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Nonzero-temperature dynamics of a repulsive two-component Fermi gas
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We study spin-dipole oscillations of a binary fermionic mixture at nonzero temperatures. We apply the
atomic-orbital method combined with a Monte Carlo technique based sampling to probe finite temperatures.
Our results agree quantitatively with a recent experiment [G. Valtolina et al., Nat. Phys. 13, 704 (2017)] showing
the appearance of the ferromagnetic phase at stronger repulsion between components when the temperature is
increased.
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I. INTRODUCTION

The long-standing picture of itinerant ferromagnetism
posed by Stoner in his 1933 pioneering work [1] is now
being tested experimentally. As predicted in [1], free (i.e., not
localized) electrons become ferromagnetic when a short-range
screened Coulomb repulsion between opposite spin particles
gets strong enough to overcome the Fermi pressure. To verify
Stoner’s original idea one needs a system free of all these
beyond-short-range repulsion effects, which are typical for
solids [2]. Cold fermionic atoms seem to be the solution.
Indeed, by using fermionic atoms one can study the inter-
play between fermionic quantum pressure and the short-range
interatomic repulsive interactions [3–9]. Hence, the question
can be addressed of whether a strong repulsion between atoms
can overcome the effect of a pressure, which tends to dispose
atoms in the whole available space, and lead to formation of
spatial domains.

Attempts have been undertaken already to verify exper-
imentally Stoner’s idea of itinerant ferromagnetism [5–9].
Enthusiasm for the use of cold fermionic atoms, however, has
quickly weakened. The reason is that the repulsive Fermi gas
is, in fact, a metastable state as it corresponds to the excited
many-body energy branch [10]. While driving the atoms into
the strong repulsive regime, the process of forming bound
states becomes more competitive, and bound molecular states
are formed. These bound states are reached through the three-
body collisions which become crucially important near the
Feshbach resonance (see the discussion of the pairing versus
ferromagnetic instabilities in a recent experimental work in
Ref. [11]).

To avoid difficulties related to the pairing effect, in the
experiment [9] a 6Li atom mixture was initially prepared in
a state which mimics the ferromagnetic one. For that, both
components, held in a cigar-shaped harmonic trap, were first
spatially separated by using a magnetic field gradient. When
the overlap between two atomic clouds was negligible, the
optical repulsive barrier was turned on and the magnetic
gradient turned off.

Two kinds of experiments were performed with the system
prepared in such a state. In the first type the spin dynamics
is investigated by suddenly switching off the optical barrier.

In this case the frequencies of the spin-dipole mode are
measured; they are extracted from the time-dependent be-
havior of the relative distance between centers of two spin
clouds. This measurement reveals the existence of the critical
repulsion. In the weakly interacting regime the spin-dipole
frequency decreases with the increase of the intercomponent
repulsion. This softening of the spin-dipole mode contin-
ues until some critical repulsion strength is reached. For
stronger interaction the spin dynamics changes qualitatively:
the clouds stop passing through each other and start to bounce
off each other with frequency higher than the trap frequency.
The spin-dipole mode is studied for two temperatures only,
much below the Fermi temperature.

In the second experiment the stability of two spin do-
mains is investigated. For that, the separating optical barrier
is removed adiabatically and the spin diffusion effect is ob-
served below and above the critical interaction strength. No
detectable spin-dipole oscillations are excited in this case.
Instead, the magnetization of the sample is measured and the
time windows of constant magnetization are observed above
the critical repulsion. The duration of time windows is, how-
ever, finite because of relaxation of the system to the lower-
lying energy branch. The periods of constant magnetization
start to appear at an interaction strength very close to that at
which the spin-dipole frequency, after continuously decreas-
ing, shows a sudden jump to higher values. Thus, both kinds
of experiments support the existence of the critical repulsion,
above which the paramagnetic phase becomes unstable in
favor of the ferromagnetic one [1,12–17].

II. DESCRIPTION OF THE SYSTEM AT ZERO
TEMPERATURE

To model the experiment of [9] we use the Hartree-Fock
approximation (already applied to study various mixtures of
cold atoms [18–21]), i.e., we treat all fermionic atoms indi-
vidually by assigning single-particle wave functions to each of
them. These wave functions, so-called atomic orbitals, depend
both on spatial and spin degrees of freedom. Then the many-
body wave function of the system of N indistinguishable
fermionic atoms, in its simplest form, can be approximated

2469-9926/2020/101(1)/013618(5) 013618-1 ©2020 American Physical Society

https://orcid.org/0000-0002-4759-8682
https://orcid.org/0000-0002-5273-0641
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.101.013618&domain=pdf&date_stamp=2020-01-16
https://doi.org/10.1038/nphys4108
https://doi.org/10.1038/nphys4108
https://doi.org/10.1038/nphys4108
https://doi.org/10.1038/nphys4108
https://doi.org/10.1103/PhysRevA.101.013618


RYSZKIEWICZ, BREWCZYK, AND KARPIUK PHYSICAL REVIEW A 101, 013618 (2020)

by the single Slater determinant

�(x1, . . . , xN ) = 1√
N!

∣
∣
∣
∣
∣
∣
∣

φ1(x1) · · · φ1(xN )
...

...
φN (x1) · · · φN (xN )
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The coordinates xn (n = 1, . . . , N) of atoms include spatial
and spin variables and φn(x) (n = 1, . . . , N ) are the or-
thonormal spin orbitals. Here we consider a two-component
Fermi gas; then the spin-dependent part of the spin-orbitals is
twofold. As in experiment [9], we assume a balanced mixture
of two spin states.

Fermions occupying the same spin state do not interact.
The only considered interaction in the system is the repulsion
between different spin atoms. At low temperatures, on many
occasions, it is well described by the contact potential with the
coupling constant g, related to the s-wave scattering length a
via g = 4π h̄2a/m. For such spin-dependent interactions, the
time-dependent Hartree-Fock equations for the spatial parts
of the spin-orbitals, φ+

n (r, t ) and φ−
n (r, t ), can be written as

ih̄
∂

∂t
φ±

n (r, t ) = Hsp φ±
n (r, t ) (2)

for n = 1, . . . , N/2. The effective single-particle Hamilto-
nian is given by Hsp = − h̄2

2m ∇2 + Vtr (r) + gn∓(r, t ) with
atomic densities of components (normalized to the number of
atoms in each component), n+(r, t ) and n−(r, t ), defined as
n±(r, t ) = ∑N/2

n=1 |φ±
n (r, t )|2.

However, to retrieve quantitatively the results of experi-
ment [9] an oversimplified description of particles’ interac-
tions should be improved. One needs to include the many-
body correlations raised by the interactions. This can be done
by modifying the many-body wave function (1) by including
the Jastrow correlation terms. Quantum Monte Carlo varia-
tional calculations with a trial wave function of the Jastrow-
Slater form have been already successfully applied to mixtures
of degenerate gases [12,22]. Note, however, that a much
simpler approach, the lowest-order constrained variational
method [23,24], exists and can be safely used to get a good
approximation to the results of quantum Monte Carlo calcula-
tions [25,26]. The time-dependent extension of this simplified
approach is accessible as well.

The other way to include correlations is to introduce effec-
tive interactions. This was already proposed in [21], where the
zero-temperature spin-dipole oscillations of two-component
Fermi gas were investigated. The idea is to renormalize the
coupling parameter in the two-particle contact potential in a
way to be able to fulfill the well known low-density expansion
of an energy in the dimensionless parameter kF a, where kF is
the Fermi wave number. For a two-component Fermi system
this energy expansion, with up to third-order terms, reads
[27,28]

E

NεF
= 3

5
+ 2

3π
(kF a) + 4

35π2
(11 − 2 ln 2) (kF a)2

+ 0.23(kF a)3 + · · · , (3)

where εF is the Fermi energy. The term proportional to kF a is
just the mean-field expression for the interaction energy. The
next term, derived first by Huang and Yang [29] and Lee and

Yang [30], takes into account the modification of the interme-
diate states due to the Pauli exclusion principle. The last one
results from the three-body correlations [31] and, in principle,
depends on s- and p-wave scattering lengths as well as on
the s-wave effective range. The value given in (3) is just the
one calculated for the hard-sphere potential case. In the case
of attractive interactions, on the Bardeen-Cooper-Schrieffer
side of the so-called BCS-BEC crossover, the formula cor-
responding to (3) was already verified experimentally; see
Ref. [32]. To follow the formula (3) one has to renormalize the
coupling constant locally [33], which effectively results in the
replacement of gn± term in Eqs. (2) by gn± + A(4/3 n1/3

∓ n± +
n4/3

± ) + B(5/3 n2/3
∓ n± + n5/3

± ), where A = 3ga(6π2)1/3(11 −
2 ln 2)/35π and B = 3ga2(6π2)2/3π/4 × 0.23 [21].

III. NONZERO-TEMPERATURE CASE

To extend our analysis by including temperature effects on
spin-dipole oscillations of a two-component Fermi gas, we
allow population of single-particle states of energies higher
than the Fermi energy. This is done with the help of Monte
Carlo technique based sampling. Although Eqs. (2) include
the mean-field term representing the repulsion between differ-
ent spin atoms, the initial state of the two-component Fermi
gas is actually free of interactions. This is because initially
both spin-up and spin-down atomic clouds are spatially sep-
arated, just like in the experiment [9]. Since cold polarized
fermionic atoms do not interact, it is justified to generate
the grand canonical ensemble of many-body states of the
two-component Fermi gas, corresponding to the initial state,
assuming the energy levels and their populations as for the
ideal gas. Then the probability of populating a one-particle
state φn of energy εn is given by the Fermi-Dirac distribution
pn = {exp[β(εn − μ)] + 1}−1, where β determines the bath
temperature (β = 1/kBT ) and μ is the chemical potential. We
generate, according to this probability, a number of many-
particle configurations (states) for both components for each
temperature. Technically speaking, a many-body state is built
by going through the set of considered single-particle states
and accepting each of them with the probability pn. For that,
for each single-particle state φn a random number r from the
interval [0,1] is drawn and compared with the probability pn.
The single-particle state is accepted provided r < pn. The
numbers of atoms in each component slightly differ from
one configuration to the other but on average they are the
same provided the number of many-body states drawn is large
enough.

To follow the above prescription we need to fix the value
of the chemical potential for each fermionic component. The
chemical potential and the temperature are two control param-
eters in the grand canonical ensemble. They can be related
to the average number of atoms and the average energy in
the ensemble. To find the chemical potential corresponding
to the given average number of atoms, 〈N〉, at a given temper-
ature one must solve the equation

∑nmax
n=1{exp[β (εn − μ)] +

1}−1 = 〈N〉, the left-hand side of which is just the sum of
average occupations of all considered single-particle states.
Throughout this work we have 〈N〉 = N/2 = 24 for each
component, and the number of single-particle states taken into
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FIG. 1. Spin-dipole oscillations of atomic clouds for increased
interaction strength, kF a, at the temperature T/TF = 0.4. The relative
distance d (t ) between the centers of mass of two spin clouds is
shown as a function of time. Each value d (t ) is an average over ten
configurations. The number of atoms is N/2 = 24.

account is nmax ≈ 4 × 103. The chemical potential found in
this way is close to the one given by the low-temperature
Sommerfeld expansion for a gas in a harmonic trap μ =
εF [1 − (π2/3)(kBT/εF )2], for temperatures up to 0.45TF (TF

is the Fermi temperature). The above Sommerfeld expansion
turned out to be correct for the ideal Fermi gas trapped in a
harmonic potential for temperatures even up to 0.55TF [34].

IV. RESULTS: SPIN-DIPOLE MODE FREQUENCIES AND
DAMPING RATES

In this way, having given the temperature T and the average
number of atoms N/2 in each component, we sample, with
the help of the Fermi-Dirac distribution, the many-particle
states space for a two-spin Fermi gas. Then, for each many-
particle state we abruptly remove the barrier separating com-
ponents and start dynamics of two atomic clouds. For that
we numerically solve the set of Eqs. (2) [35] for different
temperatures and the interaction strengths kF a. Here, kF is
the Fermi wave number equal to kF = (24N )1/6/aho, where
aho = (h̄/m ωho)1/2 and ωho is the geometrical average of
trapping frequencies. As in experiment [9], the axial and
radial trap frequencies are equal to ωz = 2π × 21 Hz and
ω⊥ = 2π × 265 Hz. We monitor the separation d (t ) between
the centers of mass of two atomic clouds as a function of time.
The distance d (t ) differs, in general, between configurations,
therefore the results are averaged over ten samples. In Fig. 1
we plot averaged d (t ) for the temperature T/TF = 0.4 and for
different interaction strengths. We depict three qualitatively
distinct regimes of dynamics of the system. For low and
high enough kF a (upper and lower frames, respectively) d (t )

FIG. 2. Frequencies of the spin-dipole mode of a repulsive two-
component Fermi gas plotted as a function of kF a for different
temperatures, increasing from top to bottom. The higher temperature
impedes the formation of the ferromagnetic phase, therefor the
separation of the components occurs for larger kF a.

clearly oscillates. In the crossing regime the oscillations are
strongly damped (middle frame and Fig. 3).

Analyzing data as in Fig. 1, we fit the averaged distance
d (t ) to c0 + c1t + c2 e−	t sin (ωSDt + ϕ). Figures 2 and 3

FIG. 3. Damping rates for different repulsion strengths and a
number of temperatures. As in experiment [9], we find a strong
increase of the damping of the spin-dipole oscillations while ap-
proaching the critical repulsion. After crossing the critical region the
damping of oscillations becomes low again.
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summarize our results with respect to the fitting parameters
ωSD and 	. For weak repulsion two atomic clouds behave
as miscible fluids. In the limit of noninteracting clouds they
oscillate with a frequency equal to the axial trap frequency.
When the repulsion increases the frequency gets lower, down
to 0.5ωz at zero temperature [21]. This, so called mode-
softening effect is diminished for higher temperatures; see
Fig. 2. When the strength of the repulsion is increased further
we observe a qualitative change in the response of the system.
Two atomic clouds become immiscible. For temperatures up
to T/TF = 0.4 the atomic clouds oscillate with a frequency
below 2ωz just after crossing the critical region and close to
twice the axial frequency for larger kF a. The critical value
of kF a is shifted up for higher temperatures. This can be
understood based on Stoner’s model of itinerant ferromag-
netism. In this model the repulsion between fermions coun-
teracts fermionic quantum pressure. Since the Fermi pressure
of an ideal gas gets larger with the temperature [36], stronger
repulsion is needed to overcome the pressure. The same
reason causes the decline of the effect of mode softening for
higher temperatures.

Results presented in Fig. 3, showing damping rates of
the spin-dipole oscillations, are in agreement with experi-
mental observations [9]. Below the critical repulsion, while
the frequency ωSD decreases, the damping of the oscillations
strongly increases. Beyond the critical region, when the spin-
dipole mode frequency ωSD jumps to the value of 2ωz, the
damping is significantly reduced. This behavior holds for all
considered temperatures.

V. RESULTS: PHASE DIAGRAM

Finally, we gather our data in Fig. 4, where we plot the val-
ues of the critical repulsion (kF a)cr for studied temperatures.
The numerical results are denoted by blue bullets and come
from the analysis of oscillations of the spin-dipole modes as in
Fig. 2. We also show the experimental data, red crosses, taken
from Ref. [9], which are collected based on the measurement
of the stability of the ferromagnetic state against the spin
diffusion. According to [9], a metastable ferromagnetic state
appears for a repulsion kF a very close to the one at which the
frequency of the spin-dipole mode exhibits a sudden jump to
high values. Indeed, our numerical results are in agreement
with experimental data, even though they are obtained for a
system much smaller than that studied in [9]. Such behavior,
i.e., the independence of (kF a)cr on the number of particles,
was already recognized in Ref. [21] for a zero-temperature
case.

To understand this universal behavior for a gas at nonzero
temperatures we adopt Stoner’s picture of itinerant ferromag-
netism. To find the critical value of repulsive interactions
we compare the kinetic energy of the gas to the interaction
energy [37]. For a uniform system at zero temperature, within
the Thomas-Fermi approximation, this gives (kF a)cr = π/2.
Taking into consideration temperature, through the lowest-
order Sommerfeld expansion for the internal energy [36], one
has (kF a)cr = π/2 [1 + 5π2/12 (T/TF )2]. Two corrections to
this formula are needed. First, we know from the experiment
[9] and a number of theoretical papers [12,21,38,39] that
at zero temperature the critical repulsion is, in fact, smaller

FIG. 4. Critical value of the repulsive interaction strength,
(kF a)cr , at a given temperature obtained from the analysis of the
spin-dipole mode as in Fig. 2 (blue bullets, with additional horizontal
bars showing the extent of dispersion). Beyond (kF a)cr the system
remains in the ferromagnetic state (gray area). The red crosses are
the experimental data taken from Ref. [9] (Fig. 3 d), related to the
measurement of the diffusion of two spin domains. The blue bullets
come from numerics, after averaging over ten configurations for each
temperature. The dotted line is plotted based on the lowest-order
Sommerfeld expansion, whereas for the case of blue squares the
energy is calculated numerically. The solid line is a power-law fit
to the numerical points for temperatures T/TF < 0.4. The number of
atoms is N = 48.

and closer to 1. In Ref. [21], to get the correct value, we
renormalized the coupling constant in the interparticle in-
teractions, consulting correlations in this way. Second, the
temperature-dependent factor should correspond rather to the
harmonic potential case. Therefore, we have (kF a)cr ≈ [1 +
2π2/3 (T/TF )2], and the border between paramagnetic and
ferromagnetic phases is denoted in Fig. 4 as a dotted line. An
agreement with numerics holds only for low temperatures, as
the Sommerfeld expansion does apply in this range. We can
improve the agreement by calculating the energy of the system
according to the grand canonical ensemble rules as E (T ) =∑nmax

n=1 εn{exp[β (εn − μ(T ))] + 1}−1. The results, i.e., T/TF

as a function of (kF a)cr = E (T )/E (T = 0), are visible in
Fig. 4 as blue squares. Now, an agreement remains at the
quantitative level for all temperatures.

One might be surprised that the above formula for the
energy, E (T ), of the system as if it was an ideal gas works
well. This is because at the critical value of kF a the two atomic
components become separated. Of course, this separation
is not as perfect as it was initially, at time equal to zero.
There exists some domain wall in between components, where
atoms of both spins are mixed and repulsively interacting,
to support the separation. Also, at (kF a)cr the gas is still
unpolarized on the perimeter (the overlapping part vanishes
only for strong enough repulsion). Surely, the presence of
the domain wall modifies the single-particle energies, εn,
for larger n. This change increases with temperature (or
the interaction strength) since then the effective interspecies
barrier decreases and becomes broader. Therefore, for higher
temperatures the approximate results (blue squares in Fig. 4)
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depart from the numerical ones (blue bullets). Nevertheless,
the overall agreement remains good.

VI. CONCLUSIONS

In summary, we have studied dynamics of a repulsive
two-component Fermi gas at nonzero temperatures. We utilize
the atomic-orbital method and apply Monte Carlo sampling
to probe many-particle states due to finite temperatures. We
find a quantitative agreement with experimental results of
[9] showing the dependence on temperature of the critical

repulsion kF a, indicating the transition to the ferromagnetic
phase. The critical strength kF a increases with temperature in
accordance with Stoner’s picture of itinerant ferromagnetism.
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