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We compute the frequency-dependent shear and bulk viscosity spectral functions of an interacting Fermi gas in
a quantum virial expansion up to second quadratic order in the fugacity parameter z = ¢##, which is small at high
temperatures. Calculations are carried out using a diagrammatic finite-temperature field-theoretic framework, in
which the analytic continuation from Matsubara to real frequencies is carried out in closed analytic form. Besides
a possible zero-frequency Drude peak, our results for the spectral functions show a broad continuous spectrum at
all frequencies with an additional bound-state contribution for frequencies larger than the dimer-breaking energy.
Our results are consistent with various sum rules and universal high-frequency tails. In the low-frequency limit,
the shear viscosity spectral function is recast as a collision integral, which reproduces known results for the
static shear viscosity from kinetic theory. Our findings for the static bulk viscosity of a Fermi gas near unitarity,
however, show a nonanalytic dependence on the scattering length, at variance with kinetic theory.
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I. INTRODUCTION

Strongly interacting quantum gases form a paradigmatic
quantum many-body system in which the interaction strength
and trap parameters are tuned at will [1,2]. Properties of
cold gases are probed accurately by studying their collective
oscillations and their expansion dynamics. The damping or
dissipation in these processes is set by the shear viscosity n
and bulk viscosity ¢ [3,4], the experimental determination of
which has been an active topic over the past decade [5-9].
Indeed, strongly interacting Fermi gases are said to be “perfect
fluids” in which both bulk and shear viscosity are anomalously
small [4,10]. The shear viscosity comes close to a conjectured
lower limit for the shear viscosity to entropy ratio n/s ~ h/kg
[11], which should apply to strongly interacting quantum
systems close to a scale-invariant point. Likewise, the bulk
viscosity will vanish in scale-invariant systems [12].

Formally, the shear and bulk viscosities are given as the
zero-frequency limit of corresponding viscosity spectral func-
tions 7(w) and ¢(w), which are defined in terms of Kubo
relations for the retarded stress tensor correlation function
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where d is the dimension of the gas. The retarded response
function X,'I; (@) is the Fourier transform of the real-time

response x5 (1) = —ifi” ' ©@)([T1;;(1), [T (0)]), with (---)
the thermal average and f[ij the stress tensor. In Eq. (2)
there is a summation convention for the doubly occurring
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space indices i and j. Quite generally, the extrapolation of
numerical results for the response functions to zero frequency
is an ill-posed problem that requires numerical extrapola-
tion methods. A first-principles calculation of the shear and
bulk viscosity from Kubo relations is thus intricate [13—16].
The frequency-dependent viscosity correlation functions are
not only important in theoretical studies to obtain the static
limit, however. Linear combinations are also related to the
long-wavelength limit of the dynamic structure factor [17],
which can be measured using Bragg spectroscopy [18,19].
Moreover, as discussed further in this paper, the bulk viscosity
spectral function describes the energy absorption in response
to an oscillating scattering length [20].

Exact constraints on the spectral functions (1) and (2)
exist in the form of sum rules and universal high-frequency
tails [17,21,22]. At large frequencies, the spectral functions

have universal power-law high-frequency tails that decay as
w—> 00

n(w), ¢ (w) — Co~“9/2[17,21,22], with a magnitude set
by the contact parameter C [23-25]. Moreover, the total
integrated spectral weight depends on the derivative of the
contact with respect to the scattering length [17,26]. These
exact results should be obeyed by any calculation of spectral
functions.

An often-used framework to compute transport coeffi-
cients in quantum gases is kinetic theory [27-33]. However,
strictly speaking, kinetic theory only applies in some limiting
cases, such as the low-temperature limit of a strongly spin-
imbalanced Fermi gas, which is described by Fermi liquid
theory [34-36]. Here a kinetic description exists for long-lived
quasiparticle excitations derived from an underlying density
functional [37,38]. For the spin-balanced gas, kinetic theory
applies at both very low [39] and very high temperatures [40].
In this paper we study the high-temperature or nondegenerate

limit, in which the thermal wavelength Ay = /27 #*8/m is
much smaller than the interparticle distance, n)»‘% < 1, where
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n is the density, 8 inverse temperature, and m the mass of an
atom. A drawback of kinetic theory is that the high-frequency
tails of the viscosity spectral functions are not correctly
captured and the extrapolation to smaller temperatures is not
controlled. While a formal correspondence between a kinetic
description and the classical limit of the microscopic theory
is established within the Keldysh formalism [41], a direct link
between the results for transport coefficients obtained within
kinetic theory and microscopic calculations is not apparent.

In this paper we consider the high-temperature limit of
the viscosity spectral functions in a microscopic calculation
using a quantum virial expansion. The virial expansion applies
in the grand canonical ensemble and expands the thermal
expectation value of an operator A as a sum over expectation
values restricted to the N-particle sector
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where the expansion parameter z = ¢f# is called the fugac-

ity. Here Try . denotes the connected trace restricted to the
N-particle sector, i.e.,

Try e P2 A = Tr [e P2 A, (4)

Tra.[e P Al = Tro[e PP A] — Tri[e 7 AlTri[e P71, (5)

and so on, where Try sums all N-particle states. Since the
Nth-order term of Eq. (3) involves only matrix elements of
N-particle states, the virial expansion provides a link between
the high-temperature properties of the quantum gas and few-
particle solutions, which are often known. In particular, for the
particle density, we obtain

ng =z 4 2by7% +3b3z + - -, (6)

with b; the virial coefficients [42]. Truncating the expansion
(3) or (6) after the first few terms holds for z < 1, which
corresponds to the nondegenerate or high-temperature regime
nAd < 1. Note that the quantum virial expansion is valid for
any interaction strength, and in this sense it is a nonperturba-
tive method. In this paper we use a diagrammatic method to
compute the viscosity spectral functions.

The main result of this paper are the exact viscosity spectral
functions n(w) and ¢(w) up to second order in the fugacity.
An advantage of our calculation is that the analytical con-
tinuation to real frequencies is performed exactly and does
not require extrapolation schemes. For illustration, Fig. 1
shows the general form of the spectral functions obtained
in this paper. There is a broad continuous spectrum at all
frequencies, which arises from interactions between scattering
atoms. If two-particle bound states are present, there is addi-
tional weight from bound-free transitions, which contribute
at frequencies larger than the bound-state energy with a
nonanalytic frequency dependence right above threshold. In
particular, for the bulk viscosity, the bound-state part has a
very steep onset and dominates the spectral function. At small
nonzero frequencies, only the continuum part remains. For
the shear viscosity, this continuum part diverges as a power
law lim,_,o (@) ~ 1/w?, whereas for the bulk viscosity, it
saturates to a finite value. There is an additional §-peak
contribution at zero frequency for both shear and bulk viscos-

n(w)

\ bound state
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4

S~ bound state

continuum

FIG. 1. Structure of the (a) shear viscosity and (b) bulk viscosity
spectral function. There is a continuum contribution for all frequen-
cies, which diverges as a power law at low frequencies for the shear
viscosity spectral function and saturates to a constant value for the
bulk viscosity. At zero frequency, there is a Drude § contribution
indicated by the black arrow. When present, there is a bound-state
contribution above a threshold frequency. At large frequencies, both
continuum and bound-state parts contribute to a universal power-law
tail.

ity. For the bulk viscosity, this peak arises from bound-bound
transitions and has nonzero weight only if a bound state is
present. Both the continuum and bound-state parts contribute
at high frequencies.

It turns out that the interacting contribution to the low-
frequency divergence of the shear viscosity spectral function
takes the form of a collision integral, which allows us to obtain
a static shear viscosity using a memory function resummation.
Our results agree with calculations of the shear viscosity
within kinetic theory. Interestingly, in the absence of bound
states in the two-particle sector, the static limit of the bulk
viscosity spectral function can be taken directly. We quote a
result of our calculation in 3D near the unitary limit
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where the zero-frequency limit of the spectral function was
taken before the unitary limit, with a the scattering length
and yg the Euler-Mascheroni constant. This result differs
from kinetic theory, which predicts a quadratic dependence
A%;/ﬁzz ~ (Ar/a)* [33], but it is consistent with a predicted
critical scaling near unitarity [43,44].
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This paper is structured as follows. At the beginning
of Sec. II we introduce the zero-range model and discuss
the Kubo formula that define the spectral functions. The
remainder of Sec. II then presents the main calculation of
this paper. In Sec. IIA we set up a diagrammatic frame-
work to compute the high-temperature expansion of corre-
lation functions exactly to second order in the fugacity z.
The diagrammatic calculation for the stress correlator and
the contact correlator used to compute the viscosity spectral
functions is presented in Secs. IIB and IIC, with details
of the analytical continuation from Matsubara space to real
frequencies relegated to Appendix A. The results for the shear
and bulk viscosity spectral functions are presented in Sec. III.
We discuss the general form of the shear viscosity spectral
function in Sec. IIT A, with particular attention to the universal
high-frequency behavior. We show how a memory function
approach reproduces the kinetic results in the static limit.
The bulk viscosity spectral function is discussed in Sec. III B.
Furthermore, we demonstrate that our results are consistent
with universal high-frequency tails and sum rule constraints.
In addition, we provide analytic results for the static bulk
viscosity and comment on the discrepancy with kinetic theory.
The paper is concluded by a summary and outlook in Sec. IV.

II. HIGH-TEMPERATURE EXPANSION OF THE
VISCOSITY SPECTRAL FUNCTION

We consider a Fermi quantum gas with zero-range interac-
tions described by the Hamiltonian

Y — dd AT_hzvz P B o B S 8
H XY vl AL Ak 8 7% )

2m

where ¢ =1, | and g is the bare interaction strength. The
stress tensor I1;; in the zero-range model (8) takes the form
(the summation over ¢ is implied)

R’ . . .
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This expression is derived, for example, from the Euler
equation in operator form, i.e., the Heisenberg equation of
motion for the current operator, — % [fi, Hl= -9 i f1; i» where
Ji= 321 (0;¥) — (3i¥))y¥] and the Hamiltonian is given
in Eq. (8). The off-diagonal terms of the stress tensor as
used in the shear viscosity spectral function (1) only involve
bilinear operators. For direct calculations of the bulk viscosity,
however, the expression (2) is inconvenient as the stress tensor
trace involves both bilinear and quartic operators:

. R oo d s stata p
Ml = — | (VAI)(Vidlo) = 2 V2(I3V0) | — dedy v, vy
(10)

We use a summation convention where the sum over the space
index i is implied. It was established in Refs. [45-47] that the
bulk viscosity is also defined in terms of the response function

()= ————, Y
w

with O = dl(f[ﬁ —28), where & is the energy density with
H= [dix &. The operator O is linked to the Tan contact
operator and is a measure of the breaking of scale invariance
in the quantum gas [48]

4 (D)
0=1{EC  (op) (12)
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where a is the effective scattering length in d dimensions
and C is the contact operator [23-25], C = m;fz gﬂ Iﬁllﬁ . 1ﬁT
in the zero-range model [49,50]. The contact parametrizes
universal short-range correlations and thermodynamic prop-
erties and is thus a central experimental observable [19,51—
53]. The expectation value of the contact sets the magnitude
of the leading short-distance divergence of the pair correlation
function; hence intuitively it describes the number of pairs
with opposite spin in close proximity [54]. The contact is
linked to the partition function of the gas by the adiabatic
relation [25,54-56]

e aD)
C=1{Zr 280 (D) (13)
2 28N (3D).

Indeed, the contact also governs the nonanalytic short-time
correlation of the stress correlator Xilf, « (), and thus sets the
magnitude of a power-law high-frequency tail of the viscosity
spectral functions [17,21,22], which will be discussed later in
this paper.

The expectation value of O sets the deviation of the
pressure P from the scale-invariant value: P — dZS =(0).In
two dimensions, the operator O indicates a quantum scale
anomaly, where formally it describes an anomalous contri-
bution that opens up the nonrelativistic conformal operator
algebra of a scale-invariant quantum gas [48]. Indeed, the
bulk viscosity spectral function vanishes identically in a scale-
invariant system and is nonzero only when scale invariance
is broken [12]. On a technical level, the contact response
ngo does not contain bilinear operators, which simplifies
calculations of the bulk viscosity considerably. Note that the
viscosity spectral functions can also be defined in terms of
the transverse and longitudinal current response functions
[17,21,57]

2
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where x; and xr are the longitudinal and transverse parts of
the current response function Xij,-] = XL% + xr(8ij — %).
However, this definition requires the computation of correla-
tion functions not only at finite external frequency but also
nonzero momentum, which complicates the calculation in the
present case.

Both the shear viscosity spectral function and the bulk

viscosity spectral function can be measured in experiments.
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Since the longitudinal current response function is related to
the density response function (and thus the dynamic structure
factor) by the continuity equation, the linear combination
C(w) + @n(w) is measured in Bragg spectroscopy exper-
iments [18,19]. In particular, in scale-invariant systems (such
as the unitary Fermi gas), where the bulk viscosity vanishes,
the dynamic structure factor is proportional to the shear
viscosity. Moreover, the contact correlation function used in
Eq. (11) to define the bulk viscosity determines the response
to an oscillating modulation of the inverse scattering length,
i.e., a perturbation of the form Sa(t) = sa~'(t) = ap cos wt
[20]. Such a perturbation changes the Hamiltonian as

8H = (ad)sa(1)O. (16)

The rate at which energy is absorbed by the system in response
to this perturbation, for example, is proportional to the contact
correlation function
dE  d*d? 2, 1 (@) (17
— = —oywlm ).
dt 2 0 Xo.0
A. Diagrammatic virial expansion

Within finite-temperature field theory, we compute the
discrete Fourier transform of the time-ordered correlation
function

B
XA,B(iwn)Z/ dr ™" (T A(0)B(r)), (18)
0

where iw, is a bosonic Matsubara frequency and 7, denotes
time ordering with operators at later times placed to the
left. Retarded response functions as needed for the spectral
functions (1) and (11) are obtained by analytically continu-
ing from Matsubara to real frequencies iw, — @ + i0 [58].
When working in Matsubara space, the fugacity parameter
7 = P is contained in Bose and Fermi factors used to convert
Matsubara frequency summations to contour integrals [58].
An expansion in z is not apparent in this framework as it
changes the analytic structure of the integrand and hence does
not commute with the frequency integration. Little is gained
by computing the full result first and then expanding in the
fugacity.

It turns out that a fugacity expansion can be developed
systematically when working in imaginary time as opposed
to Matsubara space. There the fugacity only enters through
the imaginary-time single-particle Green’s function

G(t,k) = —e "W[O(T) — np(ex — )], (19)

where Kk is the wave vector, ¢x = % the single-particle en-
ergy, and np (e¢x — w) the Fermi factor, which can be expanded
directly as np(ex — u) = — Y oo (—1)"z"e "P% This expan-
sion commutes with any internal integration over imaginary
time or momenta. Diagrammatic calculations of the equation
of state date back to the early days of quantum many-body
theory with works by Montroll and Ward [59] and Vedenov
and Larkin [60] for the screened plasma. For quantum gases
with short-range interactions, a diagrammatic framework was
put forward in Refs. [61,62], which compute the third virial
coefficient of a strongly interacting Fermi gas. These tech-
niques are not restricted to thermodynamic quantities but
can also be applied to correlation functions as well. Indeed,

k

— X — (1K) >< ~
T
2 m2 2
e TG = Sk, =

(a)

(b)

FIG. 2. (a) Feynman rules of the zero-range model in imaginary
time. Imaginary time runs from the left-hand side to the right-hand
side. (b) Ladder diagrams that describe two-particle scattering to
leading order O(z°). The sum of all repeated scattering processes
gives the vacuum 7" matrix.

besides virial coefficients [61-64], diagrammatic calculations
have been performed for the spectral function [65-68], the
momentum distribution of Bose gases including three-body
Efimov effects [64], and also the electron gas [69]. Most of
these works employ a framework similar to the one introduced
in Ref. [62]. In this section we collect the Feynman rules as
used in the remainder of this paper.

The Feynman rules for the model (8) in imaginary time
are as follows. Imaginary time runs from the left to the right
of the Feynman diagram in an interval [0, 8). Every vertex is
assigned an imaginary-time index t and contributes a factor
—g. In addition, we denote the bare off-diagonal stress tensor
insertion (9) on a propagator at a specific imaginary time by

hZ
To(k) = zkxky. (20)

Likewise, the contact operator insertion carries a factor of
ﬁ. As shown in Fig. 2(a), we indicate the O(z") term of the
single-particle Green’s function (19) by a line that is slashed
m times. It contributes factors of

—eTheTT@(T),

m =
(_l)m—lzmerue—(mﬂ-‘rr)ak’ m 2 1. (21)

G"™(r,k) = {
Contributions O(z") to some correlation function are repre-
sented by Feynman diagrams that contain N slashes. A key
observation is that the leading order in z of the propagator
is purely retarded, i.e., it runs from the left to right in any
Feynman diagram. Leading-order diagrams thus contain a
minimum number of backward-propagating (advanced) prop-
agators. We impose momentum conservation and integrate
over internal momenta and imaginary-time labels. Imaginary-
time integrals take the form of convolution integrals which
are simplified using the convolution theorem for the Laplace
transform

oo
f d(tla"'vtn)
0

X [®(tl)fl(tl )] e [®(tn)fn(tn)]®(T - == tn)
d
= [ e o) 22)
Bw <71
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where we define the Laplace transform f(s) = fooo dt e’ f(t)
with inverse f(¢) = [, %e’” f(t). Here Bw is the
Bromwich contour which runs from negative to positive in-
finity with all singularities of the integrand to the right of the
contour.

Typical Feynman diagrams constructed as described above
involve repeated few-body scattering processes as subblocks.
It turns out that to leading order in the fugacity O(z°), the sum
of these processes gives the free-particle scattering matrices.
These blocks link the high-temperature properties of an inter-
acting many-body system to known few-body solutions. We
will use the two-particle scattering matrix 7, which we rep-
resent by a box as shown in Fig. 2(b). Using the convolution
theorem and performing the Laplace transform, 7 is given by
a geometric series [70]

,7'(s,P) = —é — Lp(s), (23)

where P is the center-of-mass momentum and we define the
bare two-particle propagator

Letr) =6 [ et 24)
@ry ’
Le(s) = / R (25)
Qryls—e—epa

The momentum integration diverges in d = 2,3, which is
canceled by the renormalization of the coupling constant g.
For reference, we note the result for the 7 matrix

o (—a+,/-L) (ID)
T,7'(s) = | 325 Ina, /2 @D)  (26)
wp(—a !+ /=jks) (D),

where, by Galilean invariance, T5(s, P) = To(s — %81)). Recall
the structure of the imaginary part of the T matrix, Im7>(s +
i0), which consists of a bound-state peak (where present)

at the bound-state energy Ej, = —% and a continuum of
scattering states for positive energies. It will be convenient
at a later point to use dimensionless scattering matrices 75(s)
defined via

- mk?fd

Th(s) = ey Ty (s), (27)

where Q4 = 27%/?/T'(d/2) is the d-dimensional surface ele-
. 212 2mh? dnh’ir _
ment, i.e., we separate factors =—, <=~ and =—=T ind = 1,
t mAr m m
2, and 3, respectively.
For further reference, we note a useful representation of the
contact to leading order O(z?) in the fugacity:

4 20027 [ e
AC =4z B A_d/ ds - Im7,(s + i0). (28)
T J—00

The integral can be evaluated in closed analytical form in 1D
[71] and 3D. This expression will be used in Sec. III when
extracting the high-frequency tails of the viscosity spectral
function, the magnitude of which is set by the contact.

Note that in this paper, we focus on the viscosity of Fermi
gases, but all calculations apply with minor modifications to

O O

(a)

(b)
(c)

P P

I

(d)

FIG. 3. Feynman diagram representation of the shear viscosity
stress correlator up to second order in the fugacity O(z?). Slashed
lines denote virial propagators, dots show the stress tensor insertions
T2(0) and T2(7), and the box is the T matrix. The diagrams are
divided into (a) noninteracting, (b) self-energy, (c) Maki-Thompson,
and (d) Aslamazov-Larkin diagrams.

the Bose gas as well. The zero-range model for Bose gases
replaces the Fermi by Bose fields in Eq. (8) and conventionally
sets g — g/4. The scattering T matrix in Eq. (23) then has
an additional symmetry factor of 1/2 in front of the loop
integral, and the overall Bose T matrix is larger by a factor
of 2 compared to the Fermi case [64]. The inclusion of a
three-body term in the zero-range model will not affect any
results to leading order O(z?) in the fugacity, which is fully
determined by two-body correlations [70].

B. Stress correlator

In this section we discuss the Feynman diagram expansion
of the stress correlator X;;,Xy(w) used in the computation of
the shear viscosity (1) up to quadratic order in the fugacity
O(z%). A Feynman diagram representation of the imaginary-
time correlator X, ,(7) is obtained by drawing all connected
diagrams with a stress tensor insertion f[xy at t =0 and at
0 < t < B. All such diagrams up to quadratic order are shown
in Fig. 3. We then take the discrete Fourier transform to
obtain the response as a function of Matsubara frequencies.
The leading-order O(z) contribution [Fig. 3(a)] is the same as
for noninteracting gas. Indeed, the noninteracting contribution
can be summed to all orders in z. Using the Feynman rules
introduced in the preceding section, we obtain the standard
kinetic result

Imxg:;‘;(w) — §(Bliw)(1 — e~ P1)

d'k <_ af (ex)
2m)d dek

)TX‘;(k)Tx‘;(k), (29)
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where the prefactor 2 accounts for the two spin species. This
term will contribute a § function to the shear viscosity spectral
function n(w).

Two-particle interactions enter at second order O(z*). The
Feynman diagrams that represent the interacting O(z?) contri-
bution to the shear viscosity spectral function (1) are shown in
Figs. 3(b) and 3(c). These diagrams are commonly divided
into three separate classes [72]: (a) self-energy diagrams,
which affect the spin-symmetric part of the response func-
tion and contain a self-energy insertion on one propagator;
(b) Maki-Thompson diagrams, which contribute to the spin-
antisymmetric response and contain a vertex correction; and
(c) Aslamazov-Larkin diagrams. In the following we compute
each of these contributions separately, focusing on the main
steps of the calculation. To illustrate the calculations in detail,
Appendix B contains an in-depth discussion of the self-energy
contribution.

1. Self-energy

There are two self-energy diagrams as shown in Fig. 3(b)
Using the imaginary-time Feynman rules and applying the
convolution theorem for the Laplace transform, the first one
evaluates to

dlp [ d%
SE,a - _ 2 0 0 —Bs
Koyl =22 [ 555 [ o ST 0T () | 5 me

T ihw,, K

2(s + ihw +p) 30)

X )
(s — ex — &p)(s + iliw, — e — €p)?

The overall prefactor 2 accounts for the spin summation.
The Bromwich integral and the analytic continuation from
Matsubara to real frequency iw, — @ + i0 are performed as
outlined in Appendix A. This gives the self-energy contribu-
tion to the retarded response:

Imx ey (@)

1 —_ e—ﬁha)
d d
= 27 d’p d%k e Plestep)
Q) | 2n)
T (ha) + 0+ %Skfp) . .
: Im{ (hw + i0)> T,(KT, (k). (31)

The second self-energy diagram in Fig. 3(b) contributes an
identical term up to the sign with ® — —w:

RSEb,, \ _ R,SE,
Imy RSB0 (w) = ~Imy RSB (—w). (32)
The imaginary part of the self-energy contribution is antisym-
metric in the frequency, as expected for a retarded response
function. Appendix B contains a detailed discussion of the
above derivation.

2. Maki-Thompson diagrams

The Maki-Thompson diagrams are shown in Fig. 3(c). The
evaluation proceeds in a similar way as for the self-energy

part. For the first diagram, we obtain

Imy 3T ()

1 — e pho
_ o [ A [ % o Bletep)
@my! ) @2n)?
Ty(ho +i0+ 3ex—p) | o o
T (K)T, . 33
|: (hw + i0)? ,]( )T, (p) (33)

Again, the second diagram in Fig. 3(c) contributes a term of
equal magnitude with the replacement w — —w:

RMT,b,, \ _ R,MT,
oy (@) = —Imy o H(—w). 34)

Imy

3. Aslamazov-Larkin diagram

The computation of the Aslamazov-Larkin diagram is
more involved compared to self-energy and Maki-Thompson
contributions. Corresponding Feynman diagrams are shown in
Fig. 3(d). They evaluate to

AL /.
KAL (i,

dip [ d'k
=4 [ G [ G0

8 / ﬂe“’s (s, K+ p) (s + ihw,, kK + p)
Bw 27T (s — e — &p)(s + ihw, — &k — &p)
d‘l T

2m) (s — &1 — Exqp-1)(s + ihw, — & — Exyp)
(35

There are two distinct diagrams in Fig. 3(d) and two spin
species, hence the overall prefactor 4. The integral in the last
line of Eq. (35) corresponds to the internal three-propagator
loop at the center of the diagram (sometimes called a triangle
diagram). We evaluate the integral using Eq. (23):

d’l o)
27)d (s — &1 — kap-1)(s + ihw, — & — Exyp-1)
_ Tg(k+p)

[T, (s, k+p) — T, ' (s + ifiw,, k + p)l.
(36)

Note that Eq. (36) is a Ward identity which holds for the full
T matrix. Furthermore, we simplify the product of the two T
matrices using

B(Sa k + p)TZ(S + ihwna k + p)
_ D(s+ihw,, k+p)—TD(s,k+p)
T Ns, k4 p) — Ty (s + ihw,, k +p)

The diagram now takes a simpler form

4(ihwy)

(37

Imyy (@)
1 — efﬂhw
2 dp dlk
Qmy ) @m)
" T (fiw + i0 + Sex—p)
(fiw + i0)>

efﬁ(gk‘i’ap)

}n‘;,(k)n‘;(k +p). (38)
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O &> 63

FIG. 4. Feynman diagram representation of the bulk viscosity
contact correlator up to second order in the fugacity O(z?). Slashed
lines denote virial propagators, dots show the contact operator inser-
tions C(0) and C (1), and the box is the T matrix.

and we split off a second term

ImxglﬁyL’b(w) = —Imxgjg,L'a(—w). (39)

C. Contact correlator

We now turn to the contact correlator xcc(w) used in
the computation of the bulk viscosity spectral function. The
leading-order contribution to the correlation function is of
second order in the fugacity O(z?). Corresponding diagrams
are shown in Fig. 4. They involve the T-matrix coefficients
and the bare two-particle propagator Lp(t) [Eq. (24)] as
subblocks. The calculation proceeds in a similar way as in the
preceding section. After analytic continuation, the sum of all
four diagrams is

miz’gt [ d'P / ©ds g
B® Qn)d J_
x Im{Lp(s + w + i0)
X [1 4+ Tr(s + w +i0, P)Lp(s + w + i0)]}
x Im{Lp(s + i0)[1 + T>(s + i0, P)Lp(s + i0)]},
(40)

xc.clw) =
o T

where Lp(s) is the Laplace transform of the bare two-particle
propagator defined in Eq. (25). Equation (40) is simplified
using the definition of the 7" matrix (23), which gives

xc.c(w) _ miz? 2472 0 @eﬂss
1 — e Pho Bl Joom

x Im[T>(s + i0)|Im[T>(s + @ + i0)].  (41)

This expression is antisymmetric in @ as can be seen by
shifting the integration variable s — s — w. The integral (41)
is convenient for a direct numerical evaluation.

III. RESULTS

In this section we combine the results of the preceding
section to compute in turn the shear viscosity and bulk vis-
cosity spectral functions in Secs. III A and III B, respectively.
We present integral representations of the spectra, from which
the general three-part structure of the spectral function as
shown in Fig. 1—a Drude or dimer zero-frequency peak, a
broad free-particle continuum, and a bound-state contribution
above threshold—becomes apparent. Numerical results for
the spectral functions are presented for various dimensions
and scattering lengths. Universal high-frequency tails and
sum rules are obeyed in our calculations, which demonstrates
the internal consistency of the virial expansion up to this
order. We discuss the static limit in some detail and make
connections with kinetic theory.

A. Shear viscosity

We begin by computing the shear viscosity spectral func-
tion. The zero-frequency Drude peak has a leading noninter-
acting O(z) contribution [Eq. (29)]. At finite frequency, the
spectral function is O(z*) and given by the sum of self-energy,
Maki-Thompson, and Aslamazov-Larkin contribution

Im[x 850 (@) + xS (@) + xR A ()]

n(w) = =
w
= i (1 — e Py / d‘p d’k —Bex+ep)
4 1w @yt ) Qmy
x Im[ T3 (fw + i0 + Jex—p) | T (k — p)T,3(k — p)
+ (0 > —w), (42)

where we have symmetrized the stress tensor matrix element
];(;. For a numerical evaluation, it is convenient to transform
to relative and center-of-mass momenta P = (k + p)/2 and
q = k — p, which restricts the angular integration to the ma-
trix elements E(;(qﬂ;‘; (q). The center-of-mass momentum
integration is then performed directly.

The imaginary part of the scattering 7" matrix T,(s + i0)

[Eq. (26)] has a continuous spectrum at positive energies and
(if present) a state pole at the bound-state energy E; = — 2

— .
From the structure of the integrand in Eq. (42), we deduce the
general form of the shear viscosity spectral function shown
in Fig. 1(a). First, the free-particle part of the 7 matrix con-
tributes at all frequencies and forms the continuum indicated
in the figure. Second, if the frequency exceeds the dimer bind-
ing energy, the second term in (42) gives rise to a bound-state
contribution with a threshold behavior ~(fiw + Ej)@+2)/2,
which is nonanalytic in 3D. At small frequencies, only the
continuum part contributes to the spectrum. As is apparent
from the integral (42), the spectral function diverges as 1/w?
in this limit. This divergence will be discussed in more detail
at the end of the section. Figure 5 shows numerical results
for the shear viscosity spectral function in two and three
dimensions for various values of the dimensionless inverse
scattering length A7 /a. The general structure of Fig. 1(a) is
clearly reflected in these results.

1. High-frequency tails

The shear viscosity spectral function has a power-law high-
frequency tail with a magnitude set by the contact [17,21,22].
The leading-order term at large frequencies stems from the
second term in Eq. (42) with @ — —w. Transforming to a
relative-energy integration variable s = 2g4, we shift s —
s + o and extend the s integration to run from —oo to +o00.
Separating the leading power in fiw from the integrand, we
recognize the remaining integral as the leading term in the
virial expansion of the contact [Eq. (28)]. This gives

li () é%’ D) (43)
m n(w) =
w00 mC (D).

These high-frequency tails agree with general results obtained
using the operator product expansion (OPE) in 3D [21,22] and
2D [21].
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-2
T

n(w)/z%hA

-3
T

n(w)/z?ha

w = Shw

FIG. 5. Shear viscosity spectral function in (a) 2D and (b) 3D for
different values of the inverse scattering length A7 /a. The spectral
function has a universal power-law high-frequency tail [Eq. (43)]
and diverges as a power law at low frequencies. Above a threshold
frequency, there is a bound-state contribution which dominates the
spectral function in the dimer limit. The black arrow indicates the
§-function Drude peak.

In the three-dimensional unitary limit, we can compare
with a Keldysh calculation [13], which was performed using a
finite lifetime y /2 in the single-particle self-energy. Here C =
1677% /A% = 4m?z? /w B*h* and we state the separate contri-
butions of the self-energy, Maki-Thompson, and Aslamazov-
Larkin terms to the high-frequency tail

4m’2 14140 /72
Bt 30 mymo’
which agrees with Ref. [13]. This indicates that the set of

diagrams considered in Ref. [13] contains all the diagrams in
Fig. 3 that yield the correct high-temperature limit.

(44)

lim Nunitary (w) =
w—> 00

2. Static shear viscosity and memory function approach

Our results for the shear viscosity spectral function diverge
at small frequencies such that a direct extrapolation to the
static limit is not possible. In the following we discuss how
this divergence is resummed using the memory function for-
malism [13,57,73], which yields a finite static shear viscosity
that reproduces the kinetic theory result.

Hydrodynamics dictates a low-frequency form of the re-
tarded response [57]

X (w) w wt? it
= =W + W ,
1+ (w71)? 1+ (w7)?

(45)

1) w—i/t

which has a finite limit for « — 0. The static shear viscosity
n = lim,_,o Im);& = Wt is then expressed as the ratio of a
Drude weight W and a viscous scattering rate 7 ~!. The scatter-
ing rate T~', which vanishes for noninteracting systems, ad-
mits a separate fugacity expansion. A direct virial expansion
of the correlation function thus applies in the limit wt > 1
and does not connect with the hydrodynamic expression (45).
This is the origin of the 1/w? divergence of the shear viscosity
spectral function (42) for fhw < 1.

Progress can be made using the memory function formal-
ism [13,57,73], which instead of the full correlation func-
tion proposes to expand the memory function M(w) defined
through

x() 1o

1) w—Mw)’
with 7o a real constant. Note that the relation between the
correlation function and the memory function is similar to the
relation between the single-particle Green’s function and self-
energy. Since x (—w) = x*(w), we have M (—w) = —M*(w).
Using the low-frequency expansion M(w) = iMy + oM +
O(w?) with My and M, real, we find

1 M
no o= (47)

1-— M1 T 1- M]
which implies, for the static limit of the viscosity spectral
function,

(46)

W =

70
=Wr=—.
n M,
We can extract the coefficients ny and M, from the virial
expansion results by matching the low-frequency terms of the
virial expansion with the expansion of Eq. (46),
x(@) 1o

= B M)+ (49)
w w w

(48)

In this way, we obtain a static limit of the shear viscosity
using (48). Intuitively, the memory kernel result for the static
viscosity (48) is obtained from a geometric resummation of
the leading two low-frequency terms in Eq. (49). Note that
a similar approach has been used to determine the line shift
in the dynamic structure factor of interacting quantum gases
[74].

To be definite, we consider the three-dimensional case in
the following. First, from Eq. (29) we obtain 7y,

4’k 0
oen ()

2m)3/?z 2

= 27‘[3/2—}?3,35/2 + 0(z), (50)
valid to leading order in the fugacity. Second, the coefficient
noM, follows from the low-frequency divergence of Eq. (42),
which is obtained by expanding the prefactor and setting
o = 0 in the integrand. While at first sight this expression
might seem unwieldy, we will show that it takes the form
of a (linearized) collision integral such that M, can be iden-
tified with a viscous scattering time t,~ ! In this way, using
Eq. (48), the virial expansion combined with the memory
kernel approach reproduces the calculation of the viscosity
within kinetic theory.
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Within kinetic theory, the static shear viscosity takes the
form [27-29]

d’p af,
n=2rn/ on )3[ 7o) ( S )=norﬂ, (51)

where we use the definition ion of 7y in Eq. (50) and follow-
ing the literature we introduce a viscous relaxation time T,
[27-29],

1 1 d’p dk do B2H?
_ = — PR - dQ_ - 2 2
u N @ny (271)3/ Weetl =54y

x flep)flall — flep)]

with a normalization factor
&k (A E 1o g0
=2 / @)y (‘ . )[Txv(lﬂ] =Bno.  (53)

which has dimension of inverse volume. In Eq. (52), & 9 1s the
differential scattering cross section for the scattering of two
particles with opposite spin and wave vectors k and p to states
k' and p/, respectively, and v, = % is the relative velocity.

We now show that 77!, given in Eq. (52), and M,,
given by Eq. (42), are identical at high temperatures, i.e.,
limr o0 7, ! = M,. At high temperatures, Pauli blocking is
not effective and the Fermi factors in Eq. (52) reduce to a
Maxwell-Boltzmann distribution

flepflall — flep)ll

Furthermore, the optical theorem relates the s-wave scattering
cross section to the imaginary part of the 7 matrix

do

ds2
The equality between t,” I"and M, then follows directly by
comparing with Eq. (42). From Eq. (48) we then obtain the
static shear viscosity. Our calculations provide a rigorous cor-
respondence between the high-temperature limit and kinetic
theory for all scattering lengths.

A similar result was obtained for the unitary Fermi gas
[13]. We note an additional check of our results for the shear
viscosity spectral function in the unitarity limit: Writing the
divergent contribution of the self-energy, Maki-Thompson,

[1 = few)l, (52)

1= flew)] = e Pt (54)

IVrel| = 5—ImT5(2¢q). (55)

2rh

and Aslamazov-Larkin terms separately, we find
2 3/2 _
. z-(2m) 43 +3 —-30
lim nunitary(w) = 4 . (56)
=0 1575281204 w2 242

Our result agrees with Ref. [13] if we identify fiw — 2iy.

B. Bulk viscosity

This section presents results for the bulk viscosity spectral
function ¢(w). From the definitions (11) and (12) and our
result for the contact correlation function (41), we obtain the
integral representation of the spectral function

1 — e Pl & d—22d/2 /oo @e—ﬂs
d?hw a? oo TT

xIm[T>(s + i0)Im[T>(s + fiw +i0)],  (57)

hzf()

where the dimensionless scattering matrix 7> is defined in
Eq. (27). This expression is a symmetric function of the
frequency . In the following we discuss the structure of
the spectral function and provide numerical results. We also
discuss the high-frequency tail and sum rules and obtain
analytical results for the static limit.

From the structure of the integrand in Eq. (57), we directly
infer the general form of the spectrum shown in Fig. 1(b).
The first contribution arises from the integration over the
free spectrum at positive energies. This part contributes at
all frequencies and forms a continuous band. The integral
in Eq. (57) is finite at @ = 0; hence the spectral function
approaches a constant value for small frequencies. The second
contribution appears for frequencies larger than the bound-
state energy, for which we pick up the pole of the first
scattering matrix. Notably, it has a nonanalytic frequency
dependence right above the threshold energy which follows
from the nonanalytic form of the T matrix (26). Finally, a
third contribution at w = 0 arises from the pinching of the
bound-state poles in the integrand (57). This part gives rise
to a §-function contribution ~§(w). The bound-state and §
contributions can be evaluated in closed analytical form.

Numerical results for the bulk viscosity spectral function
as a function of the dimensionless inverse scattering length
Ar/a are shown in Fig. 6 for all dimensions and various
values of the scattering length. The entire spectral function
vanishes identically for @ — oo. This point marks the unitary
or noninteracting scale-invariant limit, where the bulk vis-
cosity is expected to vanish on general grounds [12]. Away
from this limit, we clearly distinguish the continuum and the
bound-state part of the spectral function. As is apparent from
the figure, the bound-state contribution, when present, vastly
dominates the continuum part. This observation is consistent
with results for the zero-temperature spectral function [26].

1. High-frequency tails and sum rules

The high-frequency tail of the bulk viscosity spectral func-
tion is determined by the nonanalytic short-time behavior of
the quantum gas and is expected to decay as a power law
[17,21,22]. Imposing a simultaneous scaling form, where the
scattering length is assumed to scale with frequency, i.e.,
the dimensionless scaling variable a\/’”TT“ is kept fixed, the
dependence on the integration variable of the second term in
the integrand of Eq. (57) can be neglected. The remaining
integral is identified with the contact expectation value at
this order in the virial expansion [Eq. (28)]. We obtain the
high-frequency tails

»*c
2(mw)3? (a- IW)2+1 (1D)
. 2
lim (@) =1 56 ey D) 68)
e (e imer (3D,

367 /mo (a1 /h/mw)?+1

These results agree with the OPE result in 3D [21,22] and
the calculations in 2D [21]. The analytic high-frequency tails
match our numerical calculations of the full bulk viscosity
spectral function and provide a check of our results.

Unlike the shear viscosity spectral function, the bulk vis-
cosity is finite for all nonzero frequencies, and hence so is
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FIG. 6. Bulk viscosity spectral function in (a) 1D, (b) 2D, and
(c) 3D for difterent values of the dimensionless inverse scattering
length Az /a. The spectral function has a universal power-law high-
frequency tail [Eq. (58)]. As for the shear viscosity, there is a bound-
state contribution which dominates the spectral function in the dimer
limit above a threshold frequency.

the total spectral weight. An additional strong check of our
result is provided by computing sum rules for the total spectral
weight, which are related to the derivative of the contact
[17,21,22,26]

i _oC (3D)

T2ama® da—"

T 2D
— / dw {(w) { 16mrma da* ( ) (59)

These sum rules are obeyed by our numerical results.

2. Static bulk viscosity

In three dimensions for negative scattering length, where
no bound state exists, the zero-frequency limit of the bulk

viscosity is finite. We state the exact result

hz? 972\ a
2 22 e
1 23 /21 a? 1 T Eil — T
x|:+e o) T ma) |
(60)

where Ei is the exponential integral. In the perturbative limit
of small negative scattering length, this becomes

e 4
fim 42 1)
a——0 fiz nz? 9 )LT

In the unitary limit @ — oo, we obtain the result given in the
Introduction, Eq. (7). The prefactor of (A7 /a)’ in Eq. (7) is
consistent with an expected scaling with (P — %5 )/ P? ~
y2/P? that vanishes in the unitary limit and measures the
deviation from scale invariance [33,45]. Note that for the
bulk viscosity in high-temperature QCD, a similar logarithmic
quadratic scaling with interaction strength is found [75]. Our
findings are at variance with a previous kinetic theory calcula-
tion near the unitary limit, which does not include logarithmic
renormalization effects and gives a different result [33]

Moo 1 (A ©2)
a»oohzc'“"_mﬁn a)’

While the exact high-frequency tail and the sum rule con-
straints provide very compelling checks of our virial expan-
sion and indicate the consistency of our results, a disagree-
ment with kinetic theory is unexpected, and further work
warranted.

Note that the finite result (7) for the static bulk viscosity
at unitarity is obtained only when the unitary limit of infinite
scattering length (¢ — 00) is taken after the zero-frequency
limit (w — 0). However, these limits do not commute. By
contrast, the low-frequency limit of the bulk viscosity spectral
function near unitarity, i.e., taking the low-frequency limit af-
ter the unitary limit, diverges logarithmically with frequency:

\/E AT 21 4eVE
%00_9712(54) " o
This result appears consistent with recent work on the
nonequilibrium dynamics of a nearly unitary quantum gas
[43,44,76], which shows that the unitary conformal fixed point
governs the long-time quench dynamics in these systems at
times 1 < Int < a. The scaling for the bulk viscosity in
the time domain, ¢(t) ~ (Int)/a’t [Eq. (77) of Ref. [44]],
is consistent with the logarithmic low-frequency singularity
(63). The finite result for the static bulk viscosity quoted in
the Introduction, Eq. (7), then corresponds to evaluating the
correlation function outside of the conformal critical window.

(63)

IV. CONCLUSION

In this paper we have presented exact nonperturbative
results for the shear and bulk viscosity spectral functions cal-
culated to quadratic order in the fugacity. The field-theoretic
methods employed here allow us to be consistent with many-
body techniques such as the Keldysh formalism and can be
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compared with numerical calculations. A significant advan-
tage of our method is that the analytic continuation from
discrete Matsubara space to real frequencies is performed
in closed analytical form and does not require numerical
extrapolation schemes. The form of the viscosity spectral
functions is linked to the two-particle scattering structure:
Spectra consist of a broad continuous band superimposed
with an additional bound-state contribution above the dimer-
breaking threshold frequency. The results of the virial expan-
sion are internally consistent in that they obey universal Tan
relations for the high-frequency tail and, in the case of the bulk
viscosity, saturate exact sum rules.

It is interesting to note that the correspondence between
the exact virial expansion in the static limit and kinetic theory
is quite nontrivial. For the static shear viscosity, a memory
kernel resummation of the leading low-frequency divergence
in the spectral function is required to match with kinetic
theory. A similar resummation scheme for the bulk viscosity
is not apparent as the spectral function saturates to a finite
value, albeit with an additional dimer peak where present. A
direct extrapolation to the static limit for three-dimensional
fermions with negative scattering length, i.e., without bound
states in the two-body spectrum, gives a nonanalytic loga-
rithmic quadratic result near unitarity [Eq. (7)], which differs
from kinetic theory. It would be interesting to resolve this
discrepancy in further work.

There are several additional applications of the meth-
ods used in this paper. For example, at the next-to-leading
(third) order in the fugacity, the spectral functions include
three-body effects, which provide an additional way to break
scale invariance (besides an explicit finite two-body scattering
length or a quantum anomaly). For the bulk viscosity of the
unitary Bose gas, which is scale invariant in the two-body
sector, this third-order term will be the leading nonzero order.
Likewise, calculations of thermal transport coefficients will be
performed in a similar way as outlined in this paper.

Note added. Recently, Refs. [77,78] appeared, which dis-
cuss the virial expansion of the viscosity spectral functions
using other methods and have overlap with this work. The
overlapping results are in agreement.
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APPENDIX A: ANALYTIC CONTINUATION

The quantum cluster expansion gives expressions for re-
sponse functions in imaginary time or, after discrete Fourier
transformation, in Matsubara space for frequencies ifiw, =
27n/B. Frequency-dependent retarded response functions are
then obtained by analytic continuation iw, — o + i0. A con-
siderable advantage of the cluster expansion compared to nu-
merical methods is that this analytic continuation is performed
in closed analytic form and does not require an interpolation
or other numerical techniques. However, some care must be

FIG. 7. Contour of integration and branch cut structure used to
evaluate the Feynman diagrams and to perform the analytic continu-
ation.

taken [58]. This Appendix outlines the analytic continuation
for the integrals discussed in the main text.

After performing the Laplace transformation for the Feyn-
man diagram integrals, we obtain expressions of the form

2mi &
where f and g are products of the single-particle propagator
or the two-body T matrix, which have branch cuts or poles on
the real axis (we omit momentum integrals for brevity). Here
Bw is the Bromwich contour, which by definition avoids every
singularity of the integrand. This is shown in Fig. 7, where
the black solid lines indicate the branch cuts or poles of the
integrand for Ims = 0 and Im(s + iw,) = 0. Deforming the
contour of integration to run along the cuts (Bw’ in Fig. 7), we
obtain

x (iwy) =/ ﬂe"g"f(s)g(ihwn + ),
Bw

) ©ds _ ) )
X (iw,) = / —e PS{Imf (s + i0)]g(s + ifiw,)

+ f(s — ihw,)Im[g(s + i0)]},

where the integration range is extended to run along the
complete real axis. We can now safely perform the analytic
continuation iw, — w + i0 to obtain the retarded response
function. The imaginary part reads

(A2)

o0
d
Imy®(w) = (1 —e*ﬂ’m)/ ;Se*ﬂf

x Im[ £ (s + i0)]Im[g(s + fiw + i0)].

The prefactor (1 — e #%) is expected on general grounds
from the fluctuation-dissipation theorem [57]. For the stress
correlator self-energy and Maki-Thompson diagrams, one
factor f or g involves only simple poles from single-particle
propagators, so the integration is performed using the residue
theorem. The same is true for the Aslamazov-Larkin diagrams
when using the Ward identity (36).

(A3)

APPENDIX B: EXAMPLE CALCULATION

To illustrate the diagrammatic framework discussed in the
main text, this Appendix presents the calculation of the self-
energy contribution to the shear viscosity spectral function in
detail. The corresponding Feynman diagrams are shown in
Fig. 3(b) and also in Fig. 8 including the imaginary-time axis.
The calculation of other diagrams proceeds in a similar way.
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0 bt t ty 5 T

FIG. 8. Self-energy contributions to the shear viscosity correla-
tion function. Imaginary time runs from the left to the right, with
insertions of the off-diagonal stress tensor at imaginary times 0 and
7 (black dots).

The Feynman diagrams discussed in this paper lie on an
imaginary-time axis, with imaginary time running from the
left-hand side to the right-hand side. We partition the interval
[0, 7] in three parts with interval lengths #;, #,, and #3 as
shown in Fig. 8, where t =t + 1, + f3. Both diagrams in
Fig. 8 contain two retarded propagators, both with momentum

J

xEstion) =227 [ dan e

dip dlk
Q2r)? 2m)!

k. Using the Feynman rules in Eq. (21), they contribute
factors of [—O(#;) e "] and [—©O(t3)e %] for the first
diagram and [—© (¢ )e "**¢] and [—O(z;)e "2°¢] for the second
diagram (we neglect an additional factor e™*, the argument of
which will add to zero as all fermion lines are closed). The
diagrams contain two-body scattering matrices, which sum
all repeated scattering events shown in Fig. 2(b) and which
contribute terms of [@(t,)T>(t2, K + p)] and [O(#3)Tr(¢3, k +
p)], respectively. The overall leading order in the fugacity of
these diagrams is determined by the backward propagating
lines, which are O(z), such that the total diagram contributes
at O(z%) to the response function. The advanced Green’s
functions contribute factors [ze~#~11—275)8] and [ze~B—2)%]
or [e~(F—2)en], respectively. Having evaluated these factors,
we integrate over the undetermined loop momenta k and p
and take the discrete Fourier transform to obtain the response
in Matsubara space.

Collecting all terms, the first Feynman diagram evaluates
to

[O(t)e " *][O(t2) (12, k + P)]

X [O(13)e " H][e” PRI [ PTRNOB — 11 — 1 — 13) T (K) Ty (K), (B1)

where the prefactor of 2 accounts for a spin summation. Rearranging the factors gives

d3 d3k .
xtsion =2 [ S5 [ SSatmmi [ dwmremerne o)

Qr)y ) @u)yY

x [O(1)e™ 2 Ty (12, k + P)I[O(t3)e ™ e BTN QB — 1) — 1y — 13)e” P12 Ewtep)], (B2)

We now apply the convolution theorem (22), which gives the
expression (30). The second line of Eq. (30) takes the form
(A1) with

1
fG) = ——, (B3)
S — &k — &p
(s, k
ols) = 2 KFP) (B4)

(s —ex —&p)?

Performing the analytic continuation as outlined in Ap-
pendix A, we end up with an expression of the form (A3).
As mentioned above, this expression is further simplified

(

using Im[f'(s + i0)] = —m (s — ex — &p), which removes the
s integration. This then yields the expression (31).

Repeating the same calculation for the second diagram in
Fig. 8, the Bromwich integral takes a similar form as before
with the functions f and g interchanged:

_ Dh(s,k+p)
1=
1
g(s) = ——. (B5)
S — &k — &p

Evaluating the residue of g(s) then gives the expression (32).
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