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Measuring an interaction-induced topological phase transition via the single-particle density matrix
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Interaction-induced topologically nontrivial phases have been theoretically predicted and need more experi-
mental verification. Cold atom systems with tunable interaction strength provide a flexible platform for studying
these effects. Here, we focus on the experimental signature of topological phase and topological phase transition
(TPT). Since the topological Hamiltonian carries the information of the topology of the system, we first establish
its relation to the single-particle density matrix (SPDM) for interacting two-band systems, and then design
a tomography scheme for the SPDM in cold atom experiments. Thus the Berry curvature of the topological
Hamiltonian, the Chern number, and the TPT point can be reconstructed from experimental data.
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I. INTRODUCTION

Topological insulators are fascinating phases without a
local order parameter [1,2]. They have been observed in solid-
state materials [3], but also have been realized in quantum
simulators such as photonic waveguides [4] and ultracold
atoms [5–7]. For two-dimensional noninteracting Chern in-
sulators, the topology can be captured by the Chern num-
ber (CN), which is the sum of the integral of the Berry
curvature in the Brillouin zone over all occupied bands [2].
Topological insulators, which are characterized by a nonzero
Chern number, possess robust conducting edge states at their
boundaries. The number of edge states is equal to the CN,
according to the bulk-edge correspondence [1]. Experimen-
tally, the topology is often revealed via Hall drift [7,8], robust
edge states [4,9,10], Aharonov-Bohm interferometry [11],
and Thouless pumping [12,13]. In quantum gas experiments,
also the Berry curvature can be reconstructed from quench
dynamics [6].

Generalized to interacting systems, the CN has been de-
veloped based on the many-body wave function [14] and
the single-particle Green’s function [15–25], respectively. The
former well reflects the number of chiral edge states and
the integer or fractional quantum Hall effects. The latter still
reflects the number of quasiparticle edge states when the
interaction is weak or moderate, but this bulk-edge corre-
spondence can break down in some situations with strong
interactions [17–19]. Numerical simulations found that in-
teraction could induce topologically nontrivial phases for
specific systems, for example, by band inversion [26–31] or
by spontaneous symmetry breaking [32,33]. However, these
predictions have so far not been confirmed experimentally
except fractional quantum Hall effect. In contrast to solid-state
physics, cold atom systems with tunable interaction strength
in certain regimes provide a flexible platform for studying
interaction effects.

In cold atom systems, the edge states become observable
by creating a boundary in the center of the system [30].
Measurement of the Berry curvature could further guarantee
the robustness of these edge states and confirm the bulk-edge
correspondence. As for the Hall drift measurement developed
in Refs. [7,8], it is still unclear how well this semiclassical
picture works in the interacting system. For interacting sys-
tems, it has been proven that the noninteracting topological
Hamiltonian, i.e., the inverse of the zero-frequency Green’s
function, Ht ≡ −1/Gk,iω=0, carries the information on the
topology of the interacting system [20]. Extracting the Berry
curvature of the topological Hamiltonian becomes crucial.

In this paper, we consider the half-filled two-band model
with repulsive interaction. We illustrate that the Berry curva-
ture of the topological Hamiltonian, the CN, and the topo-
logical phase transition (TPT) point can be extracted from
the single-particle density matrix (SPDM) of the interacting
systemin Sec. II, when the quasiparticle lifetime is much
smaller than the quasiparticle energy. The spinful Haldane
model with on-site interaction is studied and lifetimes of the
quasiparticles are evaluated based on Fermi’s “golden rule.”
We confirm the lifetime is much smaller than the quasiparticle
energy for weak to moderate interaction. Furthermore, we
develop a scheme of tomography for the SPDM of interact-
ing fermions in two-dimensional optical lattices with a two-
sublattice structure in Sec. III. This scheme involves time-of-
flight (TOF) imaging of the momentum distribution following
different sudden quenches, which can be implemented in cold
atom experiments. Our method generalizes the scheme of
tomographic measurement of pure or mixed states proposed
in Refs. [34–36] and realized in Ref. [6].

II. EXTRACTING THE TOPOLOGICAL HAMILTONIAN
FROM THE SPDM

The topological Hamiltonian carries the full information
on the topology of the interacting system and is theoretically
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important for understanding the topological phase transition
via analogy with the noninteracting system [20], yet it is not
a physical observable. The following statement builds a link
between the topological Hamiltonian and the SPDM for half-
filled fermionic two-band systems.

If the intrinsic quasiparticle linewidths γp(k) and γh(k) are
much smaller than the quasiparticle energy [εp(k) > 0] and
the quasihole energy [εh(k) < 0], respectively, i.e., γp(k) �
|εp(k)| and γh(k) � |εh(k)|, then the inverse of the topologi-
cal Hamiltonian can be approximated as

H−1
t (k) � ρT

k

εh(k)
+ 1 − ρT

k

εp(k)
, (1)

where ρT
k is the transpose of the SPDM and 1 is the 2 ×

2 identity matrix. The elements of the SPDM are ρk,αβ =
〈ĉ†

kα ĉkβ〉, where ĉ†
kα and ĉkβ are the fermionic creation and

annihilation operators with momentum k, and α and β repre-
sent the pseudospin.

In order to prove this, we start from the Lehmann represen-
tation of the Green’s function at zero temperature:

Gαβ

k,iω =
∑

η

[ 〈0|ĉkα|η〉〈η|ĉ†
kβ |0〉

iω − Eη

+ 〈η̄|ĉkα|0〉〈0|ĉ†
kβ |η̄〉

iω + Eη̄

]
,

(2)

where |0〉 is the many-body ground state with zero energy.
η and η̄ refer to the excitations (Eη, Eη̄ > 0). For each given
momentum, the spectral density is given by the imaginary
part of the trace of the retarded Green’s function, 	k(ω) =∑

ηα [|〈0|ĉkα|η〉|2δ(ω − Eη ) + |〈η̄|ĉkα|0〉|2δ(ω + Eη̄ )].
The coefficient |〈0|ĉkα|η〉|2 or |〈η̄|ĉkα|0〉|2 becomes a
non-negligible contribution only when the energy of the
many-body state is near to the quasiparticle energy, i.e.,
|Eη − εp| � O[γp] or |Eη̄ + εh| � O[γh]. When the linewidth
is rather small compared to the quasiparticle energy, we have
1/Eη � 1/εp and 1/Eη̄ � −1/εh for the contribution to 	k and
Gαβ

k,iω=0. By using 〈0|ĉ†
kβ ĉkα|0〉 = ρk,βα and [ĉkα, ĉ†

kβ ] = δαβ ,
we indeed obtain Eq. (1) from Eq. (2) at zero frequency. The
error for this approximation is of order γp(h)/εp(h).

Equation (1) shows that Ht (k) and ρT
k have exactly the

same eigenvectors and the lower band of the former is
mapped onto the higher band of the latter. This allows us
to obtain the Berry curvature of the topological Hamiltonian
through measuring the SPDM. In addition, Eq. (1) still holds
when the temperature T is finite but much smaller than
the gap. The additional error is suppressed exponentially by
exp[−|εp(h)|/kBT ].

A. Interacting Haldane model

Let us consider the spin- 1
2 Haldane model in a hexagonal

optical lattice, which has been realized as a Floquet system in
cold atom experiments [6,7]. The Hamiltonian reads

Ĥ0 = −t
∑
〈i j〉s

ĉ†
isĉ js + λ

∑
〈〈i j〉〉s

eiφνi j ĉ†
isĉ js + m

∑
is

ξiĉ
†
isĉis, (3)

where the first and second terms are the nearest- and the
next-nearest-neighbor hopping terms. s refers to spin ↑ and
↓. νi j = ±1, which is related to the hopping path. In the

FIG. 1. (a) The phase diagram. (b) The quasiparticle energy of
the upper band at the Dirac point (K). (c) The eigenvalues of the
SPDM at the K point for T = 0.01t . For (b) and (c), m = 0.6t .

following, we restrict ourselves to the case of φ = π/2, which
maximally breaks time-reversal symmetry. The third term is
a staggered potential with ξi = 1 for sublattice A and ξi = −1
for sublattice B. The system displays a transition into a normal
insulator from the quantum Hall phase when |m| becomes
larger than 3

√
3|λ|. The energy gap of the system is 2|m −

3
√

3λ| for m, λ > 0. The on-site interaction reads

Ĥint = U
∑

i

n̂i↑n̂i↓. (4)

The system has SU(2) symmetry in spin space. Note that an
interacting Floquet system contains additional subtleties such
as micromotion corrections to the interaction [37]. With our
static effective model given by Eqs. (3) and (4), we focus
on the high-frequency regime, where these corrections are
suppressed [38]. Related interaction effects in static models
can be found in Refs. [39–42].

For interaction U ∈ [0, 1.4t], using the Hartree-Fock (HF)
approximation, HF plus the second-order perturbation correc-
tion (HF+2nd), and dynamical mean-field theory (DMFT),
respectively, we plot the phase diagram in Fig. 1(a) for the
case 3

√
3λ = 0.5t . The HF approximation yields a renormal-

ized staggered potential, m → m + U
2 [〈n̂A↓〉 − 〈n̂B↓〉], where

n̂A(B)↓ is the number operator of spin down at each site of sub-
lattice A(B). The repulsive interaction effectively smoothes
the staggered potential, and induces the topological insulator
phase, which is consistent with the result shown in Ref. [41].
The DMFT further corrects the onsite self-energy slightly. In
contrast, the HF+2nd contains corrections for all hopping
terms, which are omitted in both HF approximation and
DMFT. For m = 0.6t , we show the quasiparticle energy at
the Dirac point K for different approximations in Fig. 1(b).
The gap of the system is exactly twice this energy due to
particle-hole symmetry. The interaction closes the gap and
inverts the bands at U � 0.6t .

B. Lifetime of the quasiparticles

In the following, we confirm that the linewidth γk is rather
small for this interaction regime. The linewidth of a HF quasi-
particle excitation (corresponding to the HF approximation)
can be obtained by considering all collision channels with one
particle from the lower band [see Fig. 2(a)]. Using Fermi’s
“golden rule,” we obtain the linewidth for the quasiparticle
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FIG. 2. (a) The HF quasiparticle spectrum and the sketch of the
collision between two HF states, and (b) the ratio of the linewidth to
the quasiparticle energy. The region where the linewidth vanishes is
due to energy and momentum conservation.

state |k+ ↑〉:

γk = 2π × A2
r

(2π )4

∫
d2k′d2k′′δ(εk − εk′ + εk′′ − εk̃ )

× |〈k̃+ ↑, k′+ ↓ |Ĥint|k+ ↑, k′′− ↓〉|2, (5)

where Ar is the area of the system and |k± ↑〉 is the eigenstate
of the higher (lower) band with spin up within the HF approx-
imation. Each energy level is twofold spin degenerate. The
two outgoing particles occupy states in the higher band, since
the lower band is filled. Momentum conservation demands
k̃ = k′′ + k − k′. The δ function in Eq. (5) stems from energy
conservation. The phase space of the final states is constrained
by momentum and energy conservation. In particular, for
the quasiparticle at the Dirac point K the linewidth van-
ishes for zero temperature, since all collision channels are
forbidden. In comparison, a quasiparticle excitation with a
higher energy has a larger linewidth and ratio γk/εk due to
a larger phase space of the final states [see Fig. 2(b)]. The
linewidth as a function of interaction strength, Eq. (5), can
formally be parametrized as c1U 2(1 + c2U + · · · ), where the
first U 2 directly arises from Ĥint and the part c2U is due
to the interaction-dependent HF states. For weak interaction,
the linewidth increases quadratically as a function of the
interaction strength. In Fig. 2, we show the HF quasiparticle
energy and the ratio of the linewidth to the energy for U = t .
For different interaction strengths, the linewidth has a similar
profile in momentum space but with an interaction-dependent
rescaling. A large interaction enhances the linewidth, and thus
the ratio γk/εk. We find that up to U = t the linewidth is still
rather small compared to the energy (<2.6%) for m ∈ [0, t].
A similar conclusion can be drawn for quasihole states. This
confirms the validity of the approximation (1).

The ratio γk/εk also reflects how much the quasiparticle
differs from a single-particle pure state. In principle, when
the interaction becomes stronger, the deviation increases. On
the other hand, also the temperature T can mix states. For
T = 0.01t , we plot the eigenvalues of the SPDM within HF
and HF+2nd approximation, respectively, for the K point in
Fig. 1(c). The position of the gap closing of the SPDM almost
coincides with that of the energy in Fig. 1(b). This means that
the topological phase transition point can be obtained from
the gap closing point of the SPDM as expected. The small

deviation from the real phase transition point stems from finite
T and linewidth at the � point, respectively.

III. TOMOGRAPHY FOR THE SPDM

We have shown that the higher band of ρT
k provides

information on topological properties of the lower-energy
band of the system. In the following, we illustrate how to
measure it in cold atom experiments. Including finite temper-
ature and interaction effects, the many-body density matrix
of an interacting system is PM = ∑

η pη|η〉〈η|, where |η〉 is
a many-body energy eigenstate and pη is the thermal equi-
librium probability distribution function with the constraint∑

η pη = 1. The SPDM becomes ρk,αβ = Tr[ĉ†
kα ĉkβPM]. Here

and in the following, the spin index is dropped due to SU(2)
symmetry. α and β are the pseudospin sublattice indices (A,
B). The transpose of the SPDM can be represented as

ρT
k = 1

2

3∑
i=0

ak,iσi, (6)

where σ1(2,3) is the Pauli matrix and σ0 = 1. The coeffi-
cients are ak,i = Tr[ρT

k σi] = ∑
η pη〈η|ĉ†

kσiĉk|η〉, where ĉk =
(ĉkA, ĉkB)T . Note that ak,0 > 0 is the total density ρk,AA +
ρk,BB, and it equals 1 for the half-filling case with particle-hole
symmetry.

Quench dynamics can be used to reconstruct the vec-
tor ak ≡ (ak,1, ak,2, ak,3). Let us suppose that the system
is suddenly quenched to a new noninteracting Hamilto-
nian Ĥ = �

2

∑
k ĉ†

kσ·dkĉk at the time τ = 0, where dk is a
momentum-dependent unit vector. The coefficients of ρT

k (τ )
become ak, j (τ ) = ∑

η pη〈η|ĉ†
kV †

k (τ )σ jVk(τ )ĉk|η〉 after evo-
lution to time τ > 0, where Vk(τ ) = e−iτ (�/2)σ·dk is a 2 × 2
matrix. Since V †

k (τ )σ jVk(τ ) is a linear combination of σi,
this formula links the coefficients at time τ to those at time
τ = 0. The evolution effectively rotates the vector ak, and
ak,0 is time independent after the quench. Thus, the initial
SPDM can be deduced from the final coefficients. How-
ever, in TOF experiments, not all of the final coefficients
can be recorded. The density operator of particles in mo-
mentum space observed in TOF experiments is N̂TOF(k) �
|w̃(k)|2 ∑

RR′ e−ik·(R−R′ )ĉ†
R′ ĉR, where R and R′ denote lattice

sites and w̃(k) is the Fourier transformation of the Wannier
function [43]. So the particle density observed is

NTOF(k) � |w̃(k)|2〈(ĉ†
kA + ĉ†

kB)(ĉkA + ĉkB)〉
= |w̃(k)|2[aF

k,0 + aF
k,1

]
, (7)

where aF
k,0 = ak,0 = 1 and aF

k,1 are the components of the
final SPDM at the time before the free expansion. Only the
component aF

k,1 can be detected.
Through rotating the initial vector ak during the dynamics

after the quench, we can reconstruct ak by detecting its
projection onto the first component. In the first protocol,
the system is suddenly quenched to Ĥ with dk = (0, 0, 1)
at the time τ = 0, which can be realized by switching off
all tunneling and interaction but with the staggered potential
�/2 remaining [34]. The rotation couples ak,1 and ak,2, and
we have ak,1(τ ) = cos(�τ )ak,1 − sin(�τ )ak,2. If the atoms
are completely released at time τ , then the particle density
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FIG. 3. (a) Second quench protocol and (b) particle den-
sity oscillation observed in TOF experiment for the Dirac point
k = (4π/3

√
3l, 0), by using the second protocol with ϕ = π/2. The

red line represents the phase transition. T = 0.01t .

observed by TOF imaging is

N I
TOF(k, τ ) ∝ 1 + cos(�τ )ak,1 − sin(�τ )ak,2. (8)

The protocol is the same as that for a single-particle pure
state (SPPS) in noninteracting systems [34]. By fitting to the
experimental data, both ak,1 and ak,2 can be obtained from
the oscillating behavior of N I

TOF(k, τ ). For the SPPS, |ak| = 1
so that |ak,3| can be obtained from the known ak,1 and ak,2.
This is not true for a general density matrix where |ak| � 1.
Additional experiments involving components ak,1 and ak,3

are needed for detecting ak,3.
The second protocol uses the quench channel Ĥ with

d(k) = (cos(kyl + ϕ), sin(kyl + ϕ), 0), where l is the lattice
constant. This Hamiltonian can be realized by switching on
tunneling �e−iϕ/2 between A-B sublattices only along the y
direction, as shown in Fig. 3(a). This Hamiltonian induces a
similar precession dynamics on the Bloch sphere as the first
protocol, but now along a vector, which lies in the xy plane.
The coefficient then becomes

ak,1(τ ) = [cos2(�τ/2) + sin2(�τ/2) cos(2kyl + 2ϕ)]ak,1

+ sin2(�τ/2) sin(2kyl + 2ϕ)ak,2

+ sin(�τ ) sin(kyl + ϕ)ak,3. (9)

Using known ak,1 and ak,2, we can get ak,3 by detect-
ing the particle density N II

TOF(k, τ ) ∝ 1 + ak,1(τ ), except for
the points k with sin(kyl + ϕ) = 0. At these points, d(k) =
(1, 0, 0), which cannot generate an effective rotation that cou-
ples ak,1 and ak,3. To obtain ak,3 in the whole Brillouin zone,
a similar experiment with ϕ → ϕ − π/2 can be implemented.
One can choose the two experiments with ϕ = π (normal tun-
neling) and ϕ = π/2, respectively. Since the second protocol
directly accesses ak,3, there is no missing information on the
northern or southern hemisphere as it appears for the quench
on flat bands [34].

Note that all the different Hamiltonians discussed above
could be realized by starting with a static lattice with large
AB offset and shaking [6,44]. Specifically, circular shaking
is used for simulating the Haldane model, while asymmet-
ric linear shaking along the y direction can be used for

FIG. 4. Upper: Vector plot of (ãk,1, ãk,2) and density plot of ãk,3.
Bottom: 3D plot of ãk. T = 0.01t .

realizing the situation in Fig. 3(a) [45]. For realizing the first
protocol, the quench can simply be realized by switching off
the shaking, which was used to realize the Haldane model
before the quench. The interaction can be switched off by
using a Feshbach resonance [46] or by tuning the confinement
strength along the z direction for a transverse confinement
optical lattice. The time scale for ramping the interaction to
zero should be much smaller than the time scale 1/� and
1/U , so that interaction effects during quench dynamics can
be omitted.

The Berry curvature can then be extracted from the
known ak. Note that in the Fourier-transformed basis,
ĉkA(B) ∝ ∑

R∈A(B) ĉRe−ik·R, the Hamiltonian is not peri-
odic but with an additional unitary transformation af-
ter translating by a reciprocal-lattice vector Q. We ob-
tain h(k + Q) = U †

Qh(k)UQ, where UQ = diag(1, e−iQyl ) and
h(k) is the matrix representation of the noninteracting
Hamiltonian Ĥ0. Thus we introduce the unitary transfor-
mation ( ˆ̃ckA, ˆ̃ckB) = (ĉkA, ĉkBe−ikyl ) to render the Hamil-
tonian periodic. The components for the periodic SPDM
〈 ˆ̃c†

kα
ˆ̃ckβ〉 are ãk = (cos(kyl )ak,1 + sin(kyl )ak,2, cos(kyl )ak,2 −

sin(kyl )ak,1, ak,3). We plot the result of ãk for different in-
teraction strengths in Fig. 4. The two-dimensional vector
(ãk,1, ãk,2) has an opposite winding behavior circuiting the
Dirac points K and K′, as in noninteracting systems [34]. The
third component ãk,3 for the K point moves from the south
pole to the north pole when increasing the interaction strength.
It changes its sign when U � 0.6t . The vector ãk maps the
Brillouin zone to a closed curved surface in three-dimensional
space. For the noninteracting case, it looks like a deflated
ball. Interaction inflates this ball to be round. The condition
for a topological phase of the higher (and lower) band of
ρT

k is that the origin is enclosed by that surface [2]. This
coincides with whether ak,3 at the K point is positive. Recall
that for a single-particle pure state |ak| = 1 and it lives on the
surface of the sphere [see Fig. 4(a)]. With interaction and finite
temperature, ak can lie within the sphere and the topological
phase transition occurs mildly. The Berry curvature of the
higher band of ρT

k can be obtained by using the formula
− 1

4π
(∂kx

ˆ̃a × ∂ky
ˆ̃a) · ˆ̃a, where ˆ̃a = ã/|ã|. Its integral gives the

the CN.
To determine the phase transition point, we use the second

protocol with ϕ = π/2. For the K point with momentum
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k = (4π/3
√

3l, 0), the particle density observed becomes

N II
TOF(k, τ ) ∝ 1 + cos(�τ )ak,1 + sin(�τ )ak,3. (10)

For the K point, ak,1 is very small, and thus N II
TOF gets a π -

phase shift when ak,3 changes sign. This is shown in Fig. 3(b).
The point of sign change is exactly the phase transition point.

In conclusion, we have established a link between the
SPDM and the topological Hamiltonian, and propose a
scheme for detecting the SPDM in experiments. The scheme
generalizes the tomographic measurement of pure or mixed
states proposed in Refs. [34–36]. It should be experimen-
tally achievable by using well-developed techniques [6]. This
opens up the possibility to experimentally measure the topo-
logical phenomena in the interacting ultracold atom systems.
The scheme for measuring the SPDM proposed here can be
applied to other A-B sublattice structures. Without particle-
hole symmetry, only the rescaled vector ak/ak,0 can be ob-
tained by fitting to the experiment. However, this rescaled
vector already contains the full topological information of

the system. For very strong interaction, where the quasipar-
ticle picture does not hold anymore, the connection between
the topological Hamiltonian and the SPDM is still an open
question. Moreover, the bulk-edge correspondence may break
down in this regime. From the aspect of the topological
Hamiltonian, it means there is a band crossing at the infi-
nite energy. Thus, the CN of the bands of the topological
Hamiltonian is changed without a band inversion at zero
energy. A generalized scheme for systems with more bands
(especially if more than one band is occupied) will be the
subject of future research.
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