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Beyond effective Hamiltonians: Micromotion of Bose-Einstein condensates
in periodically driven optical lattices
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We investigate by statistical means a Bose-Einstein condensate held in a one-dimensional optical lattice
whose phase undergoes a fast oscillation. The averaged potential experienced by the atoms yields a periodic
potential having the same spatial period but with a renormalized depth. However, the atomic dynamics
also contains a micromotion whose main features are revealed by a Kolmorogov-Smirnov analysis of the
experimental momentum distributions. Furthermore, we discuss the impact of the micromotion on a quench
process corresponding to a proper sudden change of the driving amplitude which reverses the curvature of the
averaged potential.
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I. INTRODUCTION

Periodic driving has developed into an indispensable item
of the experimental toolbox for the manipulation of ultra-
cold atomic quantum gases [1]. The possibility of subjecting
the magnetic or optical potential that confines atoms to a
time-periodic modulation has opened various perspectives
towards the realization of unconventional Hamiltonians, in
particular in the context of optical lattices. This has allowed
the development of techniques to dynamically control the
superfluid–Mott-insulator transition [2,3], to engineer Peierls
phases and non-Abelian gauge fields within optical lattice
plaquettes [4–7], to control magnetic magnetism parameters
[8], to realize multiple Bose-Einstein condensates (BECs) [9],
to generate time crystals [10], as well as to create synthetic
dimensions [11], to mention a few examples. A periodic
modulation of an optical lattice can, moreover, be employed to
renormalize interactions [12], investigate the kinetics of phase
transitions [13,14], and to study heating [15], nonequilibrium
steady state [16], and thermalization effects induced by atom-
atom interactions [17–19]. Alternatively, interactions can be
directly modulated [20,21].

In the specific case of an optical lattice that is subjected
to a relatively rapid periodic phase shaking, with a frequency
that is large compared to the interwell tunneling rate but
still small compared to the intrawell oscillation frequency,
a renormalization of the hopping matrix element appearing
within the single-band description of this lattice can thereby
be obtained, which can give rise to coherent destruction of
tunneling [2,22–24].

In most of the above studies, the driving is essentially
utilized in order to generate an effective time-independent
Hamiltonian which exhibits properties that would be hard,
if not impossible, to engineer with a purely static poten-
tial configuration. This effective Hamiltonian is technically

obtained from a separation of the timescales characterizing
the rapidly and slowly evolving degrees of freedom using
a transformation to a corotating frame. It is then common
practice to argue that a time averaging can be performed
over the rapidly evolving degrees of freedom which yields
the effective time-independent Hamiltonian. The above rea-
soning may be sufficient to qualitatively and quantitatively
characterize a large number of experimental configurations
and scenarios in the context of periodically driven quantum
gases. However, it is incomplete insofar as it does not account
for the hardly appreciable but, under certain circumstances,
significant phenomenon of micromotion [25,26]: the fact that
the atoms that are exposed to such a rapid driving undergo a
periodic wiggling of tiny amplitude which is synchronized to
the external modulation frequency. It must be accounted for in
the case of more complicated driving protocols such as quench
processes where parameters of the effective Hamiltonian are
suddenly varied.

To shed more light on this issue and get a more quantitative
grasp of this phenomenon, we consider the most basic driving
scenario that one could think of in this context: a BEC in a
one-dimensional (1D) horizontal lattice potential whose phase
undergoes a fast oscillation at very high frequency compared
to all other relevant energy scales of the lattice. As detailed in
Sec. II, time averaging over one driving period gives rise to
a renormalization of the lattice amplitude, which thereby can
effectively vanish or even reach negative values. This effect
can be observed directly on the momentum distribution of
the BEC (after a time of flight). In Sec. III, we show how
a more refined statistical analysis of this very same distribu-
tion reveals quantitatively the fingerprint of the micromotion.
Furthermore, it is known that a sudden change in the fast
driving force can also trigger an evolution of the slow degree
of freedom [27–29]. In Sec. IV, we exemplify this effect
by a proper choice of an abrupt change of the amplitude
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of modulation which reverses the curvature of the averaged
potential experienced by the atoms, and we discuss how this
phenomenon can be affected by the presence of micromotion.

II. THE AVERAGED POTENTIAL

The lattice potential reads

V (x) = − s

2
EL cos(kx) (1)

with EL = h̄2k2/(2m) = 4Erec, where Erec is the recoil energy
associated with the photon of the laser that creates the lattice
and m is the mass of an atom. The lattice spacing is d = 2π/k
and the dimensionless lattice strength is given by s. The hor-
izontal lattice shaking is characterized by the dimensionless
amplitude ϕ0 and the frequency ω/(2π ). The resulting time-
dependent Hamiltonian governing the dynamics of the atoms
is given by

H (t ) = − h̄2∇2

2m
+ V

(
x − 2ϕ0

k
sin(ωt )

)
+ V0(x, y, z), (2)

where V0 represents an overall harmonic confinement
potential.

For parameters such that h̄ω/(sEL ) � 1, the energy asso-
ciated with the modulation largely exceeds the barrier height
of the lattice wells. In this regime, the time-periodic lattice
potential can safely be replaced by its temporal average over
one period of the driving. This averaging gives rise to the
renormalization of the lattice amplitude in terms of the Bessel
function J0(ξ ) = π−1

∫ π

0 cos(ξ sin θ )dθ , and the dynamics of
the slow degree of freedom is dictated by an effective time-
independent Hamiltonian:

H̄ = − h̄2∇2

2m
− seff

2
EL cos(kx) + V0(x, y, z), (3)

where

seff = sJ0(2ϕ0) (4)

is the effective renormalized lattice strength. This renormal-
ization phenomenon is easily verified in our experiments. To
this end, we prepare a rubidium-87 BEC containing typically
105 atoms in a hybrid trap [30]. The off-resonant dipole
beam of the trap provides a longitudinal confinement char-
acterized by a trapping frequency on the order of ∼30 Hz.
Along the same axis, we superimpose the optical lattice of
spacing d = 532 nm, obtained from the interference of two
counterpropagating laser beams. The BEC is loaded into the
lattice by ramping up the lattice strength to its final value
s in a few ms in the presence of the phase modulation. We
imprint the phase modulation on the lattice beams using two
acousto-optic modulators driven by phase-locked synthesizers
[31]. After a 2 ms holding time in the phase-modulated lattice,
we switch off all confinements. The atomic cloud then freely
expands and is imaged after a long time of flight (>25 ms) to
access its momentum distribution.

The inset of Fig. 1(a) shows a typical time-of-flight absorp-
tion image. It displays a large peak centered about zero mo-
mentum as well as two side peaks centered about the momenta
p = ±h/d [32]. The latter arise from the periodic spatial
modulation of the condensate wave function induced by the

FIG. 1. (a) Averaged side-peak population as a function of the
modulation frequency for an optical lattice of dimensionless strength
s = 7.3 ± 0.1 and a modulation amplitude 2ϕ0 = 3.316. The hori-
zontal solid line corresponds to the prediction for the static lattice
of effective depth seff = sJ0(2ϕ0) = 2.5 (see text). The error bars
originate from the size of the integration windows used to estimate
the population in the side peaks. Blue stars in (c) are the averaged
side-peak population of the two side peaks extracted from the time-
of-flight images (b) as a function of the modulation amplitude for
the fixed modulation frequency ω/(2π ) = 500 kHz; black solid lines
correspond to the theoretical predictions (see text). All experimental
points are averaged over two runs. Panel (d) shows the expected
maximal values for the asymmetry of the two side-peak populations.
Lattice strength parameter for (b)–(d): s = 6.4.

presence of the lattice potential. In Fig. 1(a), we investigate
the validity of the description in terms of an averaged potential
for the slow degree of freedom. For this purpose, we plot the
averaged population in the side peaks π̄ = (π− + π+)/2 as a
function of the driving frequency ω/(2π ), in the range of 25
to 500 kHz, for the parameters 2ϕ0 = 3.316 and s = 7.3 ± 0.1
[33]. We find a good agreement with the prediction π̄ = 0.136
associated with a static lattice potential of dimensionless
strength seff = sJ0(2ϕ0) = 2.5 for ω > 2π × 100 kHz, while
the largest interband transition frequency between the ground
state and first excited band is equal to 19.7 kHz for the chosen
lattice depth. In the following, we choose ω = 2π × 500 kHz
(if not otherwise stated) and s = 6.4.

According to Eq. (3), the side peaks shall vanish whenever
the driving amplitude 2ϕ0 equals a zero of the Bessel function
J0. This behavior is indeed confirmed in Fig. 1(b), where we
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show the measured momentum distribution as a function of
the driving amplitude.

More quantitatively, neglecting the effects of atom-atom
interactions1 and of the overall harmonic confinement, we
can express the condensate wave function associated with the
Hamiltonian (3) as

ψ̄0(x) =
√

2 ce0[kx/2, seff ]

= c0(seff ) +
∞∑

�=1

2c�(seff ) cos(�kx) (5)

(up to some global normalization prefactor), where ce0 is
the Mathieu function of the first kind [34]. The fraction of
atoms contained within the central peak and within the two
side peaks of the momentum distribution shown in the inset
of Fig. 1(a) are then given by the Fourier components π0 =
|c0(seff )|2 and π± = |c1(seff )|2, respectively. In Fig. 1(c), we
plot the averaged side-peak population as a function of the
driving amplitude. We find an excellent agreement between
the experimental results and the values obtained from the
previous analysis.

III. STATISTICAL ANALYSIS OF THE
ATOMIC MICROMOTION

The above reasoning is incomplete insofar as it does not
account for the presence of micromotion. To retrieve the
latter, it is useful to derive the effective Hamiltonian (3) in a
more rigorous manner in the framework of adiabatic quantum
perturbation theory, following the lines of Refs. [35–37].
In practice, this amounts to subjecting the condensate wave
function to a gauge transformation ψ �→ ψ̄ = U †(t )ψ with
the unitary operator

U (t ) = T exp

[
− i

h̄

∫ t

t0

K (ωt ′)dt ′
]
, (6)

which is generated by the periodic pseudo-Hamiltonian
K (θ ) = K (θ + 2π ) satisfying∫ π

−π

K (θ )dθ = 0 (7)

(thus ensuring that U is time periodic), where T is the time-
ordering operator. The Hamiltonian (2) of the system is then
transformed according to

H (t ) �→ H̄ (t ) = U †(t )[H (t ) − K (t )]U (t )


 H (t ) − K (t ) + O(ω−1) (8)

in the lowest order in the inverse driving frequency. In view of
the constraint (7) we choose

K (ωt ) = H (t ) − H̄ (9)

with H̄ the time average (3) of the Hamiltonian, and thus
obtain H̄ (t ) = H̄ for all t .

1We numerically verified that atom-atom interactions are not rele-
vant in our experiments.

Micromotion is encoded in the inverse gauge transforma-
tion back to the laboratory frame according to ψ = U (t )ψ̄ .
Evaluating

lim
θ0→−∞

∫ θ

θ0

K (θ ′)dθ ′ ≡ lim
ε→0+

∫ θ

−∞
K (θ ′)eεθ ′

dθ ′

= − 1

2π

∫ π

−π

θ ′K (θ − θ ′ − π )dθ ′ (10)

by means of Eq. (7), we obtain

U (t ) 
 1 − i

h̄ω

∫ ωt

ωt0

K (θ ′)dθ ′

= 1 + i

2π h̄ω

∫ π

−π

θ ′V
[

x + 2ϕ0

k
sin(ωt − θ ′)

]
dθ ′ (11)

in the lowest nontrivial order in ω−1. Using the Fourier
series expansion exp(iξ sin θ ) = ∑∞

n=−∞ Jn(ξ ) exp(inθ ) with
Jn(ξ ) = (2π )−1

∫ π

−π
exp(iξ sin ϕ − nϕ)dϕ, the Bessel func-

tion of the first kind of order n, we obtain the wave function
in the laboratory frame as

ψ (x, t ) =
{

1 + sh̄k2

8mω

∞∑
n=1

[einωt − (−1)ne−inωt ]

× Jn(2ϕ0)

n
[(−1)neikx + e−ikx]

}
ψ̄0(x). (12)

Clearly, the presence of micromotion introduces additional
contributions of oscillatory nature to the side-peak popula-
tions, which are then evaluated from the spatial Fourier series
of Eq. (12) as

π±(t ) =
∣∣∣∣c1(seff ) + sh̄k2

8mω

∞∑
n=1

[einωt − (−1)ne−inωt ]

× Jn(2ϕ0)

n
(∓1)n[c0(seff ) + (−1)nc2(seff )]

∣∣∣∣
2

. (13)

These additional contributions with respect to |c1(seff )|2 are
negligibly small on temporal average as well as for the mean
side-peak population (π+ + π−)/2, where they scale quadrat-
ically with sh̄k2/(8mω) ∼ 0.026. However, they give rise to
significant oscillatory side-peak population imbalances,

π+(t ) − π−(t ) = −c1(seff )[c0(seff ) − c2(seff )]
sh̄k2

mω

×
∞∑

�=0

J2�+1(2ϕ0)

2� + 1
cos[(2� + 1)ωt], (14)

whose maximal absolute values within one driving period are
displayed in Fig. 1(d) as a function of the driving amplitude.

In our experiment, it is not possible to directly verify
Eq. (14). Indeed, we load the atoms in the lattice in the pres-
ence of the phase modulation. As a result, we do not control
the initial phase of the modulation nor the final phase when
we switch off the lattice and confinement potentials to initiate
the time of flight. However, we perform a statistical analysis
on 80 experimental runs from which we extract the side-peak
population imbalances in the spirit of a Kolmogorov-Smirnov
test [38], assuming a uniform probability distribution for
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FIG. 2. Upper row: measured populations π± of the two side
peaks (a) in the absence of the modulation (s = 3.1, π̄ = 0.156)
and in the presence of modulation with frequencies of ω/(2π ) =
250 kHz (b) and 500 kHz (c) and for the lattice strength s = 6.6,
i.e., seff = s/2 = 3.3 (π̄ = 0.162). For these two latter cases, the
modulation amplitude 2ϕ0 = 1.520 was chosen such that a signifi-
cant amplitude of micromotion would be obtained [see Fig. 1(d)].
The corresponding cumulative distribution functions extracted from
the experimental data for ω/(2π ) = 250 and 500 kHz are shown
in panels (d) and (e) [blue and red (gray) staircase-like lines],
respectively. While an error function profile would be expected in
the absence of the driving [as shown by the light green (light gray)
distribution obtained for ϕ0 = 0], the actual distribution functions
agree very well with their analytical predictions based on the theory
of micromotion (smooth black lines).

the final phase ωt at the instant when all confinements are
switched off. The results of such a statistical analysis are
shown in Fig. 2 for the driving amplitude 2ϕ0 = 1.520 that
leads to the largest side-peak population imbalance according
to Fig. 1(d) and for the driving frequencies ω/(2π ) = 500
and 250 kHz. Very good agreement is found between the
experimental cumulative probability distribution, 
, to detect
a given side-peak population imbalance and its analytical
prediction, which is essentially obtained from an inversion
of Eq. (14) within 0 � ωt � π . In the absence of modulation
[see Fig. 2(a)], the imbalance distribution is Gaussian and its
cumulative probability is therefore an error function. In the
presence of the modulation, the 
 prediction resembles an
arccosine profile given the fact that the terms with � > 0 in the
sum in Eq. (14) are negligibly small for the driving amplitude
under consideration. The width of the 
 function is expected
to vary as ω−1, a property that can be directly seen in Fig. 2.

IV. QUENCH AND MICROMOTION

Although clearly visible in our experiments, the effect of
micromotion can still be considered to have a perturbative
impact for the averaged dynamics of the atoms within the
periodically modulated lattice potential under consideration.
However, it must be accounted for in the presence of non-
trivial quench processes where parameters of the effective
Hamiltonian (3) are suddenly varied. In the following, we

2
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im

e

FIG. 3. (a) Effective lattice strength as a function of the mod-
ulation amplitude ϕ0, and sketch of the experiment in which the
minima of the periodic potential are suddenly replaced by maxima as
a result of a modulation amplitude change from ϕ1 to ϕ2. (b),(c) Time
evolution of the interference pattern obtained after time of flight:
(b) for a BEC loaded and remaining in a phase-modulated lattice with
2ϕ1 = 1.920 (c) after the sudden change of the modulation amplitude
from 2ϕ1 to 2ϕ2 = 3.142 that coincides with the holding time t = 0.
Both amplitudes of modulation correspond to close effective lattice
depth. The change from ϕ1 to ϕ2 triggers an out-of-equilibrium
dynamics since the wave function peaks initially at the bottom of
lattice wells are abruptly placed at the top of the periodic potential
hills where they split into two packets with opposite momenta (c).
Each line of images (b) and (c) is obtained by averaging over two
experimental runs.

consider the quench process consisting of reversing the ef-
fective lattice strength (4), which can be realized through a
sudden steering of the modulation amplitude 2ϕ0 across a zero
of the Bessel function J0.

The possibility of reversing the curvature of the averaged
potential is not a general property of rapidly varying poten-
tials. For instance, it does not occur for a harmonic potential
whose position would be modulated [27]. In our case, it ap-
pears mathematically as a consequence of the renormalization
factor that involves a zeroth-order Bessel function whose sign
depends upon its argument. Once suddenly placed at the top
of the potential hills, which amounts to performing a π -phase
shift in the driven optical lattice, one expects the packet to
split into two symmetric wave packets that move in opposite
directions. It is worth noticing that such a sudden change of
the depth and phase of the lattice can be done without modi-
fying the light intensity of the beams that generate the lattice.
This quench can therefore be performed in the presence of an
active intensity locked system.

We calculate the sudden change of the modulation ampli-
tude to realize a change of the sign of the lattice amplitude
while keeping the lattice strength at nearly the same value.
The corresponding experimental results are reported in Fig. 3,
where we show the measured momentum distribution as a
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function of the holding time within the inverted lattice after
the quench. We clearly observe the splitting revealing that the
sign of the averaged potential experienced by the atoms has
been indeed changed.

A more careful look reveals the presence of a slight asym-
metry in the split packets as they evolve in time. Such an
asymmetry can arise in a perfectly symmetric configuration
due to the presence of micromotion. Indeed, if the quench
takes place at an instant t where the side-peak population
imbalance π+(t ) − π−(t ) is nonzero, the wave functions shall
split asymmetrically. However, we cannot ascribe the ob-
served asymmetry to the micromotion for two reasons: (i) the
expected amplitude for the asymmetry due to the micromotion
is much smaller than the one observed, and (ii) we do not
control the quench time at the scale of the micromotion period.
We conclude that this asymmetry is mainly due to technical
imperfections, for instance, a small initial oscillation of the
condensates in each well of the optical lattice (resulting in a
small initial velocity of a few hundreds of μm/s).

V. CONCLUSION

In summary, we have shown how a phase-modulated opti-
cal lattice can serve as a testbed for verifying the presence of
micromotion. The latter can be directly seen in the momentum

distribution of the atoms that formed a Bose-Einstein conden-
sate within the modulated lattice, by performing a statistical
comparison of the population difference of the positive- and
negative-momentum side peaks with the analytical prediction
resulting from the theory of micromotion. We have explained
how a sudden change of the fast driving phase can have a
strong impact on the slow atomic motion. We have further-
more discussed how the micromotion could contribute to the
symmetry breaking between wave packets that emerge from
an inversion of the effective lattice amplitude. A more refined
verification of such an effect will require more precise control
of the quench time on the scale of the driving period. This
will then open various perspectives for utilizing the concept of
micromotion as an engineering tool for the control of ultracold
quantum gases.
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