is obtained using the
eigenmode ρ0 as

OL(t ) := 1

Trρ0
Tr

[
ÔT exp

(∫ t

0
L(τ )dτ

)
ρ0

]
, (6)

where Ô is an operator. Here, OL(t ) is the periodic function
with period T . The decay rate to the limit cycle is defined by
λ1 as

γL := − 1

T
Re(log λ1). (7)

As a demonstration, we consider a simple generic model,
i.e., a 1/2-spin system with a static magnetic field hz and time-
periodically oscillating magnetic field hx(t ). The Hamiltonian
and the Lindblad operator are given by

Ĥ (t ) = hzŜz + hx(t )Ŝx,

L̂1 = Ŝ−, (8)
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FIG. 1. Demonstration of convergence to a limit cycle: (a) Time
evolution of Sz(t ) in the system [Eq. (8)] (dashed line). The red
squares denote the value of Sz(nT ) where n ∈ N0. The limit cycle is
depicted by red solid line. (b) The stroboscopic dynamics of Sz(nT ).
Inset: The absolute value of the difference between Sz(nT ) and Sz

L(0)
is depicted as a function of n. The black line is a guide to show the
damped oscillation with the decay rate γL.

respectively, where

hx(t ) = h0 + hex sin

(
2π

t

T

)
. (9)

Here, �S = {Ŝx, Ŝy, Ŝz} are the spin-1/2 operators and Ŝ− :=
Ŝx − iŜy.

Figure 1(a) depicts the time evolution of Sz(t ) := TrŜzρ(t )
for the parameters (hz, h0, hex, γ1, T ) = (1, 0.5, 0.1, 0.05, 6).
The initial state is set as the down-spin state, i.e., ρ(0) =
|↓〉 〈↓|, where Ŝz |↓〉 = −1/2 |↓〉. The system is relaxed to a
limit cycle. The limit cycle is drawn by a red closed trajectory,
which is obtained by Eq. (6).

When the dynamics is observed at stroboscopic times t =
nT [red squares in Fig. 1(a)], convergence is clearly observed.
Figure 1(b) shows the approach of Sz(nT ) to the limiting value
Sz

L(0). It exhibits a damped oscillation with the decay rate γL

[see inset of Fig. 1(b)]. The decay rate obtained by Eq. (7) is
γL � 0.356T −1.
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III. MODEL

Next, we study the system exhibiting the optical bistability.
The optical bistablity has been observed in a cavity system in
the presence of an external driving field. The Hamiltonian of
the cavity system is divided into a static part and a driven part:

Ĥ (t ) = Ĥ0 + Ĥex(t ). (10)

For the static part, we adopt the Dicke model [16], which was
introduced to describe the coupling between an ensemble of
N atoms and a single cavity mode:

Ĥ0 = ωphâ†â + ωa

N∑
i=1

Ŝz
i + g(â† − â)

N∑
i=1

(Ŝ+
i − Ŝ−

i ). (11)

Here, ωph is the resonance frequency of cavity mode and â
and â† are the annihilation and creation operators of bosons,
respectively. Each atom is regarded as a two-level atom,
and described using the 1/2-spin operators �Si = {Ŝx

i , Ŝy
i , Ŝz

i }
and Ŝ±

i := Ŝx
i ± iŜy

i . The up-spin state and down-spin state
correspond to the excited state and the ground state of the
atom, respectively. The energy gap between the two states is
denoted by ωa. The interaction between photons and atoms
is given by the third term in Eq. (11). The coefficient g is
the strength of the interaction. For the driven part of the
Hamiltonian, we adopt the following form [17]:

Ĥex(t ) = iξ (t )(â†e−iωext − âeiωext ), (12)

where the cavity mode is pumped by the external driving field
with amplitude ξ (t ) and frequency ωex. In the present paper,
we suppose that the driving frequency is the same as both the
energy of a cavity photon and a two-level atom, namely,

ω := ωex = ωph = ωa, (13)

where we set ω as a unit of energy.
We adopt the rotating wave approximation (RWA) to sim-

plify the form of the Hamiltonian, H (t ). For this purpose, we
introduce a rotating frame defined by a unitary operator:

Û (t ) = exp

[
−iωt

(
N∑

i=1

Ŝz
i + â†â

)]
. (14)

The Hamiltonian in the rotating frame reads

ĤR(t ) = Û
†
(t )

(
Ĥ (t ) − i

∂

∂t

)
Û (t ),

= − g
N∑

i=1

(â†Ŝ−
i + âŜ+

i ) + iξ (t )(â† − â)

+ g
N∑

i=1

(â†Ŝ+
i e2iωt + âŜ−

i e−2iωt ). (15)

In the RWA, we drop the last term in Eqs. (15). The RWA
is valid when the energy scale of the driving field is much
larger than other energy scales, ω � (g, ξ (t ), ξ̇ (t )/ξ (t )). This
condition is not satisfied in the ultrastrong coupling regime,
g ∼ ω [18], and/or strong driving field, ξ ∼ ω [19], but
it gives a qualitatively correct description in the parameter
regime for the optical bistability. Then, the Hamiltonian in the

rotating frame is given by

ĤR(t ) = −g
N∑

i=1

(â†Ŝ−
i + âŜ+

i ) + iξ (t )(â† − â). (16)

In the cavity system, the main sources of dissipation are (i)
spontaneous emission of each atom from the excited state to
the ground state and (ii) loss of photons from the cavity mode.
The dynamics of the dissipative system can be modeled by a
quantum master equation in the Lindblad form [4,15],

dρ

dt
= −i[ĤR(t ), ρ] + Daρ + Dphρ, (17)

Daρ := γ

N∑
i=1

(2Ŝ−
i ρŜ+

i − {Ŝ+
i Ŝ−

i , ρ}),

Dphρ := κ (2âρâ† − {â†â, ρ}), (18)

where ρ is the density matrix of the cavity system. The dissi-
pation effects (i) and (ii) are described by the dissipators Da

and Dph, respectively. The dissipation strengths are denoted
by γ and κ , respectively.

The system has dynamical variables of photons and spins.
We may study the system directly. However, in the present
paper, we adopt the so-called adiabatic approximation to
study systems with a large number of atoms. In the adiabatic
approximation, we eliminate the degrees of the freedom of
photons and obtain the Lindblad equation consisting of only
atoms [20] (see Ref. [21] for the detailed derivation),

dρa

d (γ t )
= L(t )ρa := −i�(t )

N∑
i=1

[
Ŝx

i , ρa
] + Dρa,

Dρa := 2C

N

N∑
i, j

(2Ŝ−
i ρaŜ+

j − {Ŝ+
i Ŝ−

j , ρa})

+
N∑

i=1

(2Ŝ−
i ρaŜ+

i − {Ŝ+
i Ŝ−

i , ρa}), (19)

where ρa := Trphotonρ. Here, C and �(t ) are referred to as the
cavity cooperativity parameter [22] and the Rabi frequency,
respectively, and are given by

C = Ng2

2κγ
,

�(t ) = 2gξ (t )

κγ
. (20)

The adiabatic approximation is valid when the timescale for
the photon loss is much faster than other timescales, i.e., κ �
(γ , g, ξ (t )). This regime is referred to as the bad-cavity limit
of cavity quantum electrodynamics.

In the present study, we solve the dynamics governed by
the quantum master equation, Eq. (19). To do it numerically,
it is necessary to express L(t ) as a matrix. Naively, the number
of elements in L(t ) increases exponentially with N , which
gives a strong restriction on N in the numerical simulation, s.t.
N � 15. However, the present model has a symmetry under
the exchange of atoms. It has been known that this symmetry
reduces the number of nonzero elements in L(t ) to the order
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of N3 [20,23–25]. In this paper, we made use of this property
and performed simulations up to N � 100.

We study the dynamic response of the optical bistable
systems to a time-periodic modulation. It is known that for
the present model the MF analysis gives the exact result in
the thermodynamic limit [26], i.e., N → ∞ (more precisely,
N → ∞ keeping C and �(t ) to be constant). For a system
with constant �, the optical bistability appears when C > 4 in
the interval � ∈ (�l,�u) [25]:

�l =
√

(C2 + 10C − 2) − C1/2(C − 4)3/2,

�u =
√

(C2 + 10C − 2) + C1/2(C − 4)3/2.
(21)

In the present paper, we set C = 50, and thus (�l,�u) =
(28.1, 72.1). We consider a sinusoidal modulation of the driv-
ing amplitude ξ (t ), leading from Eq. (20) to the expression as

�(t ) = �0 + �ex sin

(
2π

t

T

)
. (22)

The Rabi frequency oscillates around �0 with the amplitude
�ex and the period T . Here, we set (�0,�ex) = (60, 40).
Thus, the oscillation center is within the bistable regime,
namely, �0 ∈ (�l,�u), but the maximum and the minimal
values of �(t ) are out of the bistable regime: �0 + �ex > �u

and �0 − �ex < �l.

IV. RESULTS

In this section, using the Floquet dissipative map intro-
duced in Sec. II, we study the dynamical phase transition in
the cavity system. This section is divided into three parts.
First, we show the presence of phase transition by looking at
the system-size dependence of the decay rate. Next, we focus
on the scaling behavior around the transition point. Finally, we
discuss the phase transition in the thermodynamic limit with
MF theory.

A. Phase transition in terms of the decay rate

The value of decay rates carries information about phase
transitions not only in equilibrium systems [27] but also in
nonequilibrium systems [28]. In this subsection, we show that
it is also true for the present system.

In Fig. 2, we plot T dependencies of the decay rates γL for
different values of N . We find a qualitatively different regions
for the system-size dependence of γL as a function of the
period T . The decay rate becomes exponentially small with
the size for small T , while it converges to a finite value for
large T .

The transition point can be estimated by looking at N
dependencies of the decay rate γL (inset of Fig. 2). At the
transition point Tc, γL shows a power-law scaling with N .
Namely, γL as a function of N changes from concave to
convex in the log-log plot. In the figure, we find that γL is
concave at T = 0.06γ −1, while it is convex at T = 0.18γ −1.
There exists a transition point between T = 0.06γ −1 and T =
0.18γ −1, but it is difficult from our numerical data to give a
good estimate of Tc due to the limitation of system size. So, we
evaluate the transition point Tc from the MF analysis, which
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FIG. 2. T dependencies of the decay rates γL for different values
of N . Inset: The decay rate γL as a function of N . The black solid line
denotes the slope estimated by the power-law scaling at the transition
point T = Tc.

gives exact results for the present model in the thermodynamic
limit (see Sec. IV C). We draw the power-law scaling of γL at
the transition point by black solid line in the figure (see the
following Sec. IV B).

The small decay rate for T < Tc implies the existence of a
long-lived metastable state. For example, at T = 0.06γ −1 and
N = 70, the decay rate is γL � 3 × 10−3γ , i.e., the relaxation
time is estimated as γ −1

L = 3 × 102γ −1 � 5 × 103T . To show
this extremely slow relaxation, we calculate the time evolution
of spin expectation values:

�m(t ) = (mx(t ), my(t ), mz(t )) := 1

N

N∑
i=1

Tr�Siρa(t ). (23)

We set the initial state as a spin-down state, i.e.,
(mx(0), my(0), mz(0)) = (0, 0,−0.5). Figure 3 depicts
mz(nT ) as a function of n, which gives the stroboscopic
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FIG. 3. Stroboscopic dynamics for various values of N at T =
0.06γ −1. The timescale of the system being in a metastable state is
longer with increasing N from N = 50 to N = 100. The horizontal
dashed line gives the value of one of the limit cycles in the MF
analysis.
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FIG. 4. Trajectories of mz(t ) at N = 70 and T = 0.06γ −1 in each
time domain I, II, III, and IV (limit cycle): I. 0 � t � 10T , II.
100T � t � 110T , III. 4000T � t � 4010T . The limit cycles in MF
analysis are shown by dashed lines.

dynamics of mz(t ), for various system sizes at T = 0.06γ −1.
The horizontal dashed line gives the value of mz(nT ) of one
of the limit cycles in the MF analysis. We find three time
regimes denoted by I, II, and III. In the first time regime I,
the system is relaxed to a metastable state. Here, there is no
system-size dependence. In the second time regime II, the
value of mz(nT ) is almost unchanged, which implies that the
system keeps staying in the metastable state. The lifetime of
the metastable state increases with N . The metastable state
becomes one of the limit cycles in the limit N → ∞ (i.e., in
the MF analysis). The MF dynamics will be given explicitly
in the next figure. In the third time regime III, the system
escapes from the metastable state. It it noted that the figure is
depicted in log scale on the x axis, and thus the escape rate
is extremely low. The escape rate is given by the decay rate
shown in Fig. 2.

In Fig. 4, we plot by red solid lines the trajectories of mz(t )
at N = 70 and T = 0.06γ −1 in each time regime, I, II, III,
and the limit cycle IV. In each figure, we plot the trajectories
of limit cycles in MF analysis (MF limit cycles) by black
dashed lines. In the first time regime I (0 � t � 10T ), the
trajectory of mz(t ) starting from mz(0) = −0.5 approaches
one of the MF limit cycles. In the second time regime II
(100 � t � 110T ), where the system is in the metastable
state, the trajectory of mz(t ) is close to one of the MF limit
cycles. In the third time regime III (4000 � t � 4010T ), the
trajectory is away from the metastable state. Owing to the
extremely small decay rate, the trajectory during ten periods
seems to be unchanged in figure. Finally, the system reaches
a limit cycle (see IV in Fig. 4). It is noted that there is a single
limit cycle, and it is different from both of the limit cycles
in the MF analysis. This is because the quantum tunneling
between the two MF limit cycles causes the mixing of them to
a hybridized one.

B. Scaling behavior

In this subsection, we analyze the scaling behavior of
γL around the transition point. In statistical mechanics, the

 0.5
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L 
N

1/
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FIG. 5. Scaling plot of γL. All the data collapse well to a scaling
function, especially for large values of N . The transition point Tc is
determined by the MF theory.

scaling exponent of the decay rate is called the dynamical
exponent. In equilibrium systems, the exponent determines
the universality class to which a model belongs. It is of interest
to understand whether the universality class is extended to the
present nonequilibrium model.

The argument in Sec. IV A on the emergence of the
metastable state reminds us the spinodal phenomenon. Thus,
we assumed the scaling form of the spinodal phenomenon
[29,30],

γLN1/3 = f (N2/3(T − Tc)) for T � Tc, (24)

where f (·) is a scaling function. Here, the transition point Tc

is determined by the MF theory (see the following Sec. IV C).
In Fig. 5, all the data collapse well to a scaling function,
especially for large values of N , i.e., the data for N = 70
and N = 80 fall on a single line in the scaling plot. From the
scaling form, we obtain

γL ∼ (Tc − T )1/2 as N → ∞, (25)

and, at the transition point,

γL ∼ N−1/3 at T = Tc, (26)

which is depicted in the inset of Fig. 2 by the black solid line.

C. Thermodynamic limit N → ∞
Finally, we present a MF analysis for the limit cycle and

the decay rate of the model, Eq. (19), corresponding to the
thermodynamic limit N → ∞. In the MF analysis, the density
matrix is given by the product state, that is,

ρa = ⊗N
i=1ρMF, (27)

where it is assumed that each atom is in the same state. In the
MF approximation, the time evolution is given by

dmx
MF

d (γ t )
= (

4Cmz
MF − 1

)
mx

MF,

dmy
MF

d (γ t )
= −�(t )mz

MF + (
4Cmz

MF − 1
)
my

MF,
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dmz
MF

d (γ t )
= �(t )my

MF − 4C
[(

mx
MF

)2 + (
my

MF

)2]
− 2

(
mz

MF + 1/2
)
, (28)

where �mMF = (mx
MF, my

MF, mz
MF) := Tr�S1ρMF. After a suffi-

ciently long time, the system is relaxed to a limit cycle with a
period T :

�mMF,L(t ) := lim
n→∞ �mMF(t + nT ). (29)

We found a phase transition in the structure of the limit cy-
cle. For short period (T = 0.12γ −1) [see Fig. 6(a)], the system
exhibits two limit cycles. It is again noted that the separation
of the limit cycles appears only in the thermodynamic limit.
On the other hand, for long period (T = 0.14γ −1) [Fig. 6(b)],
there is only one limit cycle.

We also perform a linear analysis of the MF equation to
study the relaxation dynamics to the limit cycle. First, we
apply a perturbation to the limit cycle and set it as an initial
state,

�mMF(0) = �mMF,L(0) + δ�eα, (30)

where {�eα}α={x,y,z} is a unit vector in α direction and δ is
the perturbation strength. Then, �mMF(t ) is obtained in the
integration of the MF dynamics, Eq. (28). The state after one
period can be expanded around �mMF,L(0) as

�mMF(T ) = �mMF,L(0) + δT
∑

β={x,y,z}
Vαβ �eβ + O((δT )2), (31)

where Vαβ are the linear response coefficients. If we regard
{Vαβ} as matrix elements of V , the matrix V has three eigen-
values denoted by {vi}i={1,2,3}. The real part of each eigenvalue
is nonpositive and its absolute value describes the decay rate
of the corresponding eigenmode. The decay rates |Re(vi)| are
provided for each limit cycle. Namely, there are six decay
rates for fast driving [e.g., Fig. 6(a)], while there are three
decay rates for slow driving [e.g., Fig. 6(b)].

In Fig. 7, we plot the T dependencies of the decay rates
|Re(vi )|. Figure 7(a) shows the rate of decay to the limit cycle
oscillating around mz � 0. For T < 0.114γ −1, there is a pair
of complex conjugate eigenvalues. But for T > 0.114γ −1,
all the eigenvalues are real. Namely, the relaxation dynamics
changes from a damping oscillation to overdamping with
increasing T . Figure 7(b) shows one of the decay rates to the
limit cycle around mz � −0.4, which is denoted by |Re(v1)|.
In the figure, the other two decay rates are not depicted

 0

 1

 2

 0.1  0.15

(a)

|R
e(

v i
)|

 [
]

T [ 1]

 0

 0.05

 0.1

 0.15

 0.1  0.15Tc

(b)

|R
e(

v 1
)|

 [
]

Period T [ -1]

10-3

10-2

10-5 10-4

|R
e(

v 1
)|

 [
]

Tc-T [ -1]

FIG. 7. (a) The decay rates to the limit cycle around mz � 0. The
dashed line denotes the value of T where the relaxation dynamics
changes from damping oscillation to overdamping. (b) The decay
rate to the limit cycle around mz � −0.4, which approaches zero at
T = Tc. Inset: Magnification of data around T � Tc. Full curve is
a fitting of the dependence |Re(v1)| with a power law, |Re(v1)| ∼
(Tc − T )α , where α = 0.50.

because they are much larger than |Re(v1)|. The decay rate
|Re(v1)| approaches zero at the transition point T = Tc. The
estimated value of Tc is Tc � 0.13171γ −1. We also measured
the scaling exponent for the decay rate around T � Tc,

|Re(v1)| ∼ (Tc − T )α, (32)

where α � 0.50 [see inset of Fig. 7(b)]. This is consistent with
the one obtained by the finite-size scaling [see Eq. (25)].

V. SUMMARY AND DISCUSSION

We studied the dynamical responses of optical bistable
systems to a time-periodic modulation of an input-driving AC
field, and showed a phase transition in the structure of limit
cycle as a function of the period of the driving field. We
provided a systematic way of studying the phase transition
in terms of the Floquet dissipative map. We showed that the
decay rate, which is given by the dominant eigenvalue of the
map, is useful to characterize the phase transition. The system-
size dependence of the decay rate qualitatively changes at the
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transition point (Fig. 2), and the decay rate exhibits the scaling
law of the spinodal phenomenon around the transition point
(Fig. 5).

In the present paper, the system was always relaxed to a
time-periodic state with the period of the driving field. How-
ever, using another set of parameters, at least of the MF level,
the system can show different types of long-time asymptotic
states such as period doubling and chaos. The characterization
of the phase transition between the periodic state and the
nonperiodic states in terms of the Floquet dissipative map are
directions for future work.

ACKNOWLEDGMENTS

This research was supported by MEXT as the Exploratory
Challenge on Post-K Computer project (Challenge of Ba-
sic Science-Exploring Extremes through Multi-Physics and
Multi-Scale Simulations), Grants-in-Aid for Scientific Re-
search C (Grant No. 18K03444) from MEXT of Japan, and
the Elements Strategy Initiative Center for Magnetic Materials
(ESICMM), Grant No. JPMXP0112101004, through MEXT.
The authors also thank the Supercomputer Center, the Institute
for Solid State Physics, the University of Tokyo, for the use of
the facilities.

[1] D. Vorberg, W. Wustmann, R. Ketzmerick, and A. Eckardt,
Phys. Rev. Lett. 111, 240405 (2013).

[2] M. Hartmann, D. Poletti, M. Ivanchenko, S. Denisov, and P.
Hänggi, New J. Phys. 19, 083011 (2017).

[3] Z. Gong, R. Hamazaki, and M. Ueda, Phys. Rev. Lett. 120,
040404 (2018).

[4] H.-P. Breuer and F. Petruccione, The Theory of Open Quantum
Systems (Oxford University Press, New York, 2002).

[5] H. J. Carmichael, Statistical Methods in Quantum Optics
1: Master Equations and Fokker-Planck Equations, 2nd ed.
(Springer-Verlag, Berlin, 2002).

[6] H. M. Gibbs, S. L. McCall, and T. N. C. Venkatesan, Phys. Rev.
Lett. 36, 1135 (1976).

[7] F. Felber and J. Marburger, Appl. Phys. Lett. 28, 731 (1976).
[8] L. A. Lugiato, Prog. Opt. 21, 69 (1984).
[9] G. Rempe, R. J. Thompson, R. J. Brecha, W. D. Lee, and H. J.

Kimble, Phys. Rev. Lett. 67, 1727 (1991).
[10] J. Gripp, S. L. Mielke, L. A. Orozco, and H. J. Carmichael,

Phys. Rev. A 54, R3746 (1996).
[11] S. R. K. Rodriguez, W. Casteels, F. Storme, N. Carlon Zambon,

I. Sagnes, L. Le Gratiet, E. Galopin, A. Lemaître, A. Amo, C.
Ciuti et al., Phys. Rev. Lett. 118, 247402 (2017).

[12] T. Tomé and M. J. de Oliveira, Phys. Rev. A 41, 4251 (1990).
[13] S. W. Sides, P. A. Rikvold, and M. A. Novotny, Phys. Rev. Lett.

81, 834 (1998).
[14] B. K. Chakrabarti and M. Acharyya, Rev. Mod. Phys. 71, 847

(1999).

[15] G. Lindblad, Comm. Math. Phys. 48, 119 (1976).
[16] R. H. Dicke, Phys. Rev. 93, 99 (1954).
[17] S. Hassan, P. Drummond, and D. Walls, Opt. Commun. 27, 480

(1978).
[18] C. Ciuti, G. Bastard, and I. Carusotto, Phys. Rev. B 72, 115303

(2005).
[19] T. Shirai, T. Mori, and S. Miyashita, J. Phys. B: At., Mol. Opt.

Phys. 47, 025501 (2013).
[20] S. Sarkar and J. S. Satchell, EPL 3, 797 (1987).
[21] J. I. Cirac, Phys. Rev. A 46, 4354 (1992).
[22] H. J. Carmichael, Statistical Methods in Quantum Optics 2: Non-

classical Fields (Springer-Verlag, Berlin, 2008).
[23] T. E. Lee, H. Haffner, and M. C. Cross, Phys. Rev. Lett. 108,

023602 (2012).
[24] M. Gegg and M. Richter, New J. Phys. 18, 043037 (2016).
[25] T. Shirai, S. Todo, H. de Raedt, and S. Miyashita, Phys. Rev. A

98, 043802 (2018).
[26] T. Mori, J. Stat. Mech. (2013) P06005.
[27] D. P. Landau and K. Binder, A Guide to Monte Carlo Simula-

tions in Statistical Physics, 3rd ed. (Cambridge University Press,
New York, 2009).

[28] T. Prosen and I. Pižorn, Phys. Rev. Lett. 101, 105701
(2008).

[29] W. Paul, D. W. Heermann, and K. Binder, J. Phys. A: Math.
Gen. 22, 3325 (1989).

[30] T. Mori, S. Miyashita, and P. A. Rikvold, Phys. Rev. E 81,
011135 (2010).

013809-7

https://doi.org/10.1103/PhysRevLett.111.240405
https://doi.org/10.1103/PhysRevLett.111.240405
https://doi.org/10.1103/PhysRevLett.111.240405
https://doi.org/10.1103/PhysRevLett.111.240405
https://doi.org/10.1088/1367-2630/aa7ceb
https://doi.org/10.1088/1367-2630/aa7ceb
https://doi.org/10.1088/1367-2630/aa7ceb
https://doi.org/10.1088/1367-2630/aa7ceb
https://doi.org/10.1103/PhysRevLett.120.040404
https://doi.org/10.1103/PhysRevLett.120.040404
https://doi.org/10.1103/PhysRevLett.120.040404
https://doi.org/10.1103/PhysRevLett.120.040404
https://doi.org/10.1103/PhysRevLett.36.1135
https://doi.org/10.1103/PhysRevLett.36.1135
https://doi.org/10.1103/PhysRevLett.36.1135
https://doi.org/10.1103/PhysRevLett.36.1135
https://doi.org/10.1063/1.88632
https://doi.org/10.1063/1.88632
https://doi.org/10.1063/1.88632
https://doi.org/10.1063/1.88632
https://doi.org/10.1016/S0079-6638(08)70122-7
https://doi.org/10.1016/S0079-6638(08)70122-7
https://doi.org/10.1016/S0079-6638(08)70122-7
https://doi.org/10.1016/S0079-6638(08)70122-7
https://doi.org/10.1103/PhysRevLett.67.1727
https://doi.org/10.1103/PhysRevLett.67.1727
https://doi.org/10.1103/PhysRevLett.67.1727
https://doi.org/10.1103/PhysRevLett.67.1727
https://doi.org/10.1103/PhysRevA.54.R3746
https://doi.org/10.1103/PhysRevA.54.R3746
https://doi.org/10.1103/PhysRevA.54.R3746
https://doi.org/10.1103/PhysRevA.54.R3746
https://doi.org/10.1103/PhysRevLett.118.247402
https://doi.org/10.1103/PhysRevLett.118.247402
https://doi.org/10.1103/PhysRevLett.118.247402
https://doi.org/10.1103/PhysRevLett.118.247402
https://doi.org/10.1103/PhysRevA.41.4251
https://doi.org/10.1103/PhysRevA.41.4251
https://doi.org/10.1103/PhysRevA.41.4251
https://doi.org/10.1103/PhysRevA.41.4251
https://doi.org/10.1103/PhysRevLett.81.834
https://doi.org/10.1103/PhysRevLett.81.834
https://doi.org/10.1103/PhysRevLett.81.834
https://doi.org/10.1103/PhysRevLett.81.834
https://doi.org/10.1103/RevModPhys.71.847
https://doi.org/10.1103/RevModPhys.71.847
https://doi.org/10.1103/RevModPhys.71.847
https://doi.org/10.1103/RevModPhys.71.847
https://doi.org/10.1007/BF01608499
https://doi.org/10.1007/BF01608499
https://doi.org/10.1007/BF01608499
https://doi.org/10.1007/BF01608499
https://doi.org/10.1103/PhysRev.93.99
https://doi.org/10.1103/PhysRev.93.99
https://doi.org/10.1103/PhysRev.93.99
https://doi.org/10.1103/PhysRev.93.99
https://doi.org/10.1016/0030-4018(78)90428-5
https://doi.org/10.1016/0030-4018(78)90428-5
https://doi.org/10.1016/0030-4018(78)90428-5
https://doi.org/10.1016/0030-4018(78)90428-5
https://doi.org/10.1103/PhysRevB.72.115303
https://doi.org/10.1103/PhysRevB.72.115303
https://doi.org/10.1103/PhysRevB.72.115303
https://doi.org/10.1103/PhysRevB.72.115303
https://doi.org/10.1088/0953-4075/47/2/025501
https://doi.org/10.1088/0953-4075/47/2/025501
https://doi.org/10.1088/0953-4075/47/2/025501
https://doi.org/10.1088/0953-4075/47/2/025501
https://doi.org/10.1209/0295-5075/3/7/005
https://doi.org/10.1209/0295-5075/3/7/005
https://doi.org/10.1209/0295-5075/3/7/005
https://doi.org/10.1209/0295-5075/3/7/005
https://doi.org/10.1103/PhysRevA.46.4354
https://doi.org/10.1103/PhysRevA.46.4354
https://doi.org/10.1103/PhysRevA.46.4354
https://doi.org/10.1103/PhysRevA.46.4354
https://doi.org/10.1103/PhysRevLett.108.023602
https://doi.org/10.1103/PhysRevLett.108.023602
https://doi.org/10.1103/PhysRevLett.108.023602
https://doi.org/10.1103/PhysRevLett.108.023602
https://doi.org/10.1088/1367-2630/18/4/043037
https://doi.org/10.1088/1367-2630/18/4/043037
https://doi.org/10.1088/1367-2630/18/4/043037
https://doi.org/10.1088/1367-2630/18/4/043037
https://doi.org/10.1103/PhysRevA.98.043802
https://doi.org/10.1103/PhysRevA.98.043802
https://doi.org/10.1103/PhysRevA.98.043802
https://doi.org/10.1103/PhysRevA.98.043802
https://doi.org/10.1088/1742-5468/2013/06/P06005
https://doi.org/10.1088/1742-5468/2013/06/P06005
https://doi.org/10.1088/1742-5468/2013/06/P06005
https://doi.org/10.1103/PhysRevLett.101.105701
https://doi.org/10.1103/PhysRevLett.101.105701
https://doi.org/10.1103/PhysRevLett.101.105701
https://doi.org/10.1103/PhysRevLett.101.105701
https://doi.org/10.1088/0305-4470/22/16/022
https://doi.org/10.1088/0305-4470/22/16/022
https://doi.org/10.1088/0305-4470/22/16/022
https://doi.org/10.1088/0305-4470/22/16/022
https://doi.org/10.1103/PhysRevE.81.011135
https://doi.org/10.1103/PhysRevE.81.011135
https://doi.org/10.1103/PhysRevE.81.011135
https://doi.org/10.1103/PhysRevE.81.011135

