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We present diffusion Monte Carlo (DMC) and path-integral Monte Carlo (PIMC) calculations of a one-
dimensional Bose system with realistic interparticle interactions in a periodic external potential. Our main aim
is to test the predictions of the Luttinger liquid (LL) theory, in particular with respect to the superfluid-Mott
insulator transition at both zero and finite temperatures, in the predicted robust and fragile superfluid regimes.
For that purpose, we present our results of the superfluid fraction ρs/ρ0, the one-body density matrix, the
two-body correlation functions, and the static structure factor. The DMC and PIMC results in the limit of very
low temperature for ρs/ρ0 agree, but the LL model for scaling ρs/ρ0 does not fit the data well. The critical depth
of the periodic potential is close to the values obtained for ultracold gases with different models of interaction,
but with the same value of the bare LL parameter, demonstrating the universality of LL description. Algebraic
decay of correlation functions is observed in the superfluid regime and exponential decay in the Mott-insulator
one, as well as in all regimes at finite temperature for distances larger than a characteristic length.
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I. INTRODUCTION

Interacting one-dimensional (1D) systems in periodic po-
tentials and disorder present rich phenomena that have still
not been completely explored despite many years of study.
Reviews of 1D systems are given in Refs. [1,2]. Low-energy
phenomena of the system are expected to follow Luttinger
liquid (LL) theory [3]. Despite the lack of long-range order,
in a uniform system the quasisuperfluid phase is predicted
for Luttinger parameter K > 0.5, while quasisolid order is
expected for K < 0.5. The superfluidity in one dimension is
a finite-size effect, depending on the product of length and
temperature, which means it should disappear in the thermo-
dynamic limit for any finite temperature. The correlation func-
tions are predicted to decay algebraically at zero temperature,
while at finite temperatures the crossover to exponential decay
is expected [4].

In periodic potentials the superfluid-Mott insulator transi-
tion is predicted and confirmed in experiments with ultracold
gases, which are loaded in cigar-like traps and shallow optical
lattices [5]. The transition was explored in the limit of zero
temperature theoretically using continuous quantum Monte
Carlo simulations, which have mapped the phase diagram and
demonstrated the applicability of the Bose-Hubbard model,
which is typically used for deep lattices and the sine-Gordon
model which is often used for shallow optical lattices [6–11].
Optical lattices were also shown to be a very good tool to
study defect-induced superfluidity [12].

One-dimensional systems can be created also by adsorp-
tion in nanopores or nanotubes. Such examples include 4He
and parahydrogen. He in one dimension was studied in
Refs. [13–15] and its LL properties were demonstrated by
Bertaina et al. [16]. The LL properties of helium are also
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observed in quasi-1D environments of nanopore [17–21]. In
particular, in Ref. [20] it was shown that 1D-like behavior is
only obtained for narrow pores, when two atoms are unable to
exchange positions along the axis. In Ref. [21], helium for
such nanopores was studied for different densities, demon-
strating LL behavior at finite temperature.

Liquid parahydrogen (p-H2) has also been investigated
as a possible 1D superfluid in pure one dimension [22,23],
in carbon nanotubes [22,24–26], and in a variety of other
nanopores [27,28].

Studies of the 1D superfluid-insulator transition in a peri-
odic external potential using continuous models were carried
out in the zero-temperature approximation. It is interesting to
consider how the interplay of quantum and thermal fluctua-
tions changes the superfluidity and correlations of a strongly
interacting system in periodic potentials. Since, according to
the LL theory, a system’s response in the low-energy limit
should depend on the parameter K , we choose a model in
which, depending on the density, K assumes values from ∞ to
0. Such behavior in one dimension is demonstrated by the 4He
atoms [16] or isotopes of spin-polarized hydrogen [29]. This
allows us to study the regime where superfluidity is expected
to be robust (K > 2) and the other one where even an infinites-
imal periodic potential is expected to destroy superfluidity [2].

We present the model and methods in Sec. II. The results
are presented and discussed in Sec. III. Finally, we summarize
our main findings in Sec. IV.

II. MODEL AND METHODS

The system under study is composed of N bosons of mass
m with the Hamiltonian

Ĥ = − h̄2

2m

N∑
i=1

�i +
N∑

i< j

U (ri j ) +
N∑

i=1

Vext(xi ), (1)
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where N is the number of 4He atoms of mass m, ri j =
|xi − x j |, U (r) represents the interaction between 4He atoms
modeled by the Aziz potential [30], and Vext(x) is the external
potential corresponding to the optical lattice.

In this work, we considered periodic external potential of
the form

Vext(x) = V0 sin2(kx), (2)

where k = π/a0, with a0 = L/N the lattice constant, so that
there is one atom per lattice site. A convenient measure to
express the depth is the recoil energy ER = h̄2π2/(2ma2

0).
Finite-temperature calculations were performed using the

worm algorithm path-integral Monte Carlo [31,32]. The val-
ues of the discretized imaginary time δτ were 8 × 10−3 K−1

for ρ0 = 0.2 Å−1 and 1.2 × 10−2 K−1 otherwise.
The diffusion Monte Carlo (DMC) method, which solves

stochastically the Schrödinger equation written in imaginary
time was used for zero-temperature calculations, as described
in Ref. [33]. The DMC method uses a guiding wave function
for importance sampling to reduce the variance to a manage-
able level. We adopted a Jastrow wave function in the form
� = ∏

i< j f (ri j ), where f (r) = exp[−(b/r)5]. The optimal
value of the parameter b was around 3.1 Å . We carefully
analysed all possible sources of bias, in particular time-step
and population-size bias. Although in most cases the results
starting from 2000 walkers were within the errorbars equal
to the value obtained by extrapolating to an infinite number
of walkers, we typically used 10 000 walkers. The timestep
of τ = 0.3 × 10−4 K−1 was, in several cases, within the
errorbars equal to the value obtained by extrapolation to zero
timestep, so we decided to use it for other simulations.

The superfluid fraction was determined in PIMC calcula-
tions using the winding number estimator [34,35]

ρs

ρ0
= 〈W 2〉

2λβN
, (3)

where λ = h̄2/2m, β = (kBT )−1, N is the number of particles,
and

W =
N∑

i=1

M∑
j=1

(ri, j+1 − ri, j ), (4)

with M the number of time slices. In the DMC, the superfluid
fraction was determined by an extension of the winding num-
ber technique [36] which determines the diffusion constant of
the center of mass in the limit of infinite simulation time

ρs

ρ0
= lim

τ→∞
D(τ )

τD0
, (5)

where D0 = h̄2/2m and

D(τ ) = N

2
〈[xc.m.(τ ) − xc.m.(0)]2〉, (6)

with xc.m. = ∑
i xi/N . It is important to track the center of

mass of all the particles beyond the simulation cell limits,
which means that in this procedure periodic boundary con-
ditions should not be used.

In our calculations, for determining superfluidity at each
length of the periodic cell and depth of the optical lattice V0,
we took an average over ten simulations, using 8000 to 10 000
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FIG. 1. Luttinger liquid parameter K as a function of the density.
The bottom area corresponds to the quasisolid regime with K < 0.5.
The superfluid regime which is robust to periodic potential (K > 2)
is at the top. The points at which the response of the system to period
potential is studied are marked with circles.

walkers which were propagated in 30 blocks of 10 000 steps,
using the timestep 3 × 10−4 K−1.

III. RESULTS

A. Uniform system

We first studied the properties of the uniform system. At
low energies they are expected to follow the Luttinger liquid
theory. We determined the equation of state e = E/N , which
allowed us to calculate the LL parameter as K = (v0

J /vN )1/2 =
[π2( h̄2

m )ρ3
0κ]

1/2
, [4] where the compressibility κ is given by

κ−1 = ρ0
∂P
∂ρ0

, with pressure P = ρ2
0∂e/∂ρ0.

The results for the LL parameter, which are in good
agreement with Bertaina et al. [16] are given in Fig. 1. Small
differences with Ref. [16] are due to different forms of the
He-He interaction potential (He-He scattering length here is
88 Å). In the given density range several physically different
regimes are accessible. For K > 0.5 the system is superfluid,
and for K < 0.5 quasisolid. The superfluid is predicted to
be robust to the periodic potential for K > 2 and robust to
disorder for K > 3/2 [2].

These different regimes are visible in the behavior of
correlation functions at zero and finite temperature. At zero
temperature, according to the LL theory, the pair correlation
function and the one-body density matrix, at long distances
x � a = ρ−1

0 , have the forms

g(x) = 1 − 2K

[2πρ0d (x|L)]2
+

∞∑
n=1

An cos(2πnρ0x)

[ρ0d (x|L)]2Kn2 , (7)

n(x) = ρ0

[ρ0d (x|L)]1/2K

∞∑
n=0

Bn cos(2πnρ0x)

[ρ0d (x|L)]2Kn2 , (8)

where d (x|L) = L|sin(πx/L)|/π in the case of periodic
boundary conditions, and simplifies to x for L → ∞. At finite
temperature, algebraic decay is observed approximately up to
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FIG. 2. Results of the calculations of n(x) and g(x) for uniform
system. Upper line represents n(x) for ρ0 = 0.1 Å−1 at T = 0.12 K,
while middle line is n(x) for ρ0 = 0.2 Å−1 at T = 0.19 K. Bottom
lines are results of g(x) for ρ0 = 0.2 Å−1 at T = 0.04 K and T =
0.48 K, the one with lower peaks (dashed) corresponding to higher
temperature. Thin lines are corresponding fits of Eqs. (7) to (10).

x ∼ LT , where LT = h̄vJ/(KT ), and then it “crosses over” to
exponential decay [4], according to

g(x) = 1 − K

2π2

[
π/LT

ρ0 sinh(πx/LT )

]2

+ B cos(2πρ0x)

[
π/LT

ρ0 sinh(πx/LT )

]2K

, (9)

n(x) = Aρ0

[
π/LT

ρ0 sinh(πx/LT )

]1/2K

. (10)

The results of the PIMC calculations of n(x) and g(x)
for uniform system are presented in Fig. 2. We plot n(x)
for ρ0 = 0.2 Å−1 at T = 0.19 K (LT = 72 Å) and ρ0 = 0.1
Å−1 at T = 0.12 K (LT = 14 Å). In the case of the lower
density one observes the exponential decay, while for the
higher density one is still effectively in the zero-temperature
limit. In the case of g(x) results are presented for ρ0 =
0.2 Å−1 at two temperatures: T = 0.04 K (LT = 340 Å) and
T = 0.48 K (LT = 28 Å). The effects of exponential decay for
lengths larger than LT are only slightly visible in the decay of
the correlation peaks. Overall, the obtained results follow the
LL predictions.

B. Periodic external potential

Four densities are considered for checking the system’s
response to the periodic potential, as marked by dots in Fig. 1.
Two are in the regime where robust superfluidity is expected
and two in the fragile superfluid regime.

First, in Fig. 3, we present the DMC results for superfluid-
ity at zero temperature as a function of the periodic potential
depth V0 in units of the recoil energy (ER), for several lengths
of the periodic boundary cell. In the superfluid regime, in
the limit of zero temperature, the values obtained for different
lengths should be the same within errorbars. Thus, when
finite-size superfluidity starts to be observed, that signals the
transition to Mott insulator. For all considered densities and
lengths the trend of reducing the superfluid fraction with the
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FIG. 3. DMC results for superfluid fraction at zero temper-
ature for densities (a) ρ0 = 0.08 Å−1, (b) ρ0 = 0.1 Å−1, (c)
ρ0 = 0.114 Å−1, and (d) ρ0 = 0.2 Å−1.
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depth is observed, but superfluidity persists until some critical
depth for K > 2, as expected. Further, the present results
show that for larger K one needs larger V0/ER. Namely, for
ρ0 = 0.08 Å−1 the signal for the transition appears between
1.7 and 2 V0/ER, while for ρ0 = 0.1 Å−1 it is between 0.6
and 0.8 V0/ER. However, for the density ρ0 = 0.08 Å−1 the
superfluid fraction for two longer lengths overlaps, so we
do not have sufficient data to conclude that the superfluid
fraction would converge to zero in the limit of infinite length,
as expected for Mott insulator. For very low potential depths
V0 a superfluid fraction appears to saturate very close to 1. It
has been shown by Leggett [37] that if translation invariance
is broken the superfluid fraction, even at T = 0, has to be
less than 1. Due to small depths (V0 � 0.1 ER) this effect,
although expected, is not visible within statistical errors of
these calculations. It is interesting to compare the results for
K > 2 with experiments on ultracold gases [5,11], in which
the critical depth is presented in terms of the Lieb-Liniger
parameter γ . [38] Since the microscopic model of interaction
between the particles differ, we can use the Luttinger param-
eter K to compare the systems’ response. For our density
ρ0 = 0.08 Å−1, K = 2.86, and the same value of K is obtained
in Ref. [5] for γ = 1.5. Different measurements estimate
the critical depth (V0)C between 1.5 and 2.9 ER, while for
the same γ in Ref. [11] (V0)C between 2.4 and 3 ER is
obtained. For the density ρ0 = 0.1 Å−1, K = 2.17 and the
corresponding γ = 2.86, for which in Ref. [5] (V0)C appears
at about 0.5 ER, while for Ref. [11] it is between 1.2 and
1.4 ER.

In the case of two higher densities, where K < 2, even
longer simulations would be needed to determine if the super-
fluidity disappears at the lowest depths considered. However,
it is clear that superfluidity vanishes for V0 > 0.1 ER in the
case of ρ0 = 0.114 Å−1 and V0 > 0.04 ER for ρ0 = 0.2 Å−1,
which is expected from both theory and experiment.

At finite temperature, according to the LL theory, the
superfluid fraction should scale with LT . Furthermore, the
dynamic superfluid fraction ρD

S /ρ0 was introduced [21,39,40]

ρS

ρ0
=

(α0

4

)∣∣�′′
3

(
0, e−αD/2

)∣∣
�3

(
0, e−αD/2

) , (11)

where

αD = α0

(
ρD

S

ρ0

)−1

, (12)

α0 ≡ (T L/σρ0), σ = h̄2/kBm = 12.1193 K Å2, and �3(z, q)
is the Theta function, �′′

3 (z, q) = d2�3(z, q)/dz2. The value
of ρD

S /ρ0 obtained by fitting the winding number results at
different temperatures and lengths should thus correspond to
the superfluid fraction results obtained in the zero-temperature
DMC calculations in the superfluid regime. In the Mott-
insulator regime one does not expect Eq. (11) to be valid, that
is, the results for different lengths are not expected to follow
the same lines. We present in Fig. 4 the results obtained at
different temperatures and lengths for four densities and two
depths. Additionally, for T = 0 K we add the DMC results for
comparison. According to the latter, for the first depth V0 =
0.1 ER the systems with ρ0 = 0.08 Å−1 and 0.1 Å−1 should
be superfluid and for V0 = 2 ER the Mott insulator is expected
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FIG. 4. Superfluid fraction versus LT/a, with a = π (h̄2/m)ρ0,
for densities (a) ρ0 = 0.08 Å−1, (b) ρ0 = 0.1 Å−1, (c) ρ0 = 0.114
Å−1, and (d) ρ0 = 0.2 Å−1. Lengths are given in Å, T in K, depths
(Vo) in ER. Lines are theoretical fits of Eq. (11) which are presented
only when χ 2 is less then 50. We add the DMC results for T = 0 K.
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in the case of ρ0 = 0.1 Å−1. Generally, the PIMC results
confirm the DMC predictions. Superfluidity appears robust
(results for different lengths generally follow the same line)
and at low temperatures it is consistent with zero-temperature
results in the predicted superfluid regime, obtained by
DMC.

However, the fits of Eq. (11) (to data with different lengths
and the same value of V0) estimate lower values of ρS/ρ0

at zero temperature than DMC results and do not follow the
points at low temperatures. This is also reflected in the large
χ2 values. So it appears that, at low temperatures, the model
in Eq. (11), which does not include the external periodic
potential, is not completely appropriate. This is most visible
at the lowest depth for ρ0 = 0.08 Å−1.

For ρ0 = 0.08 Å−1 and V0 = 2 ER there is separation be-
tween the results for the smallest length and those at larger
ones, similar to the DMC results. However, since the results
for two larger lengths overlap within the errorbars, one cannot
definitely conclude that the SF-Mott insulator barrier has been
crossed. For the larger density ρ0 = 0.1 Å−1 and V0 = 2 ER,
the results at all temperatures indicate convergence to zero
with the increase of the length, as expected for the Mott
insulator.

For ρ0 = 0.114 Å−1, at the lowest depth of 0.1 ER the
systems within the errorbars appear superfluid (just like in
DMC). At the higher depth presented, the results for different
lengths start to deviate, the model does not fit the data, while
the superfluid fraction for the largest length and every T
is essentially consistent with zero, which indicates a Mott
insulator. Similar behavior is obtained for ρ0 = 0.2 Å−1.

One interesting effect is observed in the case of the Mott-
insulator phase. The obtained finite-size superfluid fraction for
a particular length in several cases increases with temperature
and then starts to decrease again.

To gain a better understanding of the system we plot
the external potential and the density along the axis for
ρ0 = 0.1 Å−1 [Fig. 5(a)] and ρ0 = 0.2 Å−1 [Fig. 5(b)] for the
same configurations as in the Figs. 4(b) and 4(d).

One can observe that for the lower V0 and even for ρ0 =
0.2 Å−1 the density profile is only slightly modified. Two
temperatures are chosen, one representing the lower and one
the higher range on Fig. 4. The temperature increase slightly
flattens the periodic oscillations in the density along the axis.
When the superfluidity disappears, the particles are still not
completely localized. It does not happen even for the highest
density considered ρ0 = 0.2 Å−1. To achieve complete local-
ization the depth needs to be increased considerably, e.g., to
25 ER for the density ρ0 = 0.114 Å−1. We also calculated the
pair correlation functions, which are presented at two densities
and two depths in Fig. 6. When the lower depth ρ0 = 0.1 Å−1

is considered there is almost no difference with respect to
the case without optical lattice. With the increase of external
potential depth, oscillations corresponding to the periodic
potential appear. In the case of the density ρ0 = 0.2 Å−1,
we only observe the enhancement of oscillations which are
already present without the optical lattice because the system
is near the quasisolid regime. Additionally, for ρ0 = 0.2 Å−1

the temperature effect is not visible for higher depths, that is,
all lines coincide.
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FIG. 5. Density profile D(x) and external potential V (x) for
densities (a) ρ0 = 0.1 Å−1 and (b) ρ0 = 0.2 Å−1.
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FIG. 7. Finite-temperature OBDM for two densities (a)
ρ0 = 0.1 Å−1 and (b) ρ0 = 0.2 Å−1 for different temperatures and
depths. Statistical errorbars are of the order of the linewidth.

We further calculated the one-body density matrix. The
results are presented in Fig. 7. Again, the results are very
similar to the case without the optical lattice when the
depth is small. In the robust superfluid regime [Fig. 7(a)],
for V0 = 0.1 ER and at very low temperature T = 0.021 K
algebraic decay is observed as expected because LT = 80 Å.
It crosses over to exponential eventually, which is clearly
observed at a higher temperature of T = 0.12 K, where LT =
14 Å. Interestingly, even in the case of fragile superfluid
ρ0 = 0.2 Å−1 [Fig. 7(a)] the decay is not exponential at the
lowest temperature. For higher depths, where the system is
clearly in the Mott-insulator regime, the decay is exponential
at all temperatures. Temperature effects at higher V0 are small,
which is consistent with the behavior of other quantities.
The results for static structure factor S(k) for two densities,
depths and temperatures, are presented in Fig. 8. For lower
density [Fig. 8(a)], when the depth is small, there is a small
difference with respect to the case without optical lattice. With
the increase of the temperature, one notices that S(k) starts
to increase at small k. This appears because g(x) at large
distances starts to decay exponentially, which leads to the term
proportional to [(2π )2 + (LT k)2]−1 appearing at small k. It
is only visible at higher temperature due to smaller LT . At
higher depths, for ρ0 = 0.1 Å−1 one additionally notices the
appearance of the peak with the wave vector corresponding to
the optical lattice potential. A similar peak was observed in the
study of bosonic hard rods in a 1D optical lattice [6]. At the
density 0.2 Å−1, one observes one peak in S(k) corresponding
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FIG. 8. Finite-temperature S(k) for two densities (a)
ρ0 = 0.1 Å−1 and (b) ρ0 = 0.2 Å−1 for different temperatures
and depths. Insets represent zoomed-in peaks of S(k).

to k = 2πρ0. The peak is enhanced for higher depth of the
optical lattice because there is one atom per lattice site. In all
cases there is a small temperature dependence.

IV. CONCLUSION

The low-energy properties of the 1D strongly interacting
system with realistic interparticle interactions in a periodic
potential with commensurate filling have been determined.
The superfluid fraction in the limit of low temperature shows
agreement between two used quantum Monte Carlo meth-
ods, DMC and PIMC. However, the model from which the
dynamical superfluid fraction can be obtained does not fit
the data in the superfluid regime well, that is, the best-fit
model passes below the PIMC and DMC data at low LT .
The system was studied thoroughly for four densities, two in
the expected robust superfluid phase and two in the fragile
superfluid phase. In the robust superfluid phase (K > 2) it
was clearly demonstrated, as expected from the LL theory
that it takes a finite potential depth of the periodic potential
to achieve the transition to Mott insulator. The depth is
larger when the Luttinger parameter is larger. Despite the
difference in microscopic models, when the bare Luttinger
liquid parameters are equal, the obtained values of the crit-
ical depth for the superfluid-insulator transition are close to
both experimental and theoretical results in ultracold gases
[5,10,11], demonstrating the LL universality. In the fragile
superfluid phase (K < 2), longer simulations and possibly
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larger lengths are needed to determine with certainty if the
extremely small strength of the optical lattice potential de-
stroys the superfluidity, which is expected in the thermody-
namic limit. However, as the depth is increased by a small
amount, one can clearly observe the loss of superfluidity.
Interestingly, when superfluidity is lost the density profile
shows that particles are not localized. At small potential
depths the correlation functions are not affected. As the depth
of the optical lattice is increased one observes oscillations in
the pair-correlation function and the corresponding peak in
S(k), while the one-body density matrix demonstrates expo-
nential decay. Exponential decay also leads to the Lorenzian
peak in S(k), which can be observed when LT is not too
large.

It would be interesting to investigate this system at
finite temperature for noncommensurate filling of a lat-
tice, in particular focusing on the predicted defect-induced
superfluidity [12].
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