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Exact topological flat bands from continuum Landau levels
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We construct and characterize tight-binding Hamiltonians which contain a completely flat topological band
made of continuum lowest Landau-level wave functions sampled on a lattice. We find an infinite family of such
Hamiltonians, with simple analytic descriptions. These provide a valuable tool for constructing exactly solvable
models. We also implement a numerical algorithm for finding the most local Hamiltonian with a flat Landau
level. We find intriguing structures in the spatial dependence of the matrix elements for this optimized model.
The models we construct serve as foundations for numerical and experimental studies of topological systems,
both noninteracting and interacting.
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I. INTRODUCTION

Over the past decade there has been intense interest in
model Hamiltonians which contain flat bands with nontrivial
topological indices [1]. When fermions partially fill a flat
band, interactions become the most important scale, and in-
evitably lead to nontrivial strongly correlated states of matter.
In topologically trivial flat bands, these are typically charge
density waves or Wigner crystals. In topologically nontrivial
flat bands, they are even more exotic. The best example is
the fractional quantum Hall effect [2]. Here we construct a
family of particularly interesting topologically nontrivial flat
band models, and explore their properties.

The prototypical topological flat band model is simply
two-dimensional (2D) electrons in a uniform magnetic field.
The bands there are Landau levels. One elegant feature of
this system is that one can choose a gauge where the lowest-
energy Landau level (LLL) is spanned by wave functions
which have the form of an arbitrary analytic function times
a Gaussian envelope. Inspired by the work of Kapit and
Mueller [3], which built upon results in [4,5], we consider
lattice models where the flat band is spanned by exactly
the same wave functions. As noted by Atakişi and Oktel,
the space of such Hamiltonians can be constructed via a
projector technique [6]. We find two important results regard-
ing these flat band models. (1) We analytically construct a
family of Hamiltonians in this space, generalizing the singular
example in [3], and extending it to more general lattices.
(2) We numerically find the most local Hamiltonian in this
space.

In addition to being fundamental to our understanding of
topological band structures, this construction is of practical
value. For example, Kapit, Ginsparg, and Mueller [7] used
the results from [3] to construct a numerical technique for
studying the braiding of fractionally charged excitations with
nontrivial statistics. The new examples presented here can be
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used for similar purposes. Additionally, these Hamiltonians
can inspire the design of artificial structures such as lattices of
coupled Josephson junctions, or optical lattices. Of particular
value, the present work finds the most localized Hamiltonian
with a flat lowest Landau level, an important consideration
given the challenges of implementing long-range couplings.
Furthermore, our flat band models can provide settings in
which the many-body problem can be solved exactly [3].
These kinds of flat bands give rise to fractional Chern in-
sulators, which are studied both theoretically [8–12] and
experimentally [13]. Our Hamiltonians can also be translated
into spin liquid language and give rise to interesting physics
similar to that in [5,14,15].

In Sec. II we give our analytic construction of a two-
parameter family of Hamiltonians which contain a flat topo-
logical band spanned by continuum lowest Landau-level wave
functions. Section III explores the more general problem
of finding the most local Hamiltonian with this property.
Conclusions and outlook are in Sec. IV.

II. CONSTRUCTION FOR FLAT BAND HAMILTONIANS

Here we construct a family of topological tight-binding
models, which describe the motion of a single electron hop-
ping between sites in the 2D plane. The most general Hamil-
tonian of this form can be written

H =
∑
i, j

J (zi, z j )|i〉〈 j|, (1)

where | j〉 is the state where the electron is at site j, located
at position z j� = (n jw1 + mjw2)�, where � is the length unit
which can be chosen arbitrarily. The dimensionless complex
numbers w1 and w2 represent the generators of the lattice
and n j, mj are integers. We require that the generators are
not linearly dependent, i.e., Im(w∗

1w2) �= 0. In Sec. II we give
some discussion of the non-Bravais case where there is more
than one site per unit cell. By definition J (zi, z j ) = 〈i|H | j〉.

We wish to choose the hopping matrix elements J (zi, z j )
such that the null space of H contains all states of the form
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|ψν〉 = ∑
j ψν j | j〉 with

ψν j = 〈 j|ψν〉 = zν
j exp

(
−πφ

2
|z j |2

)
. (2)

These define the lowest Landau level of the continuum prob-
lem. The length scale in these wave functions is set by
the parameter φ, which corresponds to the strength of the
magnetic field—in particular, φ = eB�2/h is the magnetic flux
through one unit area. This construction will yield a flat band
with eigenenergy 0. We will describe a Hamiltonian with this
flat-band property as a “parent Hamiltonian” for the lowest
Landau level.

By construction, this band will have Chern number 1 and
if filled will display a quantized Hall effect. The argument is
simply the one given by Thouless, Kohmoto, Nightingale, and
den Nijs [16] for the continuum. Their argument only relies
upon the wave functions, and not the underlying Hamiltonian.

In [3], Kapit and Mueller used the “singlet sum rule” [17],
generalized in [18], to find one such set of hopping matrix
elements in the case of a square lattice: w1 = 1,w2 = i. In
particular, for any analytic function f (z), the following sum
vanishes:∑

z=n+im

(−1)m+n+mn+1 f (z) exp

(
− π

2
|z|2

)
= 0, (3)

where n and m are integers. This identity emerges from the
Poisson sum,∑

z=n+im

exp

(
cz − π

2
|z|2

)
= 2

∑
z=2n+2im

exp

(
cz − π

2
|z|2

)
.

(4)

Subtracting the two sides of the equation, differentiating with
respect to c an arbitrary number of times, then setting c = 0
yields Eq. (3). Consequently, if one takes

J (zi, z j ) = (−1)n+m+nm+1e− π (1−φ)
2 |z|2 eiπφ Im(ziz∗ ) (5)

in which z = z j − zi = n + im, then the functions in Eq. (2)
will be in the null space of H . Note that the prefactor
(−1)n+m+nm has an alternating pattern with period 2 in each
direction. We will produce models with other periods of
modulation, while extending it to generic Bravais lattices.

Note that Eq. (4) can be interpreted as an identity of Jacobi
theta functions:∑
z=n+im

exp

(
cz − π

2
|z|2

)

= θ3

(
c

2
, e−π/2

)
θ3

(
ic

2
, e−π/2

)
= 2θ3(c, e−2π )θ3(ic, e−2π )

= 2
∑

z=2n+2im

exp
(

cz − π

2
|z|2

)
, (6)

in which the Jacobi theta function θ3 is defined as

θ3(z, q) =
∑
n∈Z

qn2
exp(2inz). (7)

In the above construction, the key is Eq. (4). Consider L =
{n jw1 + mjw2}, where as before w1 and w2 represent the

generators, and n j, mj are integers. We define the sublattice
Lk = {kn jw1 + kmjw2}. Below we prove that for all complex
numbers c, ∑

z∈L
exp

(
− π

k�
|z|2

)
exp(cz)

= k
∑
z∈Lk

exp

(
− π

k�
|z|2

)
exp(cz), (8)

where � = Im(w∗
1w2) is the area of the unit cell. Using this

identity, following our previous argument, the wave functions
in Eq. (2) will be in the null space of H as long as

Jk (zi, z j ) = fk (z) exp

(
πφ

2
|z|2 + iπφ Im(ziz

∗)

)
,

fk (z) = Gk (z) exp

(
− π

k�
|z|2

)
, (9)

in which z = z j − zi = nw1 + mw2, and Gk (z) is 1 unless z ∈
Lk , in which case Gk (z) = 1 − k. For the special case of a
square lattice with � = 1 and k = 2 we reproduce Eq. (3).

To prove Eq. (8), we again use the Poisson summation
formula, which for an arbitrary Bravais lattice L in 2D reads∑

z∈L
exp

(
cz − 1

2
|z|2

)
= 2π

�

∑
z∈L∗

exp

(
icz − 1

2
|z|2

)
. (10)

Here L∗ is the dual lattice, generated by the reciprocal lattice
vectors u1, u2 satisfying Re(w∗

i u j ) = 2πδi j .
To simplify the subsequent notation, we rescale w1 and

w2 so that the unit cell of the reciprocal lattice has an area
which is an integer multiple of 2π . That is, the size of unit
cell is � = 2π/k in which k ∈ Z. Hence u1 = −ikw2 and
u2 = ikw1. Note that the reciprocal lattice L∗ is simply a
rotation of Lk : if u ∈ L∗ is an element of the reciprocal lattice,
then iu is in Lk . The Poisson summation formula can then be
written:∑

z∈L
exp

(
cz − 1

2
|z|2

)
= k

∑
z∈Lk

exp

(
cz − 1

2
|z|2

)
. (11)

Rescaling back to the original lattice vectors yields Eq. (8).

Non-Bravais lattices

The results from the previous section can also be extended
to the non-Bravais case.

Consider a lattice with an n-point basis. It is defined
by an underlying Bravais lattice L generated by w1 and
w2, and basis vectors described by the complex numbers
v0 = 0, v1, . . . , vn−1, so that the points in the lattice are of
the form z = aw1 + bw2 + v j , where a and b are integers.
Motivated by our previous discussion, we rewrite the hopping
matrix element to express the Hamiltonian as

H =
∑
i, j

∑
z,w∈L

fi j (zi j ) exp{iπφ Im[(w + v j )z
∗
i j]}

× exp

(
πφ

2
|zi j |2

)
|z + vi〉 〈w + v j | , (12)

in which zi j = w + v j − z − vi. As should be apparent from
the notation, the indices i, j run from 0 to n − 1, and they
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index the basis vectors. We wish to choose fi j such that
H |ψν〉 = 0 for all ν—a condition which is equivalent to
requiring that the following n constraints are satisfied for all
complex numbers c:∑

z∈L

∑
i

f0i(z + vi − v0) exp[c(z + vi − v0)] = 0

. . .∑
z∈L

∑
i

f(n−1)i(z + vi − vn−1) exp[c(z + vi − vn−1)] = 0.

(13)

A trivial way to satisfy these constraints is to separately satisfy
the following n2 constraints:∑

z∈L
f ji(z + vi − v j ) exp[c(z + vi − v j )] = 0. (14)

Each of these are equivalent to our original Bravais lattice
problem, and hence we can take fi j to be given by Eq. (9),

f ji(z + vi − v j ) = fk (z) (15)

for arbitrary integer k.
Additionally, we can construct solutions of Eq. (13) which

do not also satisfy Eq. (14). For example, we can take

fi j (z) = exp

(
− π

k�
|z|2

)
(16)

for i �= j, and

fii(z) = Gik (z) exp

(
− π

k�
|z|2

)
(17)

in which z = z j − zi = nw1 + mw2. Gik (z) is slightly modi-
fied from Gk (z) defined before: Gik (z) is 1 unless z ∈ Lk , in
which case Gik (z) = 1 − k

∑
i exp[i 2π

k�
Re(z∗vi )]. To show that

this expression satisfies Eq. (13), we shift the lattice vectors in
Eq. (10) to get∑

z∈L
f (z + v) = 2π

�

∑
z∈L∗

f̃ (z) exp[i Re(z∗v)], (18)

in which f̃ is the Fourier transform of f . Summing over the
basis vectors then yields the identity

∑
z∈L

∑
i

f (z + vi ) = 2π

�

∑
z∈L∗

f̃ (z)

(∑
i

exp [i Re(z∗vi )]

)
.

(19)

As before, we rescale the lattice so that L∗ is a subset of L,
and take f (z) = exp(cz − 1

2 |z|2) and f̃ (z) = exp(icz − 1
2 |z|2).

We then subtract the two sides to get Eqs. (16) and (17).
One concrete application of this procedure is constructing

a flat topological band on a honeycomb lattice. In particular,
we take w1 = √

2/
4
√

3, w2 = 1/
4
√

12(1 + i
√

3), and v1 =
1/

4
√

12(1 + i/
√

3). The simplest matrix elements are

f00(z) = − exp(−π |z|2) exp[2π i Re(z∗v)],

f11(z) = − exp(−π |z|2) exp[−2π i Re(z∗v)], (20)

f01(z) = f10(z) = exp(−π |z|2).

FIG. 1. Graphical depiction of the matrix elements on a honey-
comb lattice. Solid arrows: hoppings from sublattice 0 to sublattice
0. Dashed arrows: hoppings from sublattice 1 to sublattice 1. Dash-
dotted arrows: hoppings between sublattices. w1, w2 are the lattice
generators, while v1 is the vector connecting the two sites in a unit
cell.

If we truncate this Hamiltonian to only nearest- and next-
nearest-neighbor hopping at φ = 1, it reduces to the Haldane
model [19]. The hoppings in the φ = 1 tight-binding Hamil-
tonian are shown in Fig. 1.

III. MOST LOCALIZED PARENT HAMILTONIAN

Here we numerically construct the most localized Hamil-
tonian with the property that the continuum lowest Landau
wave functions form a flat band with E = 0. The construction
is meaningful since it has been shown that the Hamiltonians
with the property cannot be local; they must contain arbitrarily
long-range hoppings [20]. Nonetheless, as the Kapit-Mueller
Hamiltonian demonstrates, the matrix elements can fall off at
least as fast as a Gaussian. Note that we are not restricting to
a Hamiltonian of the form of Sec. II. Rather we are looking
at completely general Hamiltonians that annihilate the lowest
Landau level.

A. Formalism

Let P be the projector into the lowest Landau level, and
P̄ = 1 − P be the projector into the orthogonal space. A
parent Hamiltonian has the property P̄HP̄ = H . We define the
range of H via

R2 =
∑

i, j | 〈i|H | j〉 |2|zi − z j |2∑
i, j | 〈i|H | j〉 |2 =

∑
i, j |J (zi, z j )|2|zi − z j |2∑

i, j |J (zi, z j )|2 .

(21)

We want to minimize this expression over all parent Hamil-
tonians which are invariant under magnetic translations:
i.e., 〈i|H | j〉 exp[−iφAB(zi, z j )] = 〈i − j|H |0〉 exp[−iφAB(zi −
z j, 0)], in which φAB(zi, z j ) = πφ Im(ziz∗) is the Aharanov-
Bohm phase associated with direct motion from j to i. Here
z = z j − zi. Due to this symmetry the range can be expressed
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as

R2 =
∑

j | 〈 j|H |0〉 |2|z j |2∑
j | 〈 j|H |0〉 |2 =

∑
j |J (z j, 0)|2|z j |2∑

j |J (z j, 0)|2

= 〈0| Hr2H |0〉
〈0| H2 |0〉 , (22)

where r2 = ∑
j | j〉 |z j |2 〈 j|. This expression can be further

simplified by defining the wave function |ψH 〉 = H |0〉, in
terms of which R2 = 〈ψH |r2|ψH 〉 / 〈ψH |ψH 〉. We wish to
minimize R2 with respect to |ψH 〉 with the constraint that
|ψH 〉 is in the image of P̄, i.e., |ψH 〉 is orthogonal to the
space spanned by lowest Landau-level wave functions. For
the resulting Hamiltonian to be Hermitian, we also require
〈i|ψH 〉 = 〈−i|ψH 〉∗ for all zi in the lattice. We denote the
projector into the space obeying this latter constraint as P′
and the projector into the space obeying both constraints as
P . Our minimization problem is then equivalent to finding the
smallest nonzero eigenvalue of P r2P . The eigenvector’s com-
ponents, 〈 j|ψH 〉 = 〈 j|H |0〉, correspond to matrix elements of
the Hamiltonian: the remaining matrix elements can be found
by using magnetic translations.

We work on a finite L × L square lattice with periodic
boundary conditions. These boundary conditions are only well
behaved if the total flux through the lattice is an integer.
Choosing the lattice spacing to be unity, this corresponds to
requiring φL2 to be an integer. We define φ = p/q.

We explored a number of ways of constructing the pro-
jector P̄, and found that when the denominator q is small,
the most numerically efficient approach involved producing
the Kapit-Mueller Hamiltonian HKM . We numerically found
its eigenstates, then used them to produce the projector into
the lowest Landau level, and its complement P̄ as L2 × L2

matrices. In this construction we use periodic boundary condi-
tions. However, as we explain below, we systematically study
different system sizes and find that our results are independent
of L for sufficiently large L.

One technical issue is that P′, which projects into the
space where 〈i|ψH 〉 = 〈−i|ψH 〉∗, can only be represented
as a linear operator if we work in an enlarged space, con-
sidering the length 2L2 vector with components 〈1|ψH 〉, . . .
〈L + iL|ψH 〉, 〈1|ψH 〉∗, . . . 〈L + iL|ψH 〉∗. P′ is then the 2L2 ×
2L2 matrix made of four L2 × L2 blocks

P′ = 1√
2

(
I Q

QT I

)
. (23)

Here I is the identity matrix while Q is a permutation matrix:
its nonzero entries connect the elements 〈i|ψH 〉 and 〈−i|ψH 〉∗.

In this larger space, P̄ is just a block matrix, where the two
blocks are the previously constructed P̄ and its complex con-
jugate. The mutual projector is constructed as P = 2P′(P′ +
P̄)−1P̄, where (· · · )−1 denotes the pseudoinverse [21]. We use
standard packages to numerically calculate the pseudoinverse.
Matrix multiplication then gives P r2P . Numerically diago-
nalizing this matrix is straightforward.

B. Results

Figure 2 shows the range of the Hamiltonian, R2, as a
function of the magnetic-field strength. In order to have a

FIG. 2. Range R2 of the parent Hamiltonian versus magnetic-
field strength φ. Open circles: R2

KM , corresponding to Eq. (5). Solid
dots: R2 of the most localized parent Hamiltonian. Line is an empir-
ical fit to the solid dots, Eq. (24). Inset: deviation 
R2 = R2

KM − R2.

commensurate flux, different L are used for different φ: the
data shown corresponds to (φ, L) = ( 1

6 , 72), ( 1
4 , 48), ( 1

3 , 36),
( 1

2 , 24), ( 2
3 , 36), ( 3

4 , 48), ( 4
5 , 40), ( 5

6 , 42), and ( 7
8 , 48). At each

of these φ, we varied L, and verified that finite-size effects
were negligible. The main feature of the data is that the
range monotonically increases with φ, diverging as φ → 1.
As shown in the figure, the curve is well approximated by

R2 = −a + b

1 − φ
+ cφ, (24)

with a ≈ −0.168263, b ≈ 0.305039, and c ≈ 0.303745.
We find that the Kapit-Mueller Hamiltonian in Eq. (5)

nearly saturates our numerical bound: the open circles in
Fig. 2 show the Kapit-Mueller result, and the inset shows the
deviation between the two. Not only is the difference consis-
tently small, but when φ exceeds 0.5, the deviation exceeds
machine precision. Clearly the Kapit-Mueller Hamiltonian
is a good approximation of the most localized Hamiltonian.
We emphasize, however, that for φ < 1/2 the Kapit-Mueller
Hamiltonian clearly has a longer range than the optimal
Hamiltonian.

Given the close agreement, we can gain some analytic
understanding of Eq. (24) by analyzing the range of the Kapit-
Mueller Hamiltonian, R2

KM , which can be expressed as

R2
KM =

∑
x,y(x2 + y2) exp[−(1 − φ)π (x2 + y2)]∑

x,y exp[−(1 − φ)π (x2 + y2)]
. (25)

In the φ → 1 limit the sum can be replaced by an integral,
yielding

lim
φ→1−

R2
KM = 1

π (1 − φ)
, (26)

where 1/π ≈ 0.31831 is very close to the coefficient b in our
fit.

Given this agreement, it is not surprising that the matrix
elements of the optimized Hamiltonian are related to those
of Eq. (5). The similarity is particularly striking at short
distances.

Figure 3 shows the logarithm of the magnitude of the
hopping matrix elements in the horizontal direction for dif-
ferent values of φ. As is apparent, − ln |J (0, j)| is made up
of a sequence of parabolas, implying that |J (0, j)| is well
described by a discontinuous set of Gaussians. Comparison
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FIG. 3. Hopping magnitude − ln |J (0, j)| for the most local tight
binding model with a flat lowest Landau level. The magnetic field
corresponds to (a) φ = 2/3, (b) φ = 4/5, and (c) φ = 5/6. The solid
line shows the analytic expression for − ln |JKM |.

with the solid line indicates that the length scale of the central
Gaussian is the same as Eq. (5). Although we do not show
the comparison, the other Gaussians also fall off with this
same length. The φ dependence of the breakpoint is discussed
below. Although it is hard to capture in a graph, the full
two-dimensional hopping matrix elements |J (i, j)| have a
block structure, with a sequence of rectangular blocks, each
corresponding to a different Gaussian.

As illustrated by Fig. 4, the block structure also appears in
the phases of the matrix elements. In that figure, we represent
the phases arg[J (0, z)] by shades of gray: lighter and darker
regions correspond to phases near 0 and π . The central region
clearly agrees with the pattern in Eq. (5). The pattern is shifted
in the peripheral blocks, but the periodicity is the same.

By systematically studying different magnetic-field
strengths φ, we find that the block sizes grow with φ. In
particular it appears that, as φ → 1, the blocks have linear
dimension s0 = 1/(1 − φ). Each block in the upper right
quadrant can be labeled by two non-negative integers a, b,

FIG. 4. Phases arg[J (0, z)], where J corresponds to hopping ma-
trix element of the most localized parent Hamiltonian with φ = 4/5.
The x and y axis represent the locations z = x + iy, and the center
of the figure corresponds to z = 0. Each shaded square corresponds
to a site. The dark squares represent a phase of 0 while the light
ones represent a phase of π . In the white areas phases cannot be
determined due to numerical precision. A clear block structure can
be observed.

such that the lower left corner is at s0(a + ib). Within that
block, the matrix elements appear to be well approximated
by

|J| ≈ exp

(
− π

2
(1 − φ)[|z − λ|2 + s2

0(a + b)]

)
, (27)

where λ = (a + ib)s0. The origin of this empirical relation-
ship is mysterious.

IV. CONCLUSIONS AND OUTLOOK

Many degrees of freedom remain after requiring that a
lattice model contains a flat lowest Landau level. These de-
grees of freedom correspond to choosing the wave functions
and energies of the states which are not in the flat band. In
this paper we (1) construct a subset of these Hamiltonians
that have a simple structure and (2) numerically explore the
properties of the most localized Hamiltonian with a flat lowest
Landau level.

Remarkably we find that the Kapit-Mueller Hamiltonian
is very close to this optimized Hamiltonian. There are, how-
ever, small differences in some of the longer-range hopping
matrix elements. In particular, the hopping elements display a
remarkable block structure of elusive origin.

In all of the models we construct, the hopping matrix
elements fall off as a Gaussian. Due to this rapid decrease, an
experimental implementation only needs concern itself with
the largest hoppings, which are short ranged. This speaks to
the feasibility of such explorations [22,23]. In optical lattice
experiments the size of different hopping matrix elements can
be tuned by adding higher harmonics to an ordinary optical
lattice, or by laying out the sites in three dimensions. The
NIST group has implemented the latter technology in creating
a 1D lattice with tunable next-nearest-neighbor hopping [24].
Implementations in superconducting circuits would require
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using established techniques for patterning wires which cross
over one another. The effect of the truncation will broaden
the flat band, but the broadening can be optimized using the
method described in [25].

One could imagine exploring the properties of models
where we not only constrain the properties of the lowest band,
but also the higher bands. The extreme example of this is
requiring that all other states are degenerate—a case which
was explored by Atakişi and Oktel, as well as Jian, Gu, and
Qi [6,26]. Another extension is to construct models where the
flat band is spanned by the wave functions from the second

Landau level (or higher). The novel physics there would have
to do with the different effective interactions one finds when
projecting to the flat band.
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