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We investigate the ground-state properties and excitations of Rydberg-dressed bosons in both three and two
dimensions, using the hypernetted-chain Euler-Lagrange approximation, which accounts for correlations and
thus goes beyond the mean-field approximation. The short-range behavior of the pair distribution function signals
the instability of the homogeneous system with respect to the formation of droplet crystals at strong couplings
and large soft-core radius. This tendency to spatial density modulation coexists with off-diagonal long-range
order. The contribution of the correlation energy to the ground-state energy is significant at large coupling
strengths and intermediate values of the soft-core radius while for a larger soft-core radius the ground-state
energy is dominated by the mean-field (Hartree) energy. We have also performed path integral Monte Carlo
simulations at selected system parameters to verify the performance of our hypernetted-chain Euler-Lagrange
results in three dimensions. In the homogeneous phase, the two approaches are in very good agreement.
Moreover, Monte Carlo simulations predict a first-order quantum phase transition from a homogeneous
superfluid phase to the quantum droplet phase with face-centered cubic symmetry for Rydberg-dressed bosons
in three dimensions.

DOI: 10.1103/PhysRevA.101.013628

I. INTRODUCTION

Rydberg systems consisting of atoms with a highly excited
electron [1] have attracted a lot of interest in recent years
for studying a variety of quantum many-body [2–4], quantum
information [5,6], quantum simulation [7,8], and polaron [9]
problems. Rydberg atoms in the blockade regime, in partic-
ular, are expected to become important tools for quantum
information because the manipulation of the entanglement of
two or more atoms in these systems are very feasible [10,11].
In this regime, a Rydberg atom shifts the energy levels of its
neighboring atoms. This effect results from the strong interac-
tion between a Rydberg atom and its surrounding ground-state
atoms, and therefore a single Rydberg atom can block the
excitation of other atoms in its neighborhood [12].

Rydberg atoms possess very strong van der Waals in-
teractions, but short lifetimes of excited atoms would be
an obstacle in experiments. A solution to this problem is
to weakly dress the ground state with a small fraction of
the Rydberg state, which results in several orders of mag-
nitude enhancement of the lifetime [8,13,14]. The effective
Rydberg-dressed interaction potential is almost constant at
short interparticle distances and has a van der Waals, i.e., 1/r6

tail, at large separations [8]. Several novel quantum phases
have been predicted for Rydberg-dressed quantum gases, such
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as the supersolid phase [2–4,15–17], superglass phase [18],
topological superfluidity [19], metallic quantum solid phase
[20], density waves [21], and roton excitations [13]. A rotating
quasi-two-dimensional Rydberg-dressed Bose-Einstein con-
densate (BEC) has been studied by Henkel and coauthors [2]
by means of quantum Monte Carlo simulations and mean-field
calculations. They predicted a superfluid phase for slow rota-
tions, as well as a competition between the supersolid crystal
and a vortex lattice for rapid rotations. The zero-temperature
phase diagram of two-dimensional bosons with a finite-range
soft-core interaction has also been studied in the framework
of the path-integral Monte Carlo method by Cinti et al. [4].
Depending on the particle density and interaction strength,
they found superfluid, supersolid, and different solid phases.
For small particle densities, they predicted a defect-induced
supersolid phase [4]. On the experimental side, supersolidity
in an optical lattice composed of strongly correlated Rydberg-
dressed bosons has been explored [22].

In this work, we investigate the effects of many-body
correlations on the ground-state properties of a single-
component gas of Rydberg-dressed bosons (RDBs) in both
three and two dimensions (abbreviated as 3D and 2D, respec-
tively), within the framework of the hypernetted-chain Euler-
Lagrange (HNC-EL) approximation for a wide range of sys-
tem parameters. We obtained several ground-state quantities,
as well as the excitation spectra, which, for strong coupling
and large soft-core radius, feature pronounced rotons. Roton
softening has been suggested in mean-field calculations as
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a mechanism of destabilizing the homogeneous phase and
leading to a crystalline phase [13]. To validate our HNC-EL
results, we performed path integral Monte Carlo (PIMC) sim-
ulations for a 3D gas of RDBs at selected system parameters
and found very good agreement between PIMC and HNC-
EL results in the homogeneous superfluid phase. The PIMC
results suggest a first-order transition from a homogenous
superfluid phase to a face-centered cubic (fcc) lattice formed
of quantum droplets, in agreement with the mean-field calcu-
lations in Ref. [13].

The rest of this paper is organized as follows: We begin
with a description of our theoretical formalism in Sec. II,
followed by the details of the HNC-EL approximation for
obtaining the static structure factor and pair distribution func-
tion (PDF) in Sec. II A and the method for calculating the
one-body density matrix as well as the momentum distri-
bution function within the HNC-EL formalism in Sec. II B.
In Sec. III, we report our numerical results for different
quantities obtained within the HNC-EL approximation. The
details of PIMC simulations and the comparison between
its results with HNC-EL results are presented in Sec. IV.
In Sec. V we summarize our main findings. Finally, we
dedicate two Appendices to the long-wavelength behavior of
the momentum distribution function (Appendix A), and the
details of our PIMC simulations (Appendix B).

II. MODEL AND THEORETICAL FORMALISM

We consider a homogeneous single-component gas of
RDBs of mass m, in both three and two dimensions, where
each atom is weakly coupled to its s-wave Rydberg state by an
off-resonant two-photon transition via an intermediate state.
The Hamiltonian is thus given by

H = − h̄2

2m

∑
i

∇2
i +

∑
i< j

vRD(|ri − r j |). (1)

Dressed-state atoms interact with each other through the
following repulsive soft-core potential [13]:

vRD(r) = U

1 + (r/Rc)6
. (2)

Here, U ≡ (�/2�)4|C6|/R6
c and Rc ≡ (C6/2h̄�)1/6 are the

interaction strength and the averaged soft-core radius, respec-
tively, where �, � < 0, and C6 < 0 are the effective Raman
coupling, the red detuning, and the averaged van der Waals
coefficient, respectively.

By introducing k3D
0 = (6π2n)

1
3 and k2D

0 = √
4πn, respec-

tively, in three-dimensional and two-dimensional systems,
where n is the corresponding average particle density of
bosons, the RDB gas at zero temperature would be charac-
terized by only two dimensionless parameters, namely, the di-
mensionless soft-core radius R̃c = Rck0 and the dimensionless
coupling constant Ũ = U/ε0, where ε0 = h̄2k2

0/(2m).
The bare potential (2) has an almost constant value U at

small distances r � Rc and approaches zero as 1/r6 for r �
Rc. While the Rydberg-dressed interaction is purely repulsive
in real space, its Fourier transform has a negative minimum at
a finite wave vector qmin ≈ 5/Rc [15,20,21].

A. Hypernetted-chain approximation

By choosing the chemical potential as the zero of energy,
a formally exact zero-energy scattering equation for the pair
distribution function g(r) of a homogeneous Bose system
can be written within the hypernetted-chain Euler-Lagrange
approximation [23,24]:[

− h̄2

m
∇2 + Weff (r)

]√
g(r) = 0. (3)

Here, Weff (r) = vRD(r) + WB(r) is the effective scattering
potential consisting of the bare interaction vRD(r) and an
induced interaction WB(r) accounting for many-body effects.
For a homogeneous system, the pair distribution function is
given by

g(r − r′) = N − 1

n2

∫
dr3 . . . drN |�(r, r′, r3, . . . , rN )|2,

(4)

where �(r1, r2, . . . , rN ) is the many-body wave function of
the system normalized to the total number of particles N =∫

dr1 . . . drN |�(r1, r2, . . . , rN )|2. The PDF g(r) is defined
such that ng(r)�DrD−1dr, with �2 = 2π and �3 = 4π , is
the average number of particles inside a shell of radius r
and thickness dr centered on the particle at the origin and
therefore it is a positive-definite function. The normaliza-
tion of g(r) is chosen so that g(r → ∞) → 1, meaning that
correlations between two particles vanishes at large separa-
tions [25,26], and in a noninteracting homogeneous Bose gas
g0(r) = 1.

Indeed, in the limit of vanishing density, WB(r) vanishes
and Eq. (3) becomes the Schrödinger equation for two-body
scattering at zero energy. WB(r), at the level of the so-called
HNC-EL/0 approximation [24,27], is given in momentum
space by

WB(q) = − εq

2n
[2S(q) + 1]

[
S(q) − 1

S(q)

]2

, (5)

where εq = h̄2q2/(2m) is the free particle dispersion and the
static structure factor S(q) is related to the g(r) as S(q) = 1 +
nFT[g(r) − 1], with FT[ f (r)] = ∫

dr f (r)eik·r being a short-
hand notation for the Fourier transform. In principle, Eqs. (3)
and (5) could be solved self-consistently but technically it is
more convenient to invert the zero-energy scattering equation
(3) to obtain the effective particle-hole interaction

Vph(r) = g(r)Weff (r) − WB(r) + h̄2

m
|∇

√
g(r)|2, (6)

whose Fourier-space expression is defined in terms of S(q) as

S(q) = 1√
1 + 2nVph(q)/εq

. (7)

Now, Eqs. (5)–(7) form a closed set of equations, which
can be solved in a self-consistent manner with a reasonable
first guess for the static structure factor. The self-consistent
process is repeated until convergence is reached [28]. We have
used the HNC-EL/0 approximation, which corresponds to a
Jastrow-Feenberg ansatz for the many-body wave function
containing only two-body correlations but no three-body and

013628-2



ROTONS AND BOSE CONDENSATION IN … PHYSICAL REVIEW A 101, 013628 (2020)

higher-order correlations, and in addition neglecting the so-
called elementary diagrams. We expect contributions beyond
the HNC-EL/0 approximation to be small at weak couplings
and mainly quantitative corrections at intermediate and strong
couplings. This will become clear from the comparison be-
tween our HNC-EL/0 and PIMC results in Sec. IV.

B. One-body density matrix and momentum distribution

Once the static structure factor is obtained from the solu-
tion of self-consistent HNC-EL/0 equations, we can calculate
several important quantities such as the one-body density
matrix (OBDM), the condensate fraction, and the momentum
distribution function within the HNC-EL/0 formalism. For a
homogenous system, the OBDM is given by

ρ(r) =
∫

dr2 . . . drN�∗(r, r2, . . . , rN )�(0, r2, . . . , rN ),

(8)

which at the origin gives the average density ρ(0) = n, while
for long distances it is a measure of the off-diagonal long-
range order (ODLRO), i.e., ρ(r → ∞) = nn0, where n0 is
the Bose-Einstein condensation (BEC) fraction. Within the
HNC-EL/0 formalism, i.e., neglecting elementary diagrams,
the OBDM is given by [28,29]

ρ(r) = nn0eNww (r), (9)

where the Fourier transform of the nodal function Nww(r) is
given by

Nww(q) = [Swd (q) − 1][Swd (q) − 1 − Nwd (q)]. (10)

Here, Swd (q) and Nwd (q) are, respectively, obtained from the
solutions of the following coupled equations:

Nwd (q) = [Swd (q) − 1][S(q) − 1 − N (q)], (11)

and

Swd (q) = 1 + nFT[gwd (r) − 1], (12)

with

gwd (r) = f (r)eNwd (r). (13)

Here, N (q) = [S(q) − 1]2/S(q) is the nodal function, and
f (r) = √

g(r) exp[−N (r)] is the correlation function. Now,
we can solve Eqs. (11)–(13) self-consistently and then obtain
the condensation fraction from

n0 = exp(2Rw − Rd ), (14)

where

Rw = n
∫

dr[gwd (r) − 1 − Nwd (r)]

− n

2

∫
dr[gwd (r) − 1]Nwd (r), (15)

and

Rd = n
∫

dr[g(r) − 1 − N (r)]

− n

2

∫
dr[g(r) − 1]N (r). (16)

FIG. 1. The static structure factor S(q) versus q/k0 obtained
within the HNC-EL/0 approximation for several values of R̃c and
Ũ , for 3D (left) and 2D (right) Rydberg-dressed Bose gas.

Finally, the momentum distribution function could be ob-
tained from the Fourier transformation of the OBDM:

n(q) = nn0(2π )Dδ(q) + nFT[ρ(r)/n − n0]. (17)

III. RESULTS AND DISCUSSIONS

In this section, we present our numerical results obtained
from the HNC-EL/0 formalism for different ground-state
properties of homogenous Rydberg-dressed Bose gases in two
and three dimensions.

A. Static structure factor and excitation spectrum

Figure 1 shows our results for the static structure fac-
tor of 3D and 2D Rydberg-dressed Bose gases at different
values of R̃c and Ũ . When the strength of the coupling
constant is increased, correlations get stronger and the height
of the main peak in S(q) increases. For similar values of
Ũ and R̃c, the main peak of the structure factor in a 2D
system is more pronounced than in a 3D system. This is
expected, as the correlations are generally stronger in lower
dimensions.

An upper bound for the excitation spectrum can be
obtained from the Bijl-Feynman (BF) expression E (q) =
εq/S(q) [30,31]. In Fig. 2 we show the excitation spectrum
E (q) of 3D and 2D Rydberg-dressed Bose gases. In all
cases, the spectrum has a linear behavior at small q, as
expected for a uniform gas of interacting bosons. In single-
component Bose gases the BF approximation captures this
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FIG. 2. The excitation spectrum E (q) of a 3D (left) and 2D
(right) RDB gas (in units of ε0) versus q/k0 for different values of
R̃c and Ũ , obtained within the HNC-EL/0 approximation.

small-q behavior very well. For large q, the dispersion be-
comes parabolic because the static structure factor tends to
unity at large wave vectors, and the BF spectrum becomes
that of free particles [32]. In the intermediate- and strong-
coupling regimes and for small and intermediate soft-core
radii, the excitation spectra E (q) has a roton-maxon form,
that is a local maximum at qmaxon is followed by a local
minimum at qroton. We caution that, beyond the linear regime
of the dispersion, the BF approximation overestimates exci-
tation energies and furthermore neglects spectral broadening,
which becomes quite noticeable for strong interactions. Im-
proved methods beyond the BF approximation, as discussed
in the conclusions, are beyond the scope of the present
work.

Increasing the interaction strength at a fixed soft-core
radius as the main peak of the structure factor becomes more
pronounced, the numerical convergence of HNC-EL/0 equa-
tions becomes very difficult. The vanishing of the BF roton
energy, which originates from the divergence of the static
structure factor, would signal the instability of a homogeneous
superfluid towards density modulated phases with wavelength
λ = 2π/qroton. Such an instability corresponds to a second-
order phase transition, but as we will see in Sec. IV, quantum
Monte Carlo simulations predict a first-order fluid-to-solid
phase transition, which precedes such an instability. Since
we apply the HNC-EL/0 method of homogeneous systems,
the HNC-EL/0 results beyond the phase transition are only
metastable. Generalizations of HNC-EL for lattice symme-
tries have recently been presented for 1D in Ref. [33].

FIG. 3. The pair distribution function g(r) versus rk0, obtained
within the HNC-EL/0 approximation at several values of R̃c and Ũ
for a 3D (left) and 2D (right) gas of RDBs.

B. Pair distribution function and effective interaction

We present our results for the pair distribution function of
3D and 2D RDB gases at different values of R̃c and Ũ in Fig. 3.
For small values of the soft-core radius R̃c, the probability for
particles to coincide spatially, i.e., g(r = 0), decreases with
increasing interaction strength Ũ . This indicates the formation
of a correlation hole around each particle [26], due to the
repulsive interaction between particles. However, an interest-
ing feature emerges at larger values of R̃c (see the bottom
panels in Fig. 3), where after an initial decrease, g(0) starts
increasing for larger interaction strengths Ũ and eventually
exceeds one. This means there is a positive correlation for
particles to assume the same position in space, i.e., they tend
to cluster up. The PDF exhibits slowly decaying oscillations
in this regime. The behavior of g(0) as function of Ũ for
different values of R̃c is summarized in Fig. 4 for 3D (top
panel) and 2D (bottom panel). We note that the probability
for two particles to meet is given by n2g(r = 0), and may be
used to estimate the three-particle decay rate, which in the
Kirkwood superposition approximation would be n3g(0)3.

This peculiar behavior of the PDF could be understood
from the effective interaction Weff (r), which is illustrated in
Fig. 5. While the effective interaction at small r is repulsive
for small and intermediate values of the soft-core radius, for
larger values of R̃c it becomes a strongly oscillating function
of r and attractive at small distances (see the bottom panels in
Fig. 5). This behavior can signal that the homogeneous Bose
gas becomes soft against both droplet formation—indicated
by the increased g(0)—and forming density waves—indicated
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FIG. 4. The on-top-value of the pair distribution function g(0)
versus the interaction strength U/ε0, for different values of the soft-
core radius in 3D (top) and 2D (bottom) gas of RDBs. Note that, for
R̃c = 4, the HNC-EL/0 equations fail to converge at large values of
the interaction strength.

by the long-range of oscillations. Hence the behavior of g(r)
suggest the RDB gas becomes unstable against forming a
droplet crystal [3,4]. Again, due to stronger correlations at
lower dimensions, the tendency to establish long-range order
in a 2D system shows up at smaller values of the coupling
constant in comparison with a 3D system.

In the weak-coupling regime the quasiparticle excitation
spectrum can be obtained by using the Bogoliubov-de Gennes
(BdG) equation [32]

E (q) = εq

√
1 + 2nvRD(q)/εq, (18)

where vRD(q) is the Fourier transform of the bare interaction
vRD(r). At the mean-field (MF) level, the quasiparticle dis-
persion is given in terms of a single dimensionless parameter
α3D = nmUR5

c/h̄2 and α2D = nmUR4
c/h̄2 in 3D and 2D,

respectively [13,15]. In the upper panel of Fig. 6 we compare
the BdG excitation spectrum with the BF spectrum calculated
from the HNC-EL/0 static structure factor, for different
combinations of Ũ and R̃c such that α is fixed to α = 30. For
large values of R̃c, the more accurate BF spectrum approaches
the MF result. Overall the BdG mean-field spectrum is

FIG. 5. The effective interaction Weff (r) (in units of ε0) versus rk0

obtained within the HNC-EL/0 approximation for different values of
R̃c and Ũ in 3D (left) and 2D (right) gases of RDBs.

quite adequate in 3D. However, the deviation of the MF
results is substantially larger in 2D, because correlations are
more important in lower dimensions. In particular, the MF
approximation does not predict the correct wave number of
the roton, which the HNC-EL/0 results show to depend on R̃c

and Ũ individually, and is not a universal function of α only.
In the bottom panels of Fig. 6, we present the PDF g(r)

for fixed α and for different values of R̃c in three- and

FIG. 6. Top panels: Comparison between the mean-filed (solid
black) and HNC-EL/0 excitation spectrum E (q) [in units of
h̄2/(mR2

c )] of a 3D (left) and 2D (right) RDB gas versus qRc, for
different values of R̃c at α = 30. Bottom panels: HNC-EL/0 results
for the pair correlation function g(r) of a 3D (left) and 2D (right)
RDB gas versus r/Rc for different values of R̃c and for α = 30.
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FIG. 7. The one-body density matrix ρ(r) of a 3D (left) and 2D
(right) gas of RDBs versus rk0 for different values of R̃c and Ũ .

two-dimensional RDB gases, obtained within the HNC-EL/0
approximation. As for the comparison of the excitation spec-
trum, we vary R̃c and Ũ for a fixed α = 30. g(r) clearly de-
pends not just on α but on both R̃c and Ũ . In both 3D and 2D,
g(r) is sensitive to the choice of R̃c mostly for small r, which
therefore cannot be described by the MF approximation.

C. Off-diagonal long-range order and condensate fraction

We use the extension of the HNC-EL method to the one-
body density matrix, summarized in Sec. II B, to investigate
the effects of interaction-induced correlations on the off-
diagonal long-range order and particularly on the condensate
fraction.

In Figs. 7 and 8 we show our results for the OBDM and the
momentum distribution function of RDB gases, respectively.
We observe ODLRO, i.e., a nonzero limit of ρ(r)/n for r →
∞, for all combinations of R̃c and Ũ that we studied, because
all HNC-EL/0 calculations are for the homogeneous gas of
RDBs. With increasing interaction strength Ũ and increasing
soft-core radius R̃c, the effect of ODLRO is suppressed as
expected and seen by a decreasing asymptote ρ(r → ∞)/n.
The oscillatory behavior of the OBDM and a finite momentum
peak in the momentum distribution function n(q) of both 3D
and 2D systems at large R̃c and Ũ are noticeable (see the
bottom panels in Figs. 7 and 8). Both of these features signal
the tendency of a homogeneous superfluid to form inhomo-
geneous phases. Hence a time-of-flight measurement of n(q)
could provide evidence for an instability against formation
of a droplet crystal phase, seen as a finite momentum peak
in n(q). Also, notice that the unphysical divergence in the

FIG. 8. The momentum distribution function n(q) of a 3D (left)
and a 2D (right) gas of RDBs versus q/k0 for different values of R̃c

and Ũ .

long-wavelength limit of n(q) has its roots in the failure of
HNC-EL/0 approximation in reproducing the correct asymp-
totic behavior of OBDM at large distances [29] (see Appendix
A for more details). The small deviation of ρ(r)/n from the
exact value unity for r = 0 is a gauge for the accuracy of
the HNC-EL/0 approximation [34]. While previous studies
of 4He were afflicted by a major deviation from unity, the
deviation for the RDB is only a few percent in the cases
studied here, which indicates that HNC-EL/0 is sufficiently
accurate for the RDB, see also the comparison with the exact
Monte Carlo results below.

The asymptotic value of ρ(r)/n for r → ∞ is the conden-
sate fraction n0 and is presented in Fig. 9. As discussed above,
the condensate fraction decreases with increasing either the
interaction strength Ũ or the soft-core radius R̃c but it remains
finite even in the region where the homogeneous phase is only
metastable.

D. The ground-state energy

The ground-state energy per particle within the HNC-EL/0
approximation is obtained from [24]

εHNC
g.s. (Ũ , R̃c) = n

2

∫
dr

[
g(r)vRD(r) + h̄2

m
|∇

√
g(r)|2

]

− h̄2

8mn

∫
dq

(2π )D

q2[S(q) − 1]3

S(q)
, (19)

in which many-body correlations beyond the mean-field
level are approximately accounted for. The difference
between the ground-state energy and the Hartree energy is
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FIG. 9. The condensate fraction n0 of a 3D (top) and 2D (bottom)
gas of RDBs as a function of Ũ for different values of R̃c.

conventionally called the correlation energy εc = εg.s. − εH,
where the Hartree energy per-particle εH = nvRD(q = 0)/2 is
given by ε0Ũ R̃3

c/18 and ε0πŨ R̃2
c/(12

√
3), in three and two

dimensions, respectively. Note that, in the mean-field approx-
imation, the kinetic energy is zero for a homogeneous system.

In Fig. 10, we report our numerical findings for the
correlation energy εc of a RDB gas within the HNC-EL/0
approximation. As expected the correlation energy is negative,
since the HNC-EL/0 method is based on a better variational
ansatz—the Jastrow-Feenberg ansatz—than the mean-field
approximation, which lacks correlations. The correlation en-
ergy is comparable with the Hartree energy at intermediate
values of the soft-core radii, i.e., Rck0 � 1. While εc increases
monotonically with the interaction strength Ũ , this is not the
case for its dependence on R̃c: for both small and large values
of R̃c, εc becomes negligible and the HNC-EL/0 ground-state
energy approaches the mean-field result.

IV. MONTE CARLO SIMULATIONS AND TRANSITION TO
DROPLET CRYSTAL PHASE

For validation of the approximations used in the HNC-
EL/0 calculations (no elementary diagrams and no higher
correlations than pair correlations), we performed exact
quantum Monte Carlo simulations. We used path integral
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FIG. 10. The correlation energy per particle εc of 3D (top) and

2D (bottom) RDB gas, in units of the ground-state energy εg.s. and as
a function of the soft-core radius R̃c at several values of Ũ calculated
within the HNC-EL/0 formalism.

Monte Carlo (PIMC) simulations [35,36] of N = 216 Ry-
dberg atoms in 3D with periodic boundary conditions and
included Bose symmetry by permutation sampling. PIMC
simulations yield unbiased and essentially exact results for
bosonic many-body systems and they are being widely used
for quantum fluids such as 4He [37–40] and quantum gases
[41,42] including Rydberg gases [3,4]. The N-body density
matrix is approximated by the pair action, following Ref. [36].
This allows us to use fairly large time steps τ , reducing
the path length and thus the computational effort of our
simulations. Since PIMC simulates ensembles (the canonical
ensemble in our case) at finite temperature T , we reduced T
until the quantities that we aim to compare, namely g(r) and
S(k), become essentially independent of T , which means the
system is effectively in the ground state. Details can be found
in Appendix B. The properties of a thermal cloud of Rydberg
atoms and the influence of temperature on the transition to a
crystalline phase would constitute a separate investigation, but
is not the subject of this work.

In Fig. 11 we compare the HNC-EL/0 results for g(r)
and S(k) with the corresponding PIMC results, for R̃c = 4
and Ũ = 3.0. The agreement is very good. While HNC-EL/0
slightly underestimates the height of the main peak in S(k), the
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FIG. 11. Pair distribution function g(r) (left) and static structure
factor S(k) (right) of a 3D gas of RDBs for R̃c = 4 and Ũ = 3.0. The
symbols show the PIMC results and the lines show the HNC-EL/0
results.

peak position is extremely well reproduced. This is important
for estimating the lattice constant of the self-assembled lattice
in the density wave state: the peak position of S(k) for a
fluid, i.e., a homogeneous state, predicts the Bragg peak of the
crystalline phase very well, as we will see below. We note that,
for these values of R̃c and Ũ , the PIMC results are independent
of the starting configurations of the Metropolis random walk
simulating the canonical ensemble.

Since the HNC-EL/0 calculations above indicate that the
Rydberg gas becomes unstable against density oscillations
as Ũ (or R̃c) is increased, we performed PIMC simulations
also for larger values of Ũ . For example, already for Ũ = 5
and R̃c = 4 we find that starting at a homogenous phase
(e.g., from simulations with Ũ = 3), the system eventually
crystallizes into a more or less regular face-centered cubic
lattice. Note that, for R̃c = 4 and Ũ = 5, our HNC-EL/0
calculations, which uses a homogeneous Jastrow ansatz, still
converges to a homogeneous state without problems. Consid-
ering the good agreement for Ũ = 3 (Fig. 11), it is unlikely
that HNC-EL/0 would fail for somewhat larger values of Ũ .
Our HNC-EL/0 calculations are based on a homogeneous,
i.e., translationally invariant, wave function, hence we can
only get homogeneous solutions. These are only metastable
if there is an inhomogeneous droplet crystal solution of lower
energy. The transition is thus expected not to be continuous,
but a first-order transition. This has indeed been found by
using the mean-field approximation in three dimensions [13]
and by using PIMC simulations in two dimensions [4].

First-order transitions are usually studied with quantum
Monte Carlo methods that employ a trial wave functions by
comparing energies obtained with the different trial wave
function, e.g., a homogeneous Jastrow wave function (as we
use for HNC-EL) and a trial wave function appropriate for a
solid, see e.g., Refs. [43,44]. In this work we use PIMC, which
is unbiased by a trial wave function, to investigate the phase
transition from a uniform fluid to a crystal state. As mentioned
above, PIMC simulations starting from homogeneous initial
conditions converge to a crystalline phase, demonstrating that
the sampling is ergodic. However, very close to the phase

transition, the energies of the two phases are almost identical
(assuming T → 0). Indeed, in the vicinity of Ũ = 4 (and still
R̃c = 4), we found that our PIMC results do depend on the
initial configuration; even long equilibration did not lead to a
phase change between uniform fluid and crystal. Eventually,
a simulation would equilibrate, but this equilibration time
diverges when both phases have the same energy.

We make use of the divergent equilibration time to study
both phases without possible bias from trial functions: we
simulate the Rydberg gas in the vicinity of Ũ = 4 by either
initializing the simulations with crystal equilibrium configu-
rations obtained for Ũinit = 5,1 or by initializing with uniform
equilibrium configurations from Ũinit = 3. In other words, we
“quench” the interaction strength Ũ to a value close to the
phase transition around Ũ = 4, coming from either larger
(crystalline phase) or smaller (uniform phase) values, and
equilibrate after the quench. Note that this is not a quench
in real time, it just provides initial conditions from different
regimes. Slow temperature “quenches” have been used in a
PIMC study of a metastable glassy phase of 4He [45]; inter-
action quenches in a PIMC study of the electronic transition
of Rb adsorbed on a 4He surface [46,47]. The equilibrated
results after the quenches Ũinit → Ũ are shown in Fig. 12
for a narrow range of Ũ values, Ũ = 4.0, 4.05, 4.1. Both
the pair distribution functions g(r) and the static structure
factors S(k) differ strongly between the fluid and the crystal
case for a given Ũ . In the crystal phase, g(r) has a large
peak at r = 0 and falls quickly to almost zero, followed by
extended oscillations up to the limit of half the box length.
The corresponding peak in S(k) is evocative of the Bragg
peak of a solid. Conversely, the homogeneous fluid phase
is characterized by a g(r) with much weaker correlations
at r = 0 and oscillations that decay much quicker to unity.
The corresponding S(k) has no Bragg peak but is a smooth
function as expected for fluid states.

To illustrate the long-range order of the solid phase, we
show a snapshot of the world lines of the PIMC simulation of
solid phase for Ũ = 4.1 and R̃c = 4 in the left panel of Fig. 13
where each bead of each Rydberg atom is represented by a
dot. The triangular structure of the face-centered cubic lattice
when viewed along a diagonal of the cube is clearly visible.
The right panel is a snapshot of simulation of the (metastable)
fluid phase at the same interaction parameters, showing no
long-range order.

For Ũ = 4.0, the comparison between HNC-EL/0 (lines)
and PIMC (blue symbols) still shows good agreement, pre-
dicting the correct peak position in S(k). HNC-EL/0 exhibits
weaker correlations in g(r); this is the usual consequence
of the approximations made in HNC-EL/0, which can be
improved by including elementary diagrams and/or triplet
correlations at least approximately. We note that, beyond the
first-order transition to a crystal—at Ũ ≈ 4.05 in the case
of R̃c = 4—HNC-EL/0 still gives valid, albeit approximate
results: HNC-EL/0 based on a homogeneous Jastrow wave
function explores the metastable regime of the homogeneous

1We only use those simulations that happen to crystallize in a
perfect fcc lattice and discard fcc lattices with defects.
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FIG. 12. (top) Pair distribution function g(r) of
three-dimensional RDB for R̃c = 4 and Ũ = 4.00, 4.05, 4.10.
The red symbols with error bars show the PIMC results for g(r) for
the three values of Ũ in the density-wave state corresponding to a
fcc lattice; the blue symbols show g(r) for the same Ũ values, but
in the fluid, i.e., homogeneous state. Also shown is the HNC-EL/0
result for the homogeneous state (green line) for Ũ = 4.00. The
inset shows the energy per particle as a function of Ũ for the two
states, indicating a first-order transition around Ũ = 4.05. (bottom)
Same as top panel for the static structure factor S(k).

fluid phase. Expressed in terms of the dimensionless param-
eter α3D, our PIMC simulations predicts the phase transition
to occur at α3D = 35, which is slightly higher than the mean-
field estimate of α3D = 30 [13].

The energies of the crystal and fluid phases are shown in
the inset of Fig. 12. For example, the ground-state energy per
particle for Ũ = 4.0 and R̃c = 4.0 is εg.s. = 11.25 ε0, while
the HNC-EL/0 result for this Ũ and R̃c is εg.s. = 12.19 ε0—
slightly higher as expected for a variational method. The
PIMC energies of the crystal and fluid intersect at a critical
Ũc ≈ 4.05. As expected, the energy of the fluid phase is lower
for Ũ < Ũc and the energy of the crystal is lower for Ũ > Ũc.
The crossing of the energies and the behavior of g(r) and S(k)
is a strong indicator for a first-order transition, which is not
surprising for a liquid-solid transitions. Note, however, that
in the present case we have a quite peculiar solid [3,4,13]
(which has been found also for classical systems with similar
interactions [48,49]): a lattice site of this solid consists of
a fluid cluster of atoms rather than of a single atom. The
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FIG. 13. PIMC simulation snapshots showing the beads of a
simulation of the solid (left) and liquid (right) phase for Ũ = 4.1
and R̃c = 4.

droplet size Nd depends on U and Rc. For instance, for the
parameters in Fig. 12, the droplets consist of slightly less
than Nd = 3 particles on average. This can be obtained by
integrating the peak of g(r) at r = 0 up to the first minimum
at rmin, Nd = 1 + 4πn

∫ rmin

0 drr2g(r).

V. SUMMARY

We have studied the ground-state properties of Rydberg-
dressed Bose gases in two and three dimensions by means of
hypernetted-chain approximation and, for quantitative com-
parison, path integral Monte Carlo simulations. For a homoge-
nous fluid, the HNC approximation even in its simplest level,
i.e., HNC-EL/0 gives results in very good agreement with the
PIMC data, while requiring orders of magnitude lower com-
putational effort. The pair distribution function and excitation
spectrum signal the tendency of the homogenous superfluid
phase to become unstable against density waves when the
interaction strength U or the soft-core radius Rc are increased.
Based on the HNC-EL/0 ground-state structure function, we
calculated the excitation spectra by using the Bijl-Feynman
approximation [30,31]. Close to the instability, the excitation
spectrum exhibits a pronounced roton minimum, which is a
precursor to establishing long-range order, i.e., crystallization.
The comparison of our results for the spectra with the mean-
field approximation showed that, for the excitation spectrum,
the mean-field approximation is adequate in 3D but deviates
significantly from our more accurate results in 2D. For other
quantities, such as the pair distribution function for small
pair distances or the ground-state energy, the deviations of
the mean-field approximation are significant also in 3D. In
particular, we show that the spectrum does not depend uni-
versally on a single parameter characterizing the Rydberg
interaction but on the coupling strength and soft-core radius
individually. The PIMC simulations for 3D confirmed the
homogeneous phase undergoes a first-order phase transition to
a droplet crystal phase [3,4,13]. At strong coupling strengths,
when the soft-core radius of the interaction is comparable
with the average interparticle separation, i.e., Rck0 � 1, the
correlation energy becomes comparable with the Hartree, i.e.,
mean-field energy, and strongly lowers the total ground-state
energy towards the exact value. We also studied off-diagonal
long-range order and found that the interparticle interaction
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strongly depletes the Bose-Einstein condensation, but even in
the vicinity of the transition to a droplet crystal, the conden-
sate fraction remains finite.

For the calculation of the excitation spectrum, we used the
simple Bijl-Feynman approximation, which provides an upper
bound to the true spectrum. For example in 4He, the Bijl-
Feynman approximation overestimates the true roton energy
by a factor of two. With improved methods, such as the cor-
related basis method [50,51] or recent improvements thereof
[52–54], nearly exacts can be obtained for the excitation
spectrum, including quantitative predictions for broadening
due to damping. This will be the topic of future work.

Finally, we would like to note that, for 87 Rb atoms coupled
to their 50S Rydberg states, the bare van der Waals coefficient
is C6/h̄ = −2π × 15.45 GHz μm6 [55]. Red laser detuning
frequency of |�| = 2π × 1.9 MHz leads to the soft-core
radius of Rc = 4 μm. In three dimensions, using an effective
two-photon Rabi frequency of � = 2π × 2.47 kHz, gives
U/h̄ = 68 μHz. An average density of n ≈ 1.7 × 1011 cm−3

would be sufficient to observe the quantum droplet phase.
In two dimensions, one can use � = 2π × 7.4 kHz to find
U/h̄ = 340 μHz, and hence a quantum droplet phase requires
an average planar density of n = 2.5 × 108 cm−2.
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APPENDIX A: LONG-WAVELENGTH BEHAVIOR OF
MOMENTUM DISTRIBUTION FUNCTION

The OBDM obtained within the HNC-EL/0 formalism ap-
proaches its asymptotic value slower than what one would ex-
pect from the exact results. This results in an unphysical long-
wavelength divergence in n(q) [29]. In particular for a 3D

FIG. 14. Plots of r2[ρ(r)/n − n0] (top) in units of 1/k2
0 and

q n(q) (bottom) in units of k0 for a 3D gas of RDBs at different values
of R̃c and Ũ .

FIG. 15. The energies as shown in the inset of Fig. 11 for the fluid
(blue) and solid (red) phase at inverse temperature β = 1/kBT =
16 ε−1

0 and time step τ = 1/8 ε−1
0 are shown with full lines. (left)

Comparison with results at half the time step, i.e., τ = 1/16 ε−1
0 ,

shown as dashed lines. (right) Comparison with results at half the
temperature, i.e., β = 32 ε−1

0 , shown as dashed lines. In all cases the
error bars are smaller than the symbol size.

system, we find ρHNC(r → ∞) − nn0 ∝ 1/r2, which results
in nHNC(q → 0) ∝ 1/q. This clearly indicates an unphysical
divergence in the HNC-EL/0 results for the momentum dis-
tribution function at long wavelengths. Similar analyses of
the numerical data in 2D gives ρ(r → ∞) − nn0 ∝ 1/rγ with
γ ≈ 1.5. We have illustrated the behavior of r2[ρ(r)/n − n0]
and qn(q) for a 3D RDB system in Fig. 14, which better
illustrates the oscillatory behavior of 1BDM, and the finite
momentum peak of n(q) at strong couplings.

We have illustrated the behavior of r2[ρ(r)/n − n0] and
qn(q) for a 3D RDB system in Fig. 14, which better illustrates
the oscillatory behavior of 1BDM, and the finite momentum
peak of n(q) at strong couplings.

APPENDIX B: PATH INTEGRAL MONTE CARLO
SIMULATION DETAILS

We compared our zero-temperature variational results us-
ing the HNC-EL method with results obtained with PIMC
of N = 216 Rydberg atoms in a simulation with periodic
boundaries. To assess the accuracy of the PIMC results, we
have to ensure that (i) the time-step bias is negligibly small
and that (ii) the temperature T of the PIMC simulations is
chosen sufficiently small such that the system is essentially in
the ground state.

In our PIMC simulation we approximated the N-body den-
sity matrix by a product of pair density matrices [36], which at
relatively large imaginary time steps τ is much more accurate
than the Trotter approximation of the density matrix. For the
results shown in Figs. 11 and 12, we used the time step τ =
1/8 ε−1

0 , at an inverse temperature β = 1/kBT = 16 ε−1
0 . In

Fig. 15 we demonstrate for R̃c = 4 that, with these parameters,
our PIMC simulations deliver essentially exact ground-state
(T → 0) results. The left panel compares the energies in the
inset of Fig. 11, shown with full lines, with energies obtained
at half the time step, τ = 1/16 ε−1

0 , shown with dashed lines.
The right panel compares those energies with the result of a
simulation with half the temperature, i.e., twice the inverse
temperature β = 32 ε−1

0 , again shown as dashed lines. The full
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and dashed lines can hardly be distinguished, demonstrating
that our results are converged with respect to τ → 0 and and

β → ∞. In all comparisons the phase transition occurs at
about Ũ = 4.05.
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