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Effective Hamiltonian with tunable mixed pairing in driven optical lattices
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Mixed pairing in ultracold Fermi gases can give rise to interesting many-body phases, such as topological non-
trivial superfluids that support Majorana zero modes (MZMs) with various spatial configurations. Unfortunately,
in ordinary lattice systems, the topological phase and the associated MZMs are suppressed by the dominant
s-wave pairing. Here we present a proposal for engineering effective Hamiltonians with tunable mixed on- and
off-site pairing based on driven optical lattices. The on- and off-site pairing can be changed independently by
means of a periodical driving field rather than magnetic Feshbach resonances. It paves the way for suppressing
the dominant on-site interaction that frustrates the emergence of topological superfluids and for synthesizing
MZMs localized in edges or corners.
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I. INTRODUCTION

Topological superconductors have attracted intensive in-
terest of condensed-matter as well as ultracold-atom physics
in recent years. Unlike the conventional superconductors,
topological superconductors serve as promising candidates to
observe Majorana zero modes (MZMs), with potential appli-
cations for fault-tolerant quantum computing [1]. Based on
the mathematical structure of Bogoliubov–de Gennes (BdG)
Hamiltonians, a complete classification has been proposed for
characterizing different kinds of topological superconductors
as well as ways to engineer them in real experiments [2,3].
For example, topological superconductors with triplet pair-
ing (e.g., the chiral p-wave pairing which breaks the time-
reversal symmetry [4]) can be engineered by Rashba spin-
orbit coupling (SOC) in presence of ordinary s-wave pairing
[5]. On the other hand, unconventional singlet pairing (e.g.,
the s±-wave or d-wave pairing) can give rise to time-reversal-
invariant (TRI) topological superconductors [6–8], or ones
characterized by higher-order topological invariants [9–16].
However, they are not easily accessible in conventional solid-
state systems.

Compared with conventional solid-state systems, ultracold
atoms in optical lattices offer a remarkable platform for
investigating quantum many-body problems [17,18]. Typi-
cally, the optical lattices are constructed by interfering several
laser beams, thus a fully controllable lattice geometry and
tunable lattice depth is attainable. Effective physical fields,
for example, Zeeman fields and SOC, can be synthesized
by lasers, and their strengths are also tunable [19,20]. The
control over many-body interactions can be achieved via
Feshbach resonances, and controlled by external magnetic
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or optical fields [21,22]. These technical advances have en-
abled the realization of superfluid neutral atomic Fermi gases
[23,24]. This motivates us to search a possible proposal
for realizing tunable unconventional singlet pairing in Fermi
gases.

Intuitively, unconventional singlet pairing can be intro-
duced by two-body interactions with higher-partial-wave
symmetries (e.g., d-wave ones [25]), the realization of which
near Feshbach resonances has, however, encountered great
difficulties. This is because the severe atomic loss prohibits
the many-body equilibration in a reasonably long time scale.
An alternative scheme is based on engineering mixed on-
and off-site interactions [26–29]. By introducing background
bosonic molecules with macroscopic occupation in the ground
state, the mixed pairing can be obtained by coupling two
atoms to one molecule. In these schemes, the on-site and
off-site pairing arise by loading atoms or molecules into a
state-dependent optical lattice. However, their strengths are
simultaneously determined by the atom-molecule coupling,
and cannot be independently controlled.

In order to generate independently tunable mixed pairing,
we propose a scheme based on Floquet engineering [30–48]
in this paper. Floquet engineering has proven to be a versatile
method for realizing a variety of unconventional effective
Hamiltonians with tunable parameters, for instance, correlated
tunneling [42,49], spin-exchange interaction [50,51], and arti-
ficial gauge fields [52,53]. Here we report that, by introducing
periodical driving external fields, the strengths of mixed pair-
ing can be controlled. This makes it possible to individually
tune the on- and off-site pairing strengths, thus potentially
synthesizing MZMs with various spatial configurations.

The paper is organized as follows. In Sec. II, we describe
the general model for tunable on- and off-site pairing based
on the driving field. Then in Sec. III, we present the appli-
cations of the tunable interaction in single-layer and bilayer
systems, showing the engineering of edge and corner MZMs.
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FIG. 1. Illustration of the interaction between the bosonic
molecule state b and spin-↑↓ fermions: the on-site one (U0), and the
off-site one (U1).

In Sec. IV, the experimental realization of our proposal is
discussed. In Sec. V, we summarize the paper.

II. MODEL HAMILTONIAN

We consider ultracold Fermi gases loaded in a two-
dimensional (2D) optical lattice. The atomic interaction
is controlled via Feshbach resonances. It describes atomic
Fermi gases in which two fermionic atoms (open channel)
are coupled to a bosonic molecular state (closed channel).
In our proposal, the fermions and bosonic states are con-
fined in lattice potentials VF (r) = VF [sin2(kLx) + sin2(kLy)]
and VB(r) = VB[sin2(kLx) + sin2(kLy)], with kL = π/a and
a being the lattice constant. The interaction Hamiltonian
can be determined by a two-channel model [22], which is
formulated as

Hint = g
∫

dr ψ
†
B(r)ψ↑(r)ψ↓(r) + H.c. (1)

Here ψσ and ψB are operators for fermions of spin-σ and
bosonic states, respectively. g is the bare interaction strength
in free space, and H.c. stands for the Hermitian conjugation.

We use the tight-binding approximation (TBA) to study the
system. The interaction Hamiltonian is expanded in terms of
Wannier wave functions W (r) and WB(r):

Hint =
∑

j,l

U0b†
jc j↑c j↓ + U1

2

(
b†

j + b†
j+el

)
c j↑c j+el ,↓ + H.c.

(2)
where cσ and b are operators of fermions and bosonic states,
respectively. We write the site index as j = ( jx, jy) and el=x,y

denotes the unit vectors of the primitive cell for fermions. The
interaction strengths are given by

U0 = g
∫

dr W ∗
B (r)W (r)W (r)

U1 = 2g
∫

dr W ∗
B (r)W (r)W (r + a). (3)

In Hamiltonian (2), we have accounted for the off-site
pairing, as shown in Fig. 1. Generally, U1 is much smaller
than U0 [see Fig. 2(a)]. Hence the on-site pairing is dominant,
and the off-site one can be totally neglected and does not bring
in interesting physics. One can design the lattice potential or
apply magnetic Feshbach resonances to control the profile of
the on- and off-site interactions. However, from Eq. (3), we
know that both on- and off-site terms are solely determined
by the bare interaction g. It reveals that the magnitude |U0/U1|

FIG. 2. (a) The ratio of bare interaction strengths |U0/U1| as
functions of the fermionic lattice trap depth VF . (b) The ratio of
effective interaction strengths |ηU0/U1| as functions of �/ωdr for
various VF . The bosonic lattice trap depth VB = 2VF [54,55]. Here
ER = h̄2k2

L/2m is the recoil energy of lattices. Diamonds in (a) cor-
respond to the lines with the same color in (b).

is independent of g. However, as shown in previous works,
single-particle terms such as the hopping magnitude can be
modified by Floquet engineering. This inspires us to search for
a possible routine to suppress the dominant on-site interaction
and design independently tunable mixed pairing.

We introduce a periodical driving term to the Hamiltonian
(2):

Hint (t ) = Hint + Hdr (t ), (4)

where Hdr (t ) = ∑
j,σ Vdr (t )c†

jσ c jσ . Vdr (t ) is a locally and peri-
odical driving potential of the form

Vdr (t ) = � cos(ωdrt ) cos(kdrx + kdry) + ν j . (5)

Here � is the amplitude of the driving field. ν j is the spatially
modulated energy offset and can be engineered in a checker-
board structure ν j = (−1) jx+ jyωdr. The parameters ωdr and kdr

are determined by the lasers that generate the driving field.
In TBA, we can obtain kdrl = jla (l = x, y) as long as we
adjust kdr to match the lattice vector kL. In order to get a
time-dependent effective Hamiltonian, we make the following
rotation transformation:

U = exp

[
i
∫ t

ti

Hdr (t
′)dt ′

]
≡ eiÂ(t ) (6)

with Â(t ) = ∑
j,σ A( j, t )c†

jσ c jσ and A( j, t ) = �
ωdr

(−1) jx+ jy

sin(ωdrt ) + ν jt . In the rotating frame, Hamiltonian (4) be-
comes Hint (t ) → Hint (t ) = UHint (t )U† − iU∂tU†. In this way,
the time-dependent term Hdr (t ) can be rotated off.

Due to the relation A( j + el , t ) = −A( j, t ), the U1 term
in Eq. (2) is unchanged under the transformation into the
rotating frame of Eq. (6). By contrast, U0 is replaced by
a time-dependent form: Ũ0(t ) = U0

∑
n Jn(2�/ωdr )eiφ̃(n, j,t ).

Here Jn(·) stands for the Bessel function of the nth order,
and φ̃(n, j, t ) = n(−1) jx+ jyωdrt + 2(−1) jx+ jyωdrt . We notice
that the phase φ̃(n, j, t ) = 0 only when n = −2, and the
Bessel function obeys J−2(·) = J2(·). By neglecting rapidly
oscillating terms, the final form of the effective interaction
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Hamiltonian is expressed as

Heff =
∑

j

ηU0b†
jc j↑c j↓ + U1

2

(
b†

j + b†
j+el

)
c j↑c j+el ,↓ + H.c.

(7)
with η = J2(2�/ωdr ).

In Hamiltonian (7), the periodical driving potential Vdr (t )
gives rise to a modified magnitude of the on-site interaction
strength U0, while the off-site interaction strength U1 remains
unchanged. As � is a fully controllable parameter in real
experiments, it offers a feasible tool to change the ratio be-
tween the effective on-site (ηU0) and off-site interaction (U1)
strengths. In Fig. 2(b), we plot the ratio of effective interaction
strengths ηU0/U1 when changing �/ωdr. In particular, when
we prepare � � ωdr, it leads to η ∼ 0. Therefore, as shown in
Fig. 2, the off-site interaction strength can be dominant over
the effective on-site one, even though the bare strength U0 is
much larger than U1.

III. APPLICATIONS

Next, we present two examples, by using the effective
Hamiltonian (7), for realizing specific MZMs with various
spatial configurations.

A. Edge MZM

It is known that the TRI topological superfluid phase [7]
has the following feature: when the off-site pairing strength
U1 exceeds a critical threshold which depends on U0, the
band gap closes and reopens, resulting in a topological phase
transition from the trivial superfluid phase to a topological
nontrivial one. As the strength of U0 and U1 can be individ-
ually controlled, the effective Hamiltonian (7) is a promising
candidate for the TRI topological superfluid phase. This can
be realized if we simultaneously generate a Rashba-type SOC:

Hsoc = iα
∑
j,ττ ′

(
c†

jτ [sx]ττ ′c j+eyτ ′ − c†
jτ [sy]ττ ′c j+exτ ′

) + H.c. (8)

where α is the SOC strength, sx,y,z are Pauli matrices in
the spin space, and τ = 1 and 2, respectively, stand for spin
↑ and ↓. The total Hamiltonian in TBA is expressed as

H2D = HF + HB + Hsoc + Hint, (9)

where

HF = −
∑
〈i j〉,σ

Jc†
iσ c jσ −

∑
j,σ

μc†
jσ c jσ , (10)

HB = −
∑
〈i j〉,σ

JBb†
i b j −

∑
j,σ

μBb†
jb j . (11)

Here HF and HB describe the single-particle Hamiltonians of
fermions and bosonic states originating from kinetic motion.
μ and μB = 2μ − ν0 are the corresponding chemical poten-
tials, and J and JB are the hopping magnitudes. In μB, ν0

is the bare detuning between the open and closed channels
that is controllable in real experiments, and 2μ is imposed
for the sake of number conservation. By making the rotation
transformation [see Eq. (6)], the forms of HF and Hsoc remain

FIG. 3. (a) Phase diagram at zero temperature. topo-SF, g-SF,
and tri-SF stand for topological, gapless, and trivial superfluid
phases, respectively. We set U0 = 5.0J, U1 = 0.32J, ν0 = 1.0J , and
α = 0.5J . (b) BdG spectrum of the lattice system at (η, n) =
(0.06, 1.2). We use the open boundary condition in the x direction
with L = 100 and the periodical boundary condition in the y direc-
tion. The edge modes are marked by red solid lines. Red lines are
twofold degenerate.

unchanged except the hopping J and SOC strength α are
replaced by a modified magnitude: J → ηJ and α → ηα.
Therefore, the total effective Hamiltonian is given by

H2D = ηHF + HB + Heff + ηHsoc. (12)

We use the mean-field approximation by replacing the
bosonic operator b j by b j ≈ 〈b j〉 = B [56]. According to
the Bardeen-Cooper-Schrieffer theory, it is easy to see B
characterizes the order parameter for the superfluid phase.
The details of the mean-field approach are presented in
Appendix A. Figure 3(a) shows the phase diagram in the
η-n plane at zero temperature. There exist three super-
fluid phases in the diagram. By changing the filling fac-
tor n, the band gap of the trivial superfluid phase closes
when the chemical potential μ equals μc1 = E0 ± E1, tran-
sitioning to a gapless superfluid state, and reopens at
μc2 = E0 ± E2, which corresponds to a topological superfluid
region. Here E0 = η2JU0/U1, E1 = 2ηα(2 − η2U0/8U1)1/2,
and E2 = 2ηα(ηU0/U1 − η2U 2

0 /4U 2
1 )1/2. Since the system re-

spects the particle-hole as well as time-reversal symmetries,
the topological superfluid phase supports fourfold degenerate
MZMs, as shown in Fig. 3(b), and they are localized on edges
of the square bulk [7].

For 2D Fermi gases at nonzero temperature, the phase
fluctuations of the order parameters play the essential role that
suppresses superfluidity [57–61]. The system will undergo a
transition to the normal phase when the temperature exceeds
a critical value that is known as the Berezinskii-Kosterlitz-
Thouless transition temperature [62–64]. In order to inves-
tigate the stability of superfluid phases against fluctuations,
we plot the phase diagram at nonzero temperature in Fig. 4.
The detailed formulas by accounting for the phase fluctua-
tions are given in Appendix B. From Fig. 4, we find that
all the superfluid phases, including the topological one, are
robust even though the fluctuations are present. The critical
temperature of superfluid phases (i.e., the boundary between
superfluid phases and the normal gas) slightly decreases with
increasing η.
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FIG. 4. Phase diagram at nonzero temperature T . We set n =
1.6, U0 = 5.0J, U1 = 0.32J, ν0 = 1.0J , and α = 0.5J .

B. Corner MZM

The previous example focuses on a single-layer system.
In the multilayer one, for simplicity a bilayer lattice system,
the corner MZMs have been actively investigated in recent
research [9,10], the most important feature of which is that
their wave function is localized on the corner of the square
lattice. Based on the recent investigations, the lattice sys-
tems that support the corner MZMs have the following two
similarities.

(i) The single-particle Hamiltonian is a topological insula-
tor, for instance, the quantum spin Hall insulator [65].

(ii) The interacting Hamiltonian is composed of tunable
on-site and off-site components.

We consider the following bilayer Hamiltonian in company
with SOC:

HBL =
∑

n

[
H (n)

hop + H (n)
Z + H (n)

soc

] + HB + Hint, (13)

H (n)
hop = −

∑
j,l

∑
ττ ′

Jlc
†
jnτ [sz]ττ ′c j+el ,nτ ′ + H.c., (14)

H (n)
Z =

∑
j,τ,τ ′

m0c†
jnτ [sz]ττ ′c jnτ ′ −

∑
j,τ

μc†
jnτ c jnτ , (15)

HB = −
∑
〈i j〉

JBb†
i b j −

∑
j

μBb†
i b j, (16)

H (n)
soc = iα

∑
j,τ,τ ′

(
c†

jnτ [sx]ττ ′c j+ey,nτ ′

− c†
jnτ [sy]ττ ′c j+ex,nτ ′

) + H.c. (17)

Here n = 1, 2 denotes the layer index, and m0 characterizes
the spin imbalance. We can see the nearest-neighbor hopping
of spin-↑↓ atoms hosts opposite signs.

The interacting Hamiltonian in the two-channel model is
given by

Hint =
∑

j,l

[∑
n

U ′
0b†

jc jn↑c jn↓ + U0b†
j (c j1↑c j2↓ + c j2↑c j1↓)

+ U1

2
(b†

j + b†
j+el

)(c j1↑c j+el 2↓ + c j2↑c j+el 1↓)

]
+ H.c.

(18)

FIG. 5. (a) BdG spectrum of the lattice system with the open
boundary condition in both x and y directions. The inset (the
gray region) shows the magnified illustration of the zero-energy
vicinity, in which eight zero-energy states exist in the center of
the band gap. (b) Spatial distribution of one corner MZM. We
calculate a 2D lattice with N = L × L sites and set L = 30. Other
parameters are U0 = 5.0J, U1 = 0.32J, μ = 0.0, ν0 = 1.0J, α =
1.0J , η = 0.1, and Jx = −Jy = J .

Here the U ′
0 term stems from the intralayer interaction, while

the U0 and U1 terms are from the interlayer one. We prepare
the bosonic molecule states trapped in the center of two
layers of fermions, and thus simultaneously take the intra-
and interlayer interaction into consideration. We then impose
the periodical driving term Hdr = ∑

j,n,τ V ′
dr (t )c†

jnτ c jnτ , where
V ′

dr (t ) is generated by adding a layer-index-dependent term to
Vdr (t ) of Eq. (5):

V ′
dr (t ) = Vdr (t ) + (−1)nω′. (19)

We repeat the rotation transformation [see Eq. (6)]. For
simplicity, we choose ω′ ≈ 1.3ωdr in Eq. (19). Thus in the
rotating frame, the ω′ term has no influence on the interlayer
interaction in Eq. (18). By contrast, the intralayer interac-
tion U ′

0 term in Eq. (18) will be rotated off. After neglect-
ing the rapidly oscillating terms, we obtain the effective
Hamiltonian as

HBL =
∑

n

[
ηH (n)

hop + H (n)
Z + ηH (n)

soc

] + HB + Hint, (20)

where

Hint =
∑

j

ηU0b†
j (c j1↑c j2↓ + c j2↑c j1↓)

+ U1

2

(
b†

j + b†
j+el

)(
c j1↑c j+el 2↓ + c j2↑c j+el 1↓

) + H.c.

(21)

In Eq. (21) we can obtain the similar conclusion that on-
site interlayer interaction (ηU0) and the off-site one (U1) are
individually tunable by the driving field.

We repeat the numeric mean-field approach, and show the
results in Fig. 5. The Hamiltonian (20) preserves the particle-
hole symmetry, and remains unchanged if one exchanges the
layer index. Furthermore, it is invariant under a rotation by
an angle 2π along the z axis of spin space associated with a
mirror reflection in real space. Therefore the BdG spectrum is
eightfold degenerate, as shown in Fig. 5(a). We plot the spatial
distribution of one zero mode in Fig. 5(b), and clearly see that
the wave function of the zero mode is dramatically localized
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on four corners of the square bulk, yielding the emergence of
corner MZMs.

IV. EXPERIMENTAL IMPLEMENTATION

In experiments, the driving field Vdr (t ) can be introduced
by imprinting two pairs of counterpropagating lasers on the
atoms. One pair drives the transition from the pseudospin
states to excited states. The adiabatic elimination of the ex-
cited states generates a time-dependent ac-Stark shift for the
atoms: � cos(ωdrt ) cos(kdrx + kdry) with � as its magnitude.
The shift exhibits a standing-wave mode. The other pair
creates a time-independent shift �′ cos(kdrx + kdry) the mag-
nitude of which is equal to the driving frequency: �′ = ωdr.
When we tune kdr equal to the optical lattice wave vector
kL, the spatial distribution of the Stark shifts will exhibit a
checkerboard structure (−1) jx+ jy with respect to the site index
j. We remark that by choosing proper excited states the other
levels’ (including the bosonic molecular states) transitions are
far detuned. In this way, it is attainable that the driving field
does not act on the bosonic molecular states.

The engineering of edge MZMs is readily realized in cur-
rent cold-atom techniques, since SOC has been successfully
realized via Raman protocols [66,67]. For corner MZMs, the
SOC terms (17) of the two layers have opposite sign. This
can be realized if the strength of lasers that generate SOC is
designed to be spatially modulated along the normal direction
of the lattice plane, resulting in α(z) = α cos(kLz). For engi-
neering the hopping term (14), we can use the laser-assisted
hopping technique [68,69] to generate hopping accompanied
by a π -phase difference not only between opposite spins
but also between x and y directions. Thus a spin-dependent
hopping can be obtained.

In ultracold Fermi gases, collisional heating from periodic
driving is suppressed due to the Pauli blocking of atomic
collisions at low temperature [70]. Instead, the absorption
of photons from the driving field plays the key role for the
heating effect, in which the heating rate is proportional to
the driving amplitude �, however is independent from the
driving frequency ωdr [71]. In our proposal, we prepare the
driving field in the weak η regime (i.e., � � h̄ω) to suppress
the on-site interaction. Therefore, the heating effect can be
reduced in the rapidly driving limit with a weak amplitude.

V. CONCLUSION

In summary, we present a valid and feasible proposal for
engineering the effective Hamiltonian in company with tun-
able interaction based on driven optical lattices. Our proposal
hosts the following two features.

(i) The mixed pairing of the effective Hamiltonian is in-
dividually tunable via the driving fields rather than magnetic
Feshbach resonances.

(ii) It can be applied in engineering MZMs localized in
edges (respectively, corners) of the 2D lattice system in the
single-layer (respectively, bilayer) scheme.

Thereforrefe, the proposal offers a potential candidate for
engineering and studying topological superfluids supporting
MZMs in ultracold atoms.
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APPENDIX A: MEAN-FIELD APPROACH

For Hamiltonian (12), we use the mean-field approxima-
tion by assuming b j ≈ 〈b j〉 = B, and exploit the BdG trans-
formation

c jσ =
4N∑
ν=1

(
uν

φ( j),σ γν + vν
φ( j),σ γ †

ν

)
, (A1)

where γ ’s are the quasiparticle operators, N = L × L (L is
the length of the square bulk), and φ( j) = jx + ( jy − 1)L =
1, · · · , N is the mapped index for the original 2D lattice’s jth
site. The γ ’s coefficients ûν = (uν

1↑, · · · , uν
N↑, uν

1↓, · · · , uν
N↓)

and v̂ν = (vν
1↓, · · · , vν

N↓,−vν
1↑, · · · ,−vν

N↑) satisfy the fol-
lowing equations [we denote � = (ûν, v̂ν )T ]:

[τz ⊗ (D̂ − X̂ sx + Ŷ sy) + τx ⊗ B̂]� = Eν�. (A2)

Here Eν gives the BdG spectrum, and τx,y,z are Pauli
matrices in the particle-hole space. D̂, X̂ , Ŷ , and B̂ are N × N
matrices the elements of which are given as follows:

D̂φ(i)φ( j) = −μδi j − ηJ
(
δi− j,ex,y + δ j−i,ex,y

)
X̂φ(i)φ( j) = iηα

(
δi− j,ey − δ j−i,ey

)
Ŷφ(i)φ( j) = −iηα

(
δi− j,ex − δ j−i,ex

)
B̂φ(i)φ( j) = ηU0Bδi j + U1B

(
δi− j,ex,y + δ j−i,ex,y

)
.

Here δi j is the Kronecker-δ function. The Hamiltonian (12) of
the main text is thus cast into a quadratic form,

H2D =
∑

ν

(
Eνγ

†
ν γν − 1

2

) + ε0, (A3)

where ε0 = (ν0 − 2μ)|B|2 is the boson’s energy. The system
energy is thereby given by [72]

E = 〈H〉 =
∑

ν

Eν

⎡⎣ f (Eν ) −
∑
j,σ

∣∣vν
φ( j),σ

∣∣2

⎤⎦ + ε0, (A4)

where f (·) represents the Fermi distribution at temperature T .
The number equation is then expressed as

n =
∑

ν

〈γ †
ν γν〉 =

∑
ν, j,σ

∣∣uν
φ( j),σ

∣∣2
f (Eν ) + ∣∣vν

φ( j),σ

∣∣2
f (−Eν ).

(A5)

Here n is the filling factor per site. Under the number conser-
vation constraint Eq. (A5), we can obtain the order parameter
B and the chemical potential μ by self-consistently minimiz-
ing the system energy Eq. (A4) with respect to B.
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APPENDIX B: PHASE FLUCTUATIONS

The partition function of the 2D Fermi gas described by
Hamiltonian (12) is

Z =
∫

Dψ e−Seff[ψ], (B1)

where β = 1
T at temperature T , and the effective action can

be expressed as

Seff[ψ] =
∫

dτdr
∑

σ

ψ∗
σ (r, τ )∂τψσ (r, τ ) + H2D. (B2)

We use the mean-field approximation of the order parameter
(see Appendix A) and integrate out the ψσ fields. Under the
basis �(k) = (ψk,↑, ψk,↓, ψ

†
−k,↓,−ψ

†
−k,↑)T with k ≡ −i∇,

the effective action (B2) is rewritten as

Seff =
∫

dτdr
(

ε0 − 1

2
Tr ln G−1

)
(B3)

where the inverse Green’s function G−1 is expressed as

G−1 = −∂τ − HBdG (B4)

and the BdG Hamiltonian is written as

HBdG =
(

H0(k) B
B† syH∗

0 (−k)sy

)
. (B5)

Here the single-particle term H0(k) = ξk + ηHsoc with ξk =
ηk2/2m − μ. ε0 = ∑

kσ ξk/2 is introduced due to the anti-
commutation of ψσ fields.

In 2D Fermi gases, the phase fluctuation of the order
parameter plays the essential role in the superfluid phase
transition. It can be introduced by imposing a perturbative
phase θ into the order parameter B, i.e., B → Beiθ [61]. Under
the unitary rotation Û = exp(iθ/2) τz ⊗ I, the inverse Green’s
function is given by the following form composed by two
parts:

G̃−1(θ ) = Û †G−1Û = G−1 − �(θ ). (B6)

The first item is the original θ -independent form Eq. (B4),
while the second term � is the θ -dependent self-energy

expressed as

�(θ ) =
(

i

2
∂τ θ + η(∇θ )2

8m

)
τz ⊗ I

−
(

iη∇2θ

4m
+ iη∇θ · ∇

2m

)
I ⊗ I

+ ηα

2
(∂xθ I ⊗ sy − ∂yθ I ⊗ sx ). (B7)

Correspondingly, the effective action (A3) is given by

Seff = Smf + Sfluc (B8)

with the mean-field term

Smf =
∫

dτdr
(

ε0 − 1

2
Tr ln G−1

)
(B9)

and the fluctuation induced term

Sfluc = −1

2

∫
dτdr Tr ln(1 − G�) (B10)

≈ 1

2

∫
dτdr Tr(G� + G�G�/2) (B11)

≡ 1

2

∫
drdτ [Jxx(∂xθ )2 + Jyy(∂yθ )2

+ Jxy∂xθ∂yθ + P(∂τ θ )2 − iA∂τ θ ]. (B12)

The critical temperature Tc of the superfluid phase transition
can be determined by [59,60,73]

Tc = π

2

√
JxxJyy, (B13)

where Jxx and Jyy can be obtained from Eq. (B12):

Jxx(yy) = n

4m
+ β

8

∑
k,ζ

(
η2k2

x(y)

m2
+ η2α2

)
f (Eζ )[ f (Eζ ) − 1].

(B14)

Here Eζ (ζ = 1 ∼ 4) are the eigenvalues of BdG Hamiltonian
(B5).

[1] C. Nayak, S. H. Simon, A. Stern, M. Freedman, and S. Das
Sarma, Rev. Mod. Phys. 80, 1083 (2008).

[2] M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045 (2010).
[3] X.-L. Qi and S.-C. Zhang, Rev. Mod. Phys. 83, 1057 (2011).
[4] A. Y. Kitaev, Phys. Usp. 44, 131 (2001).
[5] C. Zhang, S. Tewari, R. M. Lutchyn, and S. Das Sarma, Phys.

Rev. Lett. 101, 160401 (2008).
[6] S. Deng, L. Viola, and G. Ortiz, Phys. Rev. Lett. 108, 036803

(2012).
[7] F. Zhang, C. L. Kane, and E. J. Mele, Phys. Rev. Lett. 111,

056402 (2013).
[8] A. Keselman, L. Fu, A. Stern, and E. Berg, Phys. Rev. Lett. 111,

116402 (2013).
[9] Q. Wang, C.-C. Liu, Y.-M. Lu, and F. Zhang, Phys. Rev. Lett.

121, 186801 (2018).

[10] Z. Yan, F. Song, and Z. Wang, Phys. Rev. Lett. 121, 096803
(2018).

[11] X. Zhu, Phys. Rev. B 97, 205134 (2018).
[12] T. Liu, J. J. He, and F. Nori, Phys. Rev. B 98, 245413 (2018).
[13] B. Huang and W. V. Liu, arXiv:1811.00555 (2018).
[14] X. Zhu, Phys. Rev. Lett. 122, 236401 (2019).
[15] X.-W. Luo and C. Zhang, Phys. Rev. Lett. 123, 073601 (2019).
[16] Z. Yan, Phys. Rev. Lett. 123, 177001 (2019).
[17] I. Bloch, J. Dalibard, and S. Nascimbene, Nat. Phys. 8, 267

(2012).
[18] C. Gross and I. Bloch, Science 357, 995 (2017).
[19] J. Dalibard, F. Gerbier, G. Juzeliūnas, and P. Öhberg, Rev. Mod.
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