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Quantum channel correction with twisted light using compressive sensing
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Compressive sensing is used to perform high-dimensional quantum channel estimation with classical light.
As an example, we perform a numerical simulation for the case of a three-dimensional classically nonsepa-
rable state that is propagated through atmospheric turbulence. Using a singular-value-thresholding-algorithm-
based compressive sensing, we determine the channel matrix, which we subsequently use to correct for the
atmospheric-turbulence-induced distortions. As a measure of the success of the procedure, we calculate the
fidelity and the trace distance of the corrected density matrix with respect to the input state, and compare the
results to those of the density matrix for the uncorrected state. Furthermore, we quantify the amount of classical
nonseparability in the density matrix of the corrected state by calculating its negativity. The results show that
compressive sensing could contribute to the development and implementation of free-space quantum and optical
communication systems.
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I. INTRODUCTION

Quantum entanglement in higher dimensions is a property
that can enhance communication security using quantum key
distribution [1–3]. The spatial degrees of freedom of single-
photon fields allow infinitely many modes, such as the orbital
angular momentum (OAM) modes [4], which can be used
to design and prepare such higher-dimensional quantum sys-
tems. Optical fields of OAM modes have an azimuthal phase
dependence given by exp(i�φ), with φ the azimuthal angle.
They carry quantized OAM of �h̄ per photon. Photons that
have the above-described phase dependence and carry OAM
are commonly referred to as twisted photons.

Free-space optical and quantum communication systems
based on the OAM states of light, are adversely affected by
turbulence in the atmosphere, which leads to a distortion of
the OAM states [5–7]. This distortion further results in the
decay of quantum entanglement, which has been studied both
theoretically [8–13] and experimentally [14–18]. Our under-
standing of the behavior of OAM-based quantum systems
indicates that the potential offered by the OAM states of
light for free-space communication requires efficient meth-
ods to mitigate against the adverse effects of atmospheric
turbulence.

The standard method of characterizing a quantum channel
is called standard quantum process tomography (SQPT) [19].
The characterization and determination of quantum processes
are crucial tasks necessary for the implementation of quantum
communication and information processing systems, enabling
the design of mitigation strategies against noise and other
distortions that may negatively affect a quantum system.
However, SQPT is a resource-intensive process that scales
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dramatically with the size of the quantum system [19,20]. The
number of resources required for SQPT is generally O(N4),
where N is the dimension of the Hilbert space.

Scintillation, caused by atmospheric turbulence, leads to
the distortion of input OAM modes, distributing the power
into other modes [5,21], thus increasing the dimensionality
of the photonic quantum systems when expanded in terms
of OAM modes [22]. The increase in dimensionality caused
by scintillation implies that the application of SQPT would
not be favorable for characterizing a turbulent atmospheric
channel. The mechanism that produces scintillation is a pure
phase modulation caused by the fluctuating refractive index
of the atmosphere. It does not produce a loss prior to the
measurement stage. Although the atmosphere does have addi-
tional loss mechanisms such as absorption and scattering, we
do not include them in our current investigation, for reasons
explained below.

For successful implementation of quantum communica-
tion systems with twisted photons, a different method of
determining and characterizing the turbulent quantum channel
is needed. This is where we employ compressive sensing
[23–25]: a dataprocessing method that provides an efficient
mechanism for the recovery of unknown signals from only
a fraction of the required measurements. A generalization of
this method to matrices is called matrix completion [26]. In
traditional compressive sensing the signal is required to have
certain properties such as sparseness in the appropriate basis.
In the matrix generalization case, the matrices must also obey
certain criteria. For instance, the method is more likely to be
successful for low rank matrices. Fortunately, this is the case
for a single realization of atmospheric turbulence: a snapshot
of the atmospheric conditions along the entire path of the
channel as experienced by a single light pulse. Scintillation
is treated as a unitary process that preserves the purity of
quantum states.
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Gross et al. [27] established a method based on a random
selection of Pauli measurements for efficient reconstruction
of an unknown quantum state. They showed that their method
can reconstruct a rank r unknown density matrix with only
O(rN log2 N ) measurements, in contrast to the O(N2) mea-
surements for the standard method. In another study [28], a
high-dimensional entangled state was reconstructed from a
significantly smaller number of measurements, using a related
approach based on compressive sensing. While this method
for the reconstruction of signals from an underdetermined
system of equations is very popular in signal and image pro-
cessing applications, it has now attracted interest and become
topical in quantum information science related applications as
well [27,29–33].

The aim of this work is to show, with the aid of numerical
simulations, that compressive sensing is a viable technique
for channel estimation in the specific case of the transmission
of twisted light through atmospheric turbulence. Moreover,
inspired by a recent study on the characterization of a quan-
tum channel with classical light [34,35], we develop a more
efficient protocol for characterizing turbulent channels by
combining them with compressive sensing. In turn, this leads
to an efficient scheme for the correction of twisted photons
after passing through atmospheric turbulence.

The proposed scheme does not suffer any detrimental ef-
fects due to loss because it is based on classical light (a bright
coherent state). In the context of quantum states, a probability
distribution of different losses would cause the quantum state
to become mixed. However, the proposed scheme allows
one to make the pulse shorter than the timescale given by
the Greenwood frequency [36] of the turbulent medium. As
a result, the accumulated loss that the pulse experiences
does not represent a probability distribution. The pulse only
experiences a single constant accumulated loss. Hence, no
mixing takes place and the state remains pure. For this rea-
son, we do not include any loss mechanisms in our current
investigation.

The compressive sensing part requires relatively few ran-
dom measurements, while the use of classical light removes
the intrinsic limitation of quantum mechanics that requires
repeated measurements on an ensemble. Also, since classical
light is extremely bright compared to a few discrete photons,
we can perform the different random measurements at the
same time, thus leading to a significant speed up in time.
The measurements on the classical light upon propagating
through atmospheric turbulence will be performed using sum-
frequency generation as previously discussed in Ref. [35].
Measurements on the output state are made by optically
combining the output state with a tailored measurement state
through a nonlinear crystal, the measurement state selects out
a specific component in the output state. This entire process
leads to a photon detection which represents a measurement.
The compressive sensing model used in this work is based
on the singular value thresholding algorithm [37] that was
modified in a way similar to the one used in Ref. [28].

The outline of this contribution is as follows. In Sec. II
we present the model for this work. The numerical simulation
method is discussed briefly in Sec. III. Section IV is based on
the results of this work. Finally, the conclusions are given in
Sec. V.

II. MODEL

A. Channel matrix

The Choi-Jamiolkowski isomorphism [38] establishes
a correspondence between a completely positive trace-
preserving quantum map � and a quantum state ρ by

ρ� = (�A ⊗ 1B)(|ψ〉〈ψ |), (1)

where

|ψ〉 = 1√
N

N∑
n=1

|n〉A ⊗ |n〉B, (2)

is a maximally entangled state, 1 is the identity operator for
subsystem B, and N is the dimension of the Hilbert space.
This isomorphism means that the identification and character-
ization of the quantum channel is tantamount to performing a
quantum-state tomography.

Here the partites of the state in Eq. (2) are represented by
the spatial modes and the wavelengths of a classical optical
field. A perfect correlation between these degrees of freedom
(maximal nonseparability) gives us an exact analogy to a
maximally entangled quantum state. So the typical input state
for our consideration reads [35]

|ψ〉 = 1√
2M + 1

M∑
�=−M

|�, 0〉A|λ�〉B, (3)

where |�, 0〉 represents a Laguerre-Gaussian (LG) mode with
azimuthal index � and radial index p = 0; λ� is the wavelength
of the corresponding LG mode; and M is an integer represent-
ing the maximum OAM. In general, one can have an arbitrary
radial index, so that the LG mode would be |�, p〉. However,
for the moment, we assume correlation between the wave-
length and the azimuthal index and therefore we set p = 0.

Transmission through the atmosphere causes the OAM
modes to scatter into other modes. The atmospheric turbu-
lence only affects the spatial degree of freedom and leaves the
wavelength unaffected. Therefore, after propagating through
the atmosphere, a given input OAM mode becomes

|�, p〉 →
∑
�′,p′

|�′, p′〉��′,p′
�,p , (4)

where |�′, p′〉 is an LG mode with azimuthal index �′ and
radial index p′; �

�′,p′
�,p is the tensor representation of the

atmospheric turbulence Kraus operator. It is this tensor that
represents the effect of the atmosphere. We need to character-
ize it to mitigate against its effect.

To simplify notation, we index the input and output modes
by single integers. Hence the scattering process is represented
by

|n〉 →
∑

m

|m〉�m
n , (5)

where the Kraus operation is now represented by an N × M
matrix. The Krauss operator can thus be represented, either in
terms of the tensor or in terms of a matrix

� =
∑

�,p,�′,p′
|�′, p′〉��′,p′

�,p 〈�, p| =
∑
m,n

|m〉�m
n 〈n|. (6)
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In the most general case, the matrix �m
n is rectangular

M �= N . The input state is usually defined in terms of a
finite number of modes. So the dimensionality of the input
Hilbert space is finite and determines the number of columns
N of the matrix. On the other hand, the number of rows M
is determined by the crosstalk induced by the atmospheric
turbulence. Since there are an infinite number of spatial modes
and since the scintillation process can potentially scatter the
input modes into any combination of output modes, one can
expect that M 	 N and that M → ∞. However, the scattering
is not uniform; the dominant scattering tends to produce
modes lying close to the input modes. One can therefore
truncate the output space to a finite number of dimensions,
depending on the accuracy that is required.

B. Compressive sensing

Here we briefly review the compressing sensing procedure
that we use for our work. For this purpose, we follow the
procedure of Tonolini et al. [28].

Using the matrix completion method [26], one can recover
a low-rank matrix when some of the elements of the matrix
are unknown. Instead of recovering the density matrix from a
sample of its elements ρi, j , we recover the full matrix that
represents the states in terms of a sample of the results of
measurements made on the system.

In the most general case, the density matrix can be decom-
posed in terms of the Bloch representation

ρ =
N2∑
i=1

αiτi, (7)

where αi are the elements of the Bloch vector, N repre-
sents the dimensionality of the state vector, and τi denotes
the generalized Gell-Mann matrices (GGMs), including the
identity matrix. The GGMs reduce to the Pauli matrices in
the case where N = 2. In this formalism, the GGMs form a
convenient measurement basis for the characterization of the
state. To determine the state through a full tomography, one
must perform measurements that reveal N2 real parameters αi.
The Bloch vector elements are the expectation values given by
the trace

αi = tr{τiρ}. (8)

In the implementation of the modified matrix completion
problem [27], we consider an undersampled set of mea-
surements (m � N2) chosen at random (i.e., we consider a
situation where there is only a subset of the total possible
measurements αi). The optimization problem is thus described
as follows: Minimize ‖ρr‖tr such that

tr{ρr} = 1,

ρr = ρ†
r ,

tr{ρrτi} = αi for i = 1, . . . , m,

(9)

where ρr is the to-be-recovered density matrix, and ‖ · ‖tr is
the trace norm of the matrix, given by

‖ρr‖tr = tr{
√

ρrρ
†
r }. (10)

The compressive sensing algorithm is based on the singular
value thresholding (SVT) algorithm [37]. However, we mod-
ify the algorithm to take advantage of known properties of the
state that we intend to recover [28]. Essentially, in applying
the SVT algorithm we perform an eigenvalue decomposition
of the density matrix

ρr =
∑

j

|φ j〉σ j〈φ j |, (11)

where |φ j〉 are the eigenvectors of ρr and σ j are the corre-
sponding eigenvalues. Given the above decomposition, we ap-
ply the thresholding operator on the eigenvalues, by selecting
the eigenvalues above a certain threshold ε0 that we fixed a
priori. Ensuring that the eigenvalues of the density matrix
are real, we force the density matrix to be Hermitian. The
normalization of the density matrix is achieved by dividing
the resultant matrix by its trace.

The algorithm uses a guess matrix as a starting point for
the optimization process. The most crucial part in setting
up the guess matrix is choosing its dimensions because the
dimensions of the matrix must be representative of the atmo-
spheric turbulence conditions. The matrix must be big enough
to accommodate most of the nonzero elements in the OAM
modal spectrum. Once we determined the dimensions of the
guess matrix, we can apply the algorithm.

After performing the thresholding on the density matrix
and normalizing it, we obtain a density matrix that may
represent a real physical system, but it no longer corresponds
to the density matrix whose measurements gave the correct
measurement results {αi} with respect to the GGMs τi for
i = 1, . . . , m [28]. To understand the reason for this issue,
we use a geometrical perspective, represented in terms of
hyperplanes. For this purpose, we re-express Eq. (8) in vector
notation:

Mρ̄ = ᾱ, (12)

where ρ̄ is the vectorized density matrix, M is a matrix with
rows representing the vectorized GGM, and ᾱ is the vector of
the measurement results. In this representation, each vector-
ized GGM τ̄i and its corresponding measurement result αi can
be associated with a hyperplane in an N2-dimensional space.
As such, the compressive sensing approach attempts to solve
an underdetermined linear system of equations. The solution
should be a single point common to all the m hyperplanes.
However, the procedure explained above does not produce a
point that lies in the linear space of Eq. (12):

Mρ̄r �= ᾱ. (13)

To resolve this issue, we project the density matrix back
into the linear space, determined by τi and their corresponding
results αi. In the process, we modify the density matrix ρr to
give the correct measurement results. The projection is done
stepwise for each value of αi. The projection starts by defining
a vector v̄i normal to the hyperplane τ̄i · ρ̄ = αi, and with a
magnitude

|v̄i| = αi − v̂ · ρ̄i−1, (14)

where v̂ is the unit vector that is normal to the hyperplane and
ρ̄i−1 is the density matric obtained in the previous iteration.
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The new density matrix becomes

ρ̄i = ρ̄i−1 + v̄i. (15)

The projection process is performed for all m measurements.
At the end of this process, we start again and perform the
procedure for Hermiticity and trace normalization. In other
words, we perform the thresholding operation and further
recompose the matrix according to the conditions in the
optimization problem statement. All these steps are performed
iteratively until the norm of the difference between the density
matrices of two consecutive iterations lies within a predefined
tolerance.

C. Channel correction

Here follows the main contribution of our work. It involves
the generation of the Kraus operator matrix from the estimated
density matrix, obtained from the compressive sense proce-
dure described above.

The full Kraus operator matrix can be obtained from the
density matrix of the output state. This step is made possible
by the fact that, despite the randomness of the medium,
propagation through a turbulent atmosphere is a unitary pro-
cess. Therefore, the output quantum state after transmission
through a single realization of atmospheric turbulence is
always a pure state, provided that the input state was a pure
state. We also assume that the truncation of the output space
to a finite dimension does not affect the unitarity of the
process significantly, provided that we use a large-enough
number for the output dimension. As a result, we consider the
reconstructed Kraus operator as a unitary operator, so that its
Hermitian adjoint represents the inverse process.

After the Kraus operator � has been reconstructed, using
the compressive sensing methods described above, we per-
form the correction process as follows

|�〉in = (�A ⊗ 1B)†|�〉out

=
(∑

m,n

|m〉�m
n 〈n| ⊗ 1B

)†

|�〉out. (16)

The validity of the unitary assumption is assessed by the
quality of the correction, as discussed below.

III. NUMERICAL SIMULATION AND COMPUTATIONS

We performed numerical simulations to test the proposed
compressive sensing-based scheme for quantum channel esti-
mation and correction. For this purpose, we consider a three-
dimensional bipartite input state (qutrit). The two degrees of
freedom that represents the two partites are the spatial mode
(OAM mode) and the wavelength. The input state can be
expressed as

|�〉 = 1√
3

[|�, 0〉|λ�〉 + |0, 0〉|λ0〉 + |�̄, 0〉|λ�̄〉]. (17)

In the simulation, the input state is represented by three n × n
sampled functions for the three spatial modes, where n =
1024. Note that Eq. (17) represents a classical field that is
nonseparable (as opposed to being entangled), expressed in
terms of Dirac notation.

Each of the modes are separately propagated in the simula-
tion process. The propagation of paraxial optical fields in at-
mospheric turbulence is described by the stochastic parabolic
equation

∂z f (r) = i

2k0
∇⊥ f (r) − ik0δn(r) f (r), (18)

where ∇⊥ = ∂2
x + ∂2

y , δn(r) is the refractive index fluctuation
of the atmosphere (n = 1 + δn), k0 = 2π/λ is the wave num-
ber, and λ is the wavelength of the optical field.

In weak scintillation, the only effect of the atmospheric
turbulence is a phase perturbation on the optical field. It
means that propagation through the atmosphere under weak
scintillation conditions can be represented by two steps. The
first step is a random phase modulation of the input optical
field, which represents the perturbation of the field and leads
to refraction. The subsequent step is free-space propagation
(without turbulence) over the full propagation distance.

For arbitrary scintillation conditions, one can still use
these two steps to simulate propagation through turbulence.
However, one would repeat the two steps multiple times, each
time propagating over a short-enough distance to ensure weak
scintillation conditions for that step. During each step, the
optical field is modulated by a different random phase screen.
Therefore, to simulate the propagation of an optical field
through a turbulent atmosphere we use a split-step method
[22], in which these two steps are repeated several times.

The generation of the random phase screen entails trans-
forming a two-dimensional array of random complex numbers
that have zero mean and unit variance into an array that has the
same statistics as the atmospheric turbulence. This process is
also known as filtering Gaussian noise and is given by [39,40]

θ (R) = (
2πk2

0�z
)1/2F−1

{
χ (K)

[
�n(K)

�2
k

]1/2
}

, (19)

where �z is the partitioned propagation distance between two
consecutive phase screens, F−1{·} denotes the inverse Fourier
transform, �n(K) is the Kolmogorov power spectral density
(PSD) for the refractive index, �k is the grid-spacing in the
spatial frequency domain, and K = (kx, ky) is the transverse
wave vector. The normally distributed complex random func-
tion χ (K) has zero mean and is δ correlated, such that

〈χ (K1)χ∗(K2)〉 = (2π�k )2δ(K1 − K2), (20)

where the angled brackets 〈·〉 denote an ensemble average.
The random phase function generated by Eq. (19) is complex
[unless χ∗(K) = χ (−K)]. Hence, a single application of
Eq. (19) produces two independent random phase screens: the
real and imaginary parts of the complex phase function.

It is important to point out that the Fourier calculation
in Eq. (19) does not take into account the effect of large
eddies, which are excluded due to the discrete grid samples
in the Fourier domain. As a result, the statistics obtained from
such phase screens do not represent the Kolmogorov structure
function correctly. One way to improve the accuracy is to add
subharmonics [41] to the phase function generated by the FFT
method in Eq. (19). The subharmonic phase function is given
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by

θSH ( j�x, l�y) =
Ns∑

n=1

1∑
p,q=−1

[a(p, q, n) + ib(p, q, n)]

× exp

[
2π i

(
j p

3nNx
+ lq

3nNy

)]
. (21)

The variance of the randomly generated functions a and b is
given as

〈a2(p, q, n)〉 = 〈b2(p, q, n)〉
= �pn�qn�θ (p�pn, q�qn), (22)

where �pn = �p/3n, �qn = �q/3n, Nx, and Ny are the num-
bers of points in the x and y directions, respectively, and Ns is
the number of subharmonics.

In the simulation, we propagate the input state through
the turbulent medium by performing the split-step process
on each of the three input modes, with their associated
wavelengths. The two-step process is iterated several times
to perform a multiphase screen propagation of the input state
through a realization of the turbulent medium. The complete
propagation is then done for several realizations.

The parameters that are used for the propagation pro-
cess are: input beam waist radius w0 = 0.1 m; propagation
distance z = 2zR, where zR = πw2

0/λ is the Rayleigh range;
and turbulence strength (refractive index structure constant)
C2

n = 1 × 10−16 m−2/3. The wavelengths of the three modes
are different, however, in practical setups one can always
make these differences to be very small. For the purpose
of the simulations, the following wavelengths were used for
the different modes: λ1 = 1.0 μm, λ2 = 1.020 μm, and λ3 =
1.040 μm.

The turbulent medium causes crosstalk, transferring power
to numerous higher-order LG modes. Therefore, the dimen-
sions of the Kraus operator could be very large. The strength
of the crosstalk and the dimensionality of the output state
depends on various parameters, including the strength of
turbulence and the distance of propagation. These parameters
combine to determine the strength of the scintillation (the
extent of the distortion imparted by the medium on the state).

The dimension of the Hilbert space of the input state is
Nin = NA NB. For the state described in Eq. (17), we have
NA = NB = 3, which implies that Nin = 9. The corresponding
density matrix has 81 elements and is depicted graphically
in Fig. 1. A unitary process does not change the minimum
number of modes required to represent the state. However, the
nature of these modes is unknown due to the lack of a priori
knowledge of the unitary process associated with a single
realization of the turbulent medium. As a result, the output
state must be represented in terms of some nominal modal
basis.

Here we use the LG modes as our chosen output modal
basis. While the input state has only three dimensions per
degree of freedom, the dimension of the output state in terms
of the LG modes is much larger. The turbulent medium affects
the dimension of the one subsystem NA → N ′

A but leaves the
that the other NB the same. The dimension of the output
density matrix thus becomes Nout × Nout, where Nout = N ′

A NB.

FIG. 1. Graphical representation of the input-state density matrix.

In our simulation, we include radial indices up to p = 7.
For each value of the radial indices, we considered azimuthal
indices in the range −14 � � � 15. It implies that the output
dimension in subsystem A becomes N ′

A = 210, so that the
total output dimension becomes Nout = 630. This number is
required to represent the output beam profiles with adequate
fidelity for the parameters that we used in the simulation. The
output density matrix thus has almost 400 000 elements. To
specify a density matrix obtained in this way, one needs as
many measurements.

However, the state remains pure for each realization of
the atmospheric turbulence because the process is unitary.
As a result, the Kraus operator matrix associated with that
realization has a low rank. The purity of a state implies that
it is represented by a state vector |ψout〉. The density matrix
of such a pure state has rank equal to unity, which allows
us to use compressive sensing for estimating the output state
and thereby determining the Kraus operator matrix. Using
compressive sensing, we can determine the state of the output
density matrix to a high level of accuracy, using a significantly
smaller number of measurements.

For this work, we use approximately 5% of the total num-
ber of measurements (which in this case is roughly 20 000)
to reconstruct the output density matrix reliably. Using the
reconstructed density matrix, we extract the elements of the
Kraus operator for the atmospheric turbulence. To test the
reliability of the reconstruction we use the Kraus operator
to generate the correction matrix and apply it to the output
density matrix. The result is then tested for fidelity and trace
distance against the input qutrit state Eq. (17).

Upon application of the compressive sensing algorithm
described in Sec. II B, a density matrix of the output state is
obtained. Since a single realization of atmospheric turbulence
is a unitary process, the output state is pure. Furthermore,
given that the output density matrix is the outer product of
the state vector and its adjoint, it follows that a single element
of the density matrix is a product of two elements. Hence, by
choosing one column or row of the output density matrix and
dividing it by the relevant element, the elements of the state
vector can be obtained, apart from an overall phase constant.
These elements are then rearranged to form the Kraus operator
�m

n , which is subsequently used to correct the scintillation as
described in Sec. II C.
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FIG. 2. Fidelity of the corrected and the uncorrected density
matrices for the different atmospheric turbulence realizations and for
(a) W = 0.5 and (b) W = 2. Triangle markers represent the fidelities
for the uncorrected, truncated density matrices. Diamond markers
represent the fidelities for the corrected density matrices.

IV. RESULTS

The numerical simulations of the propagation and correc-
tion of OAM states in atmospheric turbulence is performed
several times for different realizations of a turbulent medium.
The performance of the compressive sensing-based correction
scheme is assessed by calculating the fidelity and the trace
distance from these results.

The fidelity with respect to the initial maximally nonsepa-
rable state in Eq. (17) is given by

F (ρc, |�〉〈�|) = tr{
√√

ρc|�〉〈�|√ρc}, (23)

where |�〉 is the input state and ρc is the corrected density
matrix from our compressive sensing algorithm. The results
of these calculations are shown in Fig. 2 for two different
scintillation strengths: W = 0.5 in Fig. 2(a) and W = 2 in
Fig. 2(b). Here the scintillation strength is represented by
the dimensionless number W = w0/r0, where r0 is the Fried

FIG. 3. Trace distance of the corrected and the uncorrected den-
sity matrices for the different atmospheric turbulence realizations
and for (a) W = 0.5 and (b) W = 2. Triangle markers represent the
uncorrected, truncated density matrices. Diamond markers represent
the corrected density matrices.

parameter [42], which is given by

r0 = 0.185

(
λ2

C2
n z

)3/5

. (24)

The trace distance, which is shown in Fig. 3, for the same
two scintillation strengths, is defined as

D(ρc, |�〉〈�|) = 1
2 tr{|ρc − |�〉〈�||}, (25)

where the magnitude |A| of a matrix is given as |A| =
√

A†A.
The data in Figs. 2 and 3 are plotted against the different
realizations of the atmospheric turbulence.

In Fig. 2, it is observed that the corrected density matrices
are close to the ideal maximally nonseparable input state,
in contrast to the uncorrected, truncated density matrices.
The mean fidelity for the corrected density matrices over the
100 turbulence realizations in the first case with W = 0.5 is
0.942 ± 0.003, while the uncorrected density matrices give
a mean fidelity of 0.38 ± 0.02. Here the error is given as
the standard error. For the second case W = 2, the mean
fidelity of the corrected density matrices over 100 turbulence
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FIG. 4. Graphic representations of the (a) uncorrected, truncated
density matrix, and the (b) corrected density matrix, after passing
through the same simulated turbulence represented by the scintilla-
tion strength W = 1.

realizations is 0.925 ± 0.005 and that of the uncorrected
density matrices is 0.265 ± 0.012.

A similar conclusion about the success of the correction
method can be reached by looking at Fig. 3, which shows
the trace distance. The mean trace distance for the corrected
density matrices for W = 0.5 is 0.31 ± 0.02, while that of
the uncorrected density matrices is 0.892 ± 0.011. For the
second scintillation strength W = 2, the mean trace distance
for the corrected density matrix is 0.359 ± 0.011 and for the
uncorrected density matrices it is 0.955 ± 0.004.

An example of the real parts of the elements of an un-
corrected and corrected density matrices is shown in Fig. 4
for an arbitrary turbulence realization. A comparison of the
unperturbed density matrix in Fig. 1 with the density matrices
in Fig. 4 shows the potential advantage of the correction
process.

To investigate how the entanglement (or classical nonsep-
arability) is affected by the compressive sensing correction
technique, we calculate the negativity of the density matrices.
The negativity of a state is given by

E (ρc) = 1

2

∑
n

(|λn| − λn), (26)

where λn are the eigenvalues of the partially transposed
density matrix. The partial transpose of a density matrix is
obtained by performing a transpose on the density matrix of
one subsystem, leaving the other the same.

Figure 5 shows that the negativity of the state improves
with application of the correction procedure that is based
on the compressive sensing technique. The mean negativity
for the corrected density matrices over 50 realizations is

FIG. 5. The negativity of the correct and the uncorrected density
matrices for the different atmospheric turbulence realizations. Tri-
angle markers represent the uncorrected, truncated density matrices.
Diamond markers represent the corrected density matrices.

0.83 ± 0.04. This value can be contrasted with that of the
uncorrected, truncated density matrices, which is 0.56 ± 0.18,
as evidence of the improvement.

For the practical design of compressive sensing-based
channel correction for optical and quantum communication
systems, we considered the mean negativity of the corrected
density matrices as a function of the output dimension Nout.
In Fig. 6, we display three curves for different scintillation
strengths W (by changing the propagation distance).

One can see that the mean negativity of the corrected
density matrices increases with Nout, indicating the effect of
the chosen size of the output Hilbert space. Furthermore,
we observe that the mean negativity becomes saturated. The
saturation level and the rate of saturation depends on the
scintillation strength.

FIG. 6. The negativity of the corrected density matrix as a func-
tion of Nout for different scintillation strengths W .
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These observations suggest a possible future improvement
to the proposed scheme. By applying methods such as deep
learning [43,44] or other generic machine learning algorithms
[45,46], one may be able to train the system to determine an
optimal value for Nout, given certain turbulence conditions.

V. CONCLUSION

Using a numerical analysis, we demonstrate the perfor-
mance of a proposed compressive sensing-based channel cor-
rection method. A classically nonseparable state, consisting
of three OAM modes with different wavelengths, was used
as input to a numerically simulated turbulent free-space chan-
nel. Using compressive sensing-based state tomography, we
reconstructed the output state and used it to determine the
Kraus operator matrix for the channel. The singular value
thresholding technique was used for the compressive sens-
ing algorithm. The results show that compressive sensing
drastically reduces the number of measurements required for

the characterization of the turbulent channel. Although the
channel estimation process uses classical light, it determines
the Kraus operator matrix for the channel and thus allows it
to be used for quantum communication. Consequently, the
proposed scheme would be useful in the design of quantum
communication systems that are based on the OAM states of
light.

As a further study, we intend to investigate the use of
deep learning or machine learning as a method to inform the
system on the appropriate dimension of the Kraus operator
matrix. It could be done by training a model to determine an
appropriate value of this dimension, based on the parameters
of the turbulent free-space channel.
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