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Chaos-induced breakdown of Bose-Hubbard modeling

Sayak Ray,1 Doron Cohen ,2 and Amichay Vardi 1

1Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
2Department of Physics, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel

(Received 6 August 2019; revised manuscript received 7 January 2020; published 21 January 2020)

We show that the Bose-Hubbard approximation fails due to the emergence of chaos, even when excited modes
are far detuned and the standard validity condition is satisfied. This is formally identical to the Melnikov-Arnold
analysis of the stochastic pump model. Previous numerical observations of Bose-Hubbard breakdown are
precisely reproduced by our simple model and can be attributed to many-body enhancement of chaos.
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I. INTRODUCTION

The Bose-Hubbard model (BHM) [1,2] is one of the most
prominent tools in the study of interacting many-body sys-
tems, no less significant than its celebrated fermionic coun-
terpart [3,4]. Its use for treating ultracold bosons in shallow
optical lattices [5,6] resulted in landmark experimental
demonstrations of the superfluid-to-Mott-insulator quantum
phase transition [7–9] and of dynamical quantum phase re-
vivals [10,11]. These experiments and the subsequent devel-
opment of quantum engineering techniques provide a unique
opportunity to simulate various models and to explore the ex-
otic phases of quantum matter using ultracold atoms [12,13].

The simplest BHM includes only two modes. Originally
introduced in nuclear physics by Lipkin et al. [14], two-mode
theories apply equally well to Bose-Einstein condensates
(BECs) of atoms in the same hyperfine state confined in
a double-well trap and to spinor BECs of atoms with two
hyperfine states confined in a single-well trap. Two-mode
BHMs are used to describe schemes for squeezing and entan-
glement [15–17], Josephson oscillations and self-trapping in
bosonic Josephson junctions [18–22], the dynamical growth
of quantum fluctuations [23–28], and persistent currents and
phase slips in superfluid atom circuits [29–34].

Efforts towards realization of quantum simulators assume
the validity of the BHM for describing cold atoms in optical
lattices. The determination of validity criteria for the BHM
is therefore of utmost importance. While Bose-Hubbard dy-
namics can be affected by coupling to the ever-present excited
Bloch bands [35–40], it is generally accepted that the motion
can be restricted to the lowest band of the site chain, provided
that the interaction energy is small with respect to the gap
between it and the first excited band [2,18,21,24].

Despite this convention, the BHM was numerically shown
to fail within its expected validity regime [35]. Compar-
ing multiconfigurational time-dependent Hartree for bosons
(MCTDHB) simulations of the exact dynamics, with two-
mode Bose-Hubbard dynamics, deviations from the BHM
were observed even for tight traps where the standard validity
condition is satisfied. The cause of this surprising failure
remained unclear. No mechanism was offered to explain it or
to attribute it to a particular dynamical feature, and no revised
validity condition has been suggested.

Here, we show that even if its standard validity condition
is satisfied, the BHM is still prone to failure due to the emer-
gence of dynamical chaos. The naive assumption that high-
lying orbitals that do not participate in the dynamics merely
renormalize the hopping elements via virtual transitions does
not generally apply. Rather, chaos can be induced via the
Melnikov-Arnold mechanism, as in Chirikov’s stochastic
pump model [41]. Specifically, near-separatrix dynamics be-
comes stochastic due to the coupling with a high-lying orbital.
Beyond this zero-order resonance, higher-order resonances
also show up and affect the dynamics. Consequently, the lower
band becomes entangled with higher bands, as reflected in
reduced subsystem entropy measures. The previous obser-
vations of BHM breakdown [35] can thus be attributed to
emergence of chaos and generation of entanglement and are
fully reproduced by a simple three-mode BHM.

II. THE BHM

A. Validity criteria

The experimental parameters of a linear one-dimensional
(1D) chain are the axial trap frequency ω‖, the barrier trans-
mission coefficient T , and the atom number N . The 1D
interaction strength is λ0 = 2h̄ω⊥as, where as is the s-wave
scattering length and ω⊥ is the transverse trap frequency.
The atom’s mass is m. These parameters define three char-
acteristic length scales: the axial trap size L = √

h̄/mω‖,
the healing length lc = √

h̄/2mλ0n, and the mean distance
between atoms d = 1/n, where n = N/(2L) is the average
atom density. The standard BHM validity criterion assumes
that the interaction energy is too small to bridge the � = h̄ω‖
gap between the lowest Bloch band and the first excited band.
In terms of characteristic lengths, this means ν � 1, where
ν ≡ (L/lc)2 = λ0n/(h̄ω‖). The M-site chain is then described
by the tight-binding Hamiltonian,

ĤBH = U

2

M∑
i=1

n̂i(n̂i − 1) − K

2

M∑
〈i j〉

(â†
i â j + â†

j âi ), (1)

where âi and n̂i are the bosonic annihilation and number
operators, 〈i j〉 denotes summation over nearest neighbors, and
the effective parameters are the tunnel splitting, K ≈ h̄ω

√
T ,
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and the interaction strength, UN ≈ λ0n. The standard BHM
validity criterion ν � 1 then takes the form

u � �

K
, u ≡ NU

K
, (2)

where u is the dimensionless interaction parameter.

B. Unexpected breakdown

In Ref. [35], strong deviations from the BHM were ob-
served for u ∼ 2, even when ν = 1/14, leading to the conclu-
sion: “Clearly, we have shown a failure of GP theory and the
BH model within their range of expected validity.” Beyond
the empirical determination that this unforeseen failure is
“associated with fragmentation and correlations not captured
by the standard theories,” so far no concrete mechanism has
been suggested for its origin.

Below, we establish that the underlying mechanism for
the observed failure of the BHM is related to the robustness
of chaos in the vicinity of separatrix regions. In order to
investigate the chaos-induced breakdown of the BHM, we
consider the M = 2 (dimer) case and emulate the effect of
excited Bloch bands by adding to Eq. (1) a single detuned
bosonic mode:

Ĥ = ĤBH + �n̂0 + U

2
n̂0(n̂0 − 1) − κ

2

2∑
i=1

(â†
i â0 + H.c.),

(3)

where � and κ are, respectively, the detuning and coupling
of the auxiliary bosonic mode “0.” For an actual double-
well potential the above parameters including � and κ

can be estimated from the first principles as explained in
Appendix A. In our calculation we set h̄ = 1 and determine
the units of time such that the hopping frequency is K = 1.

III. DYNAMICS

A. Quantum, classical, and semiclassical propagation

The motional constants of the Hamiltonian Eq. (3) are the
total three-mode energy E and the total three-mode particle
number N . In what follows, we distinguish between three
types of propagation: (a) Quantum dynamics refers to the full
many-body dynamics, i.e., the time-evolved many-body state
is computed as |�(t )〉 = e−iĤt |�(0)〉, for a given initial state
|�(0)〉; (b) Classical dynamics refers to the large-N Gross-
Pitaevskii mean-field theory in which the field operators âi

are replaced by classical c numbers ai = √
ni exp(iφi ). Using

N conservation to eliminate the overall phase, the classical
canonical variables are the dimer’s population imbalance
n = n1 − n2, the relative phase φ = φ1 − φ2, and the auxil-
iary mode’s population n0 and phase φ0; (c) Semiclassical
dynamics refers to the truncated Wigner classical propagation
of a cloud of classical points that emulates the phase-space
distribution of the quantum state and averaging it to obtain
the pertinent observables. For further detail on the dynamical
equations, see Appendix B.

*

FIG. 1. Classical Bose-Hubbard dynamics. Panel (a) is for an
isolated two-mode system. It shows representative Rabi-Josephson
(magenta star, black arrow), near-separatrix (green circle), and self-
trapped (red square) trajectories for u = 3 and κ = 0. Panels (b–f) are
for a two-mode system coupled to a third detuned mode (κ = 0.5),
with � = 0.5, 2.0, 4.5, 6.0, 7.0, respectively. They show φ0 = 0
Poincaré sections for the same initial conditions as in (a), while the
third orbital is initially empty (n0 = 0).

B. Semiclassical perspective

In Fig. 1(a), we plot the pendulumlike classical phase
space of the dimer [20,21,28], where κ = 0. Since the iso-
lated dimer has just one degree of freedom, its motion is
necessarily integrable and in fact solvable by the algebraic
Bethe ansatz [42]. The dimensionless interaction parameter
u distinguishes between three interaction regimes [2,21,28]:
Rabi (u<1), Josephson (1<u<N2), and Fock (u>N2). Within
the Josephson interaction regime, the phase space consists of
a low-energy Rabi-Josephson oscillation region [18,22] and a
high-energy self-trapping region [19–21] that are separated by
a mid-energy separatrix [28].

In Figs. 1(b)–1(f), we set the coupling to κ = 0.5 and
study the effect of the third mode for various values of its
detuning �. It should be noticed that different trajectories do
not have the same energy E , and hence they do not belong
to the same Poincaré section. The addition of a third mode
opens the way to nonintegrable motion [43–51], resulting in
stochastic regions in phase space due to nonlinear resonances.
Trajectories within these stochastic regions exhibit sensitive
dependence on initial conditions that can be quantified in
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FIG. 2. The deviation d of Eq. (4), plotted as a function of the
trajectory’s energy E and the detuning �: (a) classical simulations
and (b) quantum simulations with N = 100, launched at the cor-
responding coherent state. The parameters u = 3 and κ = 0.5 are
the same as in Fig. 1. Dashed line marks the separatrix energy.
The detuning values of Figs. 1(b)–1(f) are marked on the horizontal
axis, and the energies of the plotted trajectories are marked on the
vertical axis with the same marker convention. Here and throughout
the manuscript, we use dimensionless energy and timescales, e.g.,
� → �/K , E → E/K , t → Kt .

terms of Lyapunov exponents. However, below we do not
focus on the quantification of this sensitivity but rather on the
consequences of the chaotic motion.

Consider first the low-� panels, Figs. 1(b) and 1(c). In this
regime Eq. (2) is not satisfied, and the trajectories are strongly
affected by the coupling to the excited mode. Not only is the
separatrix motion affected, in panel (b) most Rabi-Josephson
trajectories become chaotic, while in panel (c) chaotic motion
is obtained mainly for self-trapped trajectories.

By contrast, for the large-� panels, Figs. 1(d)–1(f), the
validity criterion of Eq. (2) is satisfied, and one expects the
far-detuned mode to have a negligible effect. Indeed, this
seems to be the case in most regions of phase space. However,
a stochastic strip remains in the vicinity of the separatrix, even
when the detuning is large. This is expected from the standard
theory of nonlinear resonances and can be treated using the
same procedure used for the Melnikov-Arnold analysis of the
stochastic pump model [41]. Thus, due to chaos, the BHM
breaks down for near-separatrix motion and in the vicinity of
resonances, irrespective of the standard validity condition.

C. Deviation measure

The deviation from the BHM is quantified by the instan-
taneous difference between the population imbalance n(t )
obtained by including the extra mode and the same quantity
nBH(t ) obtained in the two-mode approximation, averaged
over T = 2π :

d (E ,�) = 1

T

∫ T

0
|n(t ) − nBH(t )|dt . (4)

In Fig. 2(a) we plot d as function of the trajectory’s energy E
and the detuning �. Since all simulations are launched with
n0(0) = 0, the total energy E equals the initial dimer energy.
One observes that the deviation d is large for trajectories
in regions of stochastic motion. The corresponding quantum
results are displayed in Fig. 2(b). Initial states |�(0)〉 in
these quantum simulations were three-mode coherent states
|n, φ, n0, φ0〉, where n, φ, n0, φ0 are the same as the initial

E
*

FIG. 3. (a) The eigenspectrum {Eν} obtained from diagonaliza-
tion of the Hamiltonian Eq. (3) for N = 100, u = 3, κ = 0.5, � = 2.
Each point is positioned horizontally according to Xν = 〈n̂0〉 and
color coded by participation number Mν . Strong mixing is witnessed
at the separatrix energy (dashed line) and extends to the region
above it. (b) Time-averaged occupation of the third mode, X̄ ≡
n0(t ), obtained from three-mode classical dynamics (solid blue) as
a function of E compared with the estimate X̄ ∼ κ2/ω2(E ) (red
dashed) that assumes quasi-integrable orbits. The separatrix energy
is indicated by a vertical dashed line, while the energies of the
trajectories in Fig. 1 are indicated by symbols. The inset shows
the stroboscopic map for the two-mode BHM in the presence of
driving with frequency � = 2 and intensity A =

√
X̄ . It corresponds

to Fig. 1(c) and has the same axes.

values of the classical parameters (see Appendix B). We ob-
serve good quantum-classical agreement, with some blurring
of classical features due to the finite uncertainty width of the
initial coherent state.

IV. MANY-BODY ENHANCEMENT OF CHAOS

The emergence of stochastic regions in Fig. 1 and the
deviation depicted in Fig. 2 would have been obtained also
if the two-mode system is driven at frequency �. However,
as shown below, the many-body aspect of incorporating an
auxiliary mode in the Hamiltonian amounts to considerable
enhancement of chaos with respect to the corresponding
driven system.

Consider the representative quantum spectrum in Fig. 3(a).
Each point represents an exact eigenstate ν of the Hamiltonian
in Eq. (3), positioned horizontally according to Xν = 〈ν|n̂0|ν〉,
vertically according to its energy Eν , and color coded by its
participation number Mν = (

∑
m |〈m|ν|4)−1, where m labels

the unperturbed eigenstates of the uncoupled (κ = 0) system.
Large Mν implies that many eigenstates are mixed due to the
κ �= 0 coupling.

The Floquet states of any driving scenario would only
mix |m〉 states with the same n0, i.e., driving corresponds
to vertical mixing in Fig. 3(a). By contrast, referring to the
(X, E ) diagram of the three-mode spectrum, we see that chaos
in the vertical direction induces mixing also in the horizontal
direction. Thus, the possibility of back action by the two-mode
dynamics on the auxiliary mode results in enhanced chaos.

Considering the form of the two-mode dynamical equa-
tions ȧ j = · · · + i(κ/2)a0 (see Appendix B), the correspond-
ing c-number driving would be obtained by substituting
a0 = √

A exp(−i�t ), where A is a free constant parameter.
To reproduce the effect of the third mode, the effective drive
intensity A should reflect its occupation n0. Since from in-
spection of Fig. 3(a) it is clear that this occupation is larger
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E ~ 0.37
E ~ 1.34

(  )
(  )

FIG. 4. (a) Time evolution of the entanglement entropy S and
the single-particle purity P for a chaotic (dashed) and for a quasi-
integrable (solid) three-mode dynamics, starting from eigenstates of
the unperturbed two-mode system. (b) The time-averaged entangle-
ment entropy S(t ) as a function of E and �. Markers indicate the
parameter values for the curves in (a). The other parameters are as in
Fig. 2.

in regions of chaos due to the many-body mixing, the third
mode’s effect corresponds to an amplified drive intensity
in these regions, i.e., to many-body enhancement of chaos.
This observation is somewhat reminiscent of the dynamical
enhancement of small perturbations in the nuclear physics
context [52].

We may attempt to evaluate the effective A from the time-
averaged occupation in the third orbital X̄ = n0(t ). If chaos
was not present, we could estimate X̄ from the equation of mo-
tion ȧ0 ≈ i(κ/2)(a1 + a2), leading to X̄ ∼ κ2/ω2(E ), where
ω(E ) is the frequency of the unperturbed dimer oscillations.
The comparison of this estimate with the actual three-mode
result in Fig. 3(b) demonstrates the enhancement of X̄ in
chaotic regions. The inset in Fig. 3(b) shows the dynamics of
a driving scenario where A = X̄ is the numerically extracted
actual value of X̄ . Comparing with Fig. 1(c), we realize that
even this procedure still underestimates the enhanced chaos.

V. FRAGMENTATION AND ENTANGLEMENT

A. One-particle purity

In Fig. 4(a) we prepare the system in representative eigen-
states |m〉, with vacant third orbital (n0 = 0), of the unper-
turbed (κ = 0) Hamiltonian Eq. (3) and plot the time depen-
dence of the one-particle purity P = Tr(ρ2

sp), where ρsp =
〈â†

i â j〉 is the reduced single-particle density matrix. The one-
particle purity value lies in the range 1/3 < P < 1, and its
inverse indicates the number of modes required to capture the
dynamics. Thus P ≈ 1 indicates the validity of mean-field
theory, wherein all particles occupy a single orbital, 1/2 <

P < 1 indicates two-orbital dynamics (strictly speaking, this
range will also be obtained if the pertinent two orbitals project
onto the auxiliary mode), while P < 1/2 clearly indicates
the breakdown of the two-mode approximation. The latter is
observed if the dynamics is affected by chaos.

B. Entanglement entropy

The addition of an excited mode also implies that entan-
glement could be generated between the dimer modes and the
high-frequency mode. The entanglement entropy is defined
as S = Tr(ρd ln ρd ) = Tr(ρ0 ln ρ0), where ρd = Tr0(ρ) and

FIG. 5. Comparison with Ref. [35]. (a) Quantum dynamics of n2

according to the BHM (solid black), the MCTDHB (blue circles),
and our simple model (dashed red). MCTDHB data is extracted from
Fig. 1(d) in Ref. [35]. (b) The corresponding semiclassical dynamics
with the same color code. (c) Classical phase-space structure of
the isolated two-mode BHM (κ = 0). (d) Corresponding Poincaré
sections at φ0 = 0 in the presence of the excited mode with detuning
� = 5 and coupling κ = 0.75.

ρ0 = Trd(ρ) are the many-body reduced density matrices of
the dimer and the auxiliary mode, respectively. In Fig. 4(a)
we plot the time evolution of S for a couple of representative
simulations. Carrying out such simulations at various values
of � for all dimer eigenstate preparations (distinguished by
E ) we plot the time-averaged S(t ) in Fig. 4(b). We observe
that the entanglement entropy is large in regions that support
chaotic motion. Comparing with Fig. 2 we see that chaos
dominates at the vicinity of the separatrix—just below it for
� < 1.5 and just above it for � > 1.5. Corresponding red
regions below and above the separatrix energy in Fig. 4(b)
show the entanglement fingerprint of chaos.

VI. RECONSTRUCTION OF BHM BREAKDOWN

Returning to the results of Ref. [35], in Fig. 5(a) we
compare representative MCTDHB population dynamics with
the quantum dynamics of our simple model [Eq. (3)] for the
same parameters and initial conditions. The BHM breakdown
in [35] is clearly captured by the 2 + 1 mode model. The
quantum results are reproduced by the semiclassical simula-
tion in Fig. 5(b), attained by propagating a cloud of classical
trajectories from Figs. 5(c) and 5(d). The observed failure of
the BHM is therefore unequivocally related to the persistent
separatrix chaos. In fact, as shown in Appendix C, all the
results of Ref. [35] are reproduced by our model, including
the thermalization of a self-trapped trajectory for large values
of u where the validity condition Eq. (2) is violated and the
two-mode approximation breaks down. This thermalization,
too, is the result of chaotic ergodization of the type shown in
Fig. 1(c).
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VII. SUMMARY

The description of optical lattices by the BHM should not
be taken for granted. It is distinct from the truncation of a
high-lying band of states in electronic systems that feature a
spectral gap [53]. In any M-site BHM the phase space is typ-
ically mixed, meaning that there are possibly vast regions of
quasiregular dynamics. Using the stochastic pump paradigm
that leads to Arnold diffusion, we have shown that the effect
of far-detuned modes requires one to forego naive reasoning.
The effect is amplified due to the many-body mixing of the
eigenstates and provides insight for the relevance of the formal
MCTDHB.
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APPENDIX A: ESTIMATE OF BHM PARAMETERS

The Hamiltonian describing the bosons in a double-well
trapping potential can be written as [19]

ĤBH =
∫

dx ψ̂†(x)

(
− h̄2

2m
∂2

x + V (x)

)
ψ̂ (x)

+ λ0

2

∫
dx ψ̂†(x)ψ̂†(x)ψ̂ (x)ψ̂ (x), (A1)

where V (x) denotes the double-well potential, λ0 is the 1D
interaction strength, and ψ̂ (x) is the bosonic field operator.
Representing the wave functions, at the lowest quasidegen-
erate orbitals (1 and 2) of the double well by 
1(x) and

2(x), respectively, and at the excited orbital by 
0(x), we
can expand ψ̂ (x) as follows:

ψ̂ (x) = 
1(x)â1 + 
2(x)â2 + 
0(x)â0, (A2)

where â1,2,0 are the bosonic annihilation operators corre-
sponding to the three modes 1, 2, and 0, respectively. We de-
fine the two-mode parameters as in [19] and add the coupling
parameters to the third mode:

κ = −
∫ [

h̄2

2m
(∂x
0∂x
1,2) + 
0V (x)
1,2

]
dx, (A3)

� = E0 − E1,2, (A4)

where

E1,2,0 = −
∫ [

h̄2

2m
|∂x
1,2,0|2 + V (x)|
1,2,0|2

]
dx.

Substituting Eq. (A2) into Eq. (A1) and using the definitions
of the above parameters, we obtain the trimer Hamiltonian (3),
where the single detuned bosonic mode 0 is coupled to two
modes (1 and 2) of the dimer.

APPENDIX B: DYNAMICAL EQUATIONS

To study the dynamics governed by the Hamiltonian of
Eq. (3), we first write down the Heisenberg equations of

motion i ˙̂ai = [âi, Ĥ] for the bosonic annihilation operators âi:

i ˙̂a1 = −1

2
â2 + U

2
(n̂1â1 + â1n̂1) − κ

2
â0, (B1a)

i ˙̂a2 = −1

2
â1 + U

2
(n̂2â2 + â2n̂2) − κ

2
â0, (B1b)

i ˙̂a0 = �â0 − κ

2
(â1 + â2) + U

2
(n̂0â0 + â0n̂0). (B1c)

Two conserved quantities constrain the dynamics: one is
the total energy and the other is the total number of particles
resulting from [Ĥ, N̂] = 0, where N̂ = ∑2

i=0 n̂i.
a. Classical dynamics. In the large-N limit the field opera-

tors can be replaced by c numbers such as âi → ai, n̂i → ni,
where ai = √

nieiφi , ni = |αi|2. The classical populations and
phases {ni, φi} serve as conjugate dynamical variables. The
equation of motion for the complex variables ai are thus
given by

iȧ1 = −1

2
a2 + u|a1|2a1 − κ

2
a0, (B2a)

iȧ2 = −1

2
a1 + u|a2|2a2 − κ

2
a0, (B2b)

iȧ0 = �a0 − κ

2
(a1 + a2) + u|a0|2a0, (B2c)

where u = UN/K . Using N conservation, we eliminate one
degree of freedom, leaving n = n1 − n2, φ = φ1 − φ2, n0, and
φ0 as the dynamical variables of our two-freedoms system.
Evolving Eq. (B2), we obtain the classical results of Fig. 1.

b. Quantum dynamics. The quantum Fock states of the
three-mode models are |n, n0〉, where n0 ∈ [0, N] and n ∈
[−(N − n0), (N − n0)]. The operation of the field opera-
tors is, e.g., â†

1â2 |n, n0〉 = √
n2(n1 + 1) |n + 2, n0〉, where

n1 = (N − n0 + n)/2 and n2 = (N − n0 − n)/2. Given some
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FIG. 6. Breakdown of the BHM despite weak interaction. Com-
parison of population dynamics obtained from quantum dynamics
using the two-mode BHM (solid black line), the MCTDHB method
of Ref. [35] (blue circles), and our 2 + 1 mode model Eq. (3) (dashed
red line). The parameters and the initial preparation with n2 = N are
identical to Fig. 1 of Ref. [35]: (a) u = 1.4, N = 20; (b) u = 1.35,
N = 100; (c) u = 2.26, N = 20; and (d) u = 2.17, N = 100. The
parameters used in our model are � = 5 in all panels, κ = 0.65 in
(a, b) and 0.75 in (c, d).
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FIG. 7. Semiclassical dynamics. (a) Classical Gross-Pitaevskii
simulations corresponding to Fig. 6(b) with the same color code.
Representative trajectories launched in the vicinity of the classical
initial conditions are shown as thin dotted lines. (b) Same for
Fig. 6(d), with no additional trajectories. (c) Semiclassical dynamics,
obtained from the classical propagation of an initially Gaussian
cloud with width

√
2/N , reproduce the quantum results of Fig. 6(b).

(d) Similarly, semiclassical propagation reproduces Fig. 6(d).

initial quantum preparation |�(0)〉, we employ the Fock-
state representation to obtain the time-evolved state |�(t )〉 =
e−iĤt |�(0)〉. In comparing quantum and classical dynamics,
the initial quantum states |�(0)〉 are three-mode coherent
states,

|n, φ, n0, φ0〉 = 1√
N!

(
2∑

i=0

αiâ
†
i

)N

|Vac〉, (B3)

where α1 = √
(N + n)/2 and α2 = √

(N − n)/2eiφ are the
same as in the classical simulations and α0 = √

n0eiφ0 is set
to zero.

c. Semiclassical dynamics. The classical dynamics can
only capture the quantum evolution up to the Ehrenfest time.
However, averaging over many classical trajectories offers
accuracy over longer timescales. In semiclassical simulations,
we prepare a cloud of classical points that emulate the initial
quantum phase-space distribution. Initial coherent states cor-
respond to minimal Gaussian clouds with 2/N variance. Each
point is then propagated classically, and the values of observ-
ables are obtained by averaging over the cloud. This procedure
is essentially a truncated Wigner phase-space approach.

APPENDIX C: COMPARISON WITH PREVIOUS
NUMERICAL RESULTS

In Ref. [35], deviations from the two-mode BHM are
observed numerically by employing the multiconfigurational
time-dependent Hartree for bosons (MCTDHB) method to
obtain exact double-well dynamics that include the effect
of excited modes. The dynamics shown in Fig. 1 of [35],
that is reproduced here in Fig. 6, demonstrate that the BHM
breaks down even when u is small with respect to �/K and
Eq. (2) is satisfied. The initial preparation with n2 = N gives
Rabi-Josephson oscillations for u < 2 or self-trapped motion

n1n2n0

2 mode
3 mode

FIG. 8. Chaotic ergodization at strong interaction. (a) Quantum
population dynamics obtained by time propagation with the Hamil-
tonian of Eq. (3), with � = 30 and κ = 40, for the same parameters
as in Fig. 2 of Ref. [35]: u = 43.4, N = 100. (b) Classical population
dynamics for the same parameters using either the two-mode BHM
(black line, depicting a nearly stationary point at n2 = N) or the
Hamiltonian of Eq. (3) (red line, exploring the entire allowed pop-
ulation range). (c) The two-mode phase space. (d) Poincaré sections
in the 2 + 1-mode phase space, as in Fig. 1. The self-trapped dimer
at n2 = N becomes chaotic due to the coupling to the auxiliary mode
and explores the entire stochastic band, resulting in the “thermaliza-
tion” of the population distribution.

for u > 2. For u ≈ 2 it lies near the separatrix. Thus, Figs. 6(a)
and 6(b) illustrate the validity of the BHM for Rabi-Josephson
oscillations, but 6(c) and 6(d) show its failure to depict near-
separatrix motion.

The dashed red lines in Fig. 6 correspond to quantum
propagation using the Hamiltonian of Eq. (3). Our simple
model clearly reproduces the results of the MCTDHB model
(blue circles) to great accuracy. The relation between the
quantum failure of the BHM and the classical persistence
of chaos in the vicinity of the separatrix is made clear by
inspection of the semiclassical simulations presented in Fig. 7.
The dynamical instability of the classical trajectories that
constitute the semiclassical cloud leads to strong deviations
from the BHM in the vicinity of the separatrix, thereby repro-
ducing the observed quantum result. We therefore deduce that
the numerical observations in Ref. [35] can be attributed, in
essence, to our mechanism of BHM failure due to chaos.

The observed agreement extends beyond the weak-
interaction regime where the BHM validity condition is sat-
isfied. In Fig. 2 of Ref. [35], the interaction strength is large
enough to violate Eq. (2). Thus, while the n2 = N preparation
is deep in the self-trapped region in this case so that almost
no population oscillation exists in its two-mode dynamics,
the excited mode can affect the entire phase space and, in
particular, can transform self-trapped trajectories to chaotic
ones, as in Fig. 1(c). The result is the thermalization of the
population distribution that was noted in [35]. In Fig. 8 we
reproduce this result for the pertinent parameters, showing
that it, too, is attributed to chaos.
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