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We study experimentally and theoretically the time-dependent response of a cold atom cloud illuminated by
a laser beam immediately after the light is switched on. We show that cooperative effects, which have been
previously investigated in the decay dynamics after the laser is switched off, also give rise to characteristic
features in this configuration. In particular, we show that collective Rabi oscillations exhibit a superradiant
damping. We first consider an experiment that is performed in the linear-optics regime and is well described
by a linear coupled-dipole theory. We then show that this linear-optics model breaks down when increasing the
saturation parameter, and that the experimental results are then well described by a nonlinear mean-field theory.
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I. INTRODUCTION

The optical response of a coherently illuminated cloud
of coupled scatterers can dramatically differ from the light
emission properties of its individual constituents. Such col-
lective or cooperative effects have been intensively explored
in recent years, especially with cold atoms [1,2]. In partic-
ular, super- and subradiance have been recently investigated
in various experimental geometries [3–10]. Strikingly, many
recent observations are well explained in the low-excitation
limit [11], where dynamics can be described by linear equa-
tions of motions of classical coupled dipoles [12,13]. It is
an important task to explore collective effects beyond this
linear-optics regime theoretically [14–20], as it is relevant to
various contemporary experimental setups studying collective
effects with cold atoms [21–28].

In recent cold-atom experiments, super- and subradiance
have been studied by observing the decay dynamics after
the driving laser is switched off [3–9]. Here, we demonstrate
that the dynamics immediately after the laser switch-on can
also be used to observe cooperative effects. We show that
in the linear-optics regime the dynamics of the scattered
light intensity can be modeled by that of an effective single
driven-damped dipole. By fitting a function for the evolution
of the intensity emission of this effective dipole [23,29], we
can extract collective decay rates and frequency shifts. The
cooperative shifts have been recently understood in terms of a
multimode collective vacuum Rabi splitting [29]. In this paper
we will focus on the collective damping rates and show that
they are consistent with those of the experimental observa-
tions in the superradiant regime of the switch-off dynamics
[5].

While most experimental observations are consistent with a
linear-optics model in the low-saturation regime, in this paper
we also consider the case of larger saturation parameters, and
show that experimental signatures start to deviate from the

linear model. For this situation, we show that the observed
switch-on dynamics can, however, be well described by a
nonlinear mean-field (MF) theory. The agreement between
this mean-field model and our experimental data obtained
with a dilute atomic sample highlights the importance of high
densities for observing quantum effects (beyond the mean-
field assumption) in light scattering experiments.

The switch-on scenario studied here provides an alternative
approach for studying collective and/or cooperative effects in
cold-atom light-scattering experiments. In contrast to switch-
off dynamics, it includes the interplay between coherent ex-
citation and collective dissipation. This increased complex-
ity can give rise to features that may allow one to discern
quantum-correlations between the atoms more strikingly than
in the switch-off scenario, e.g., in collective Rabi oscillations
[30]. This can also be advantageous compared to fluorescence
measurements, where first- and second-order optical coher-
ences g(1) and g(2) can provide such signatures [17,19] but
require the detection of two-time correlations, using more
elaborate techniques such as heterodyne spectroscopy. In a
broader context our work analyzes excitations of collective
modes in driven-dissipative dynamics of a many-body system.
Here we find that, in the linear-optics regime, an effective
single-mode approximation can remain a decent model. Going
beyond the linear and the MF regimes can relate to top-
ics such as driven-dissipative state-preparation of entangled
states [31–33] or quantum memories with cold atomic gases
[34–37].

This paper is organized as follows: In Sec. II we present
an experiment-theory comparison for the linear-optics regime.
We analyze the switch-on dynamics theoretically and show
that the experimental data demonstrates superradiance. In
Sec. III we then proceed to show that for larger saturation
parameters the nonlinear mean-field theory provides a better
model for the experimentally observed dynamics. Lastly, we
conclude and provide an outlook in Sec. IV.
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FIG. 1. (a) Sketch of the experiment: A probe beam (detuned by � = ωL − ω0 from the atomic transition) suddenly illuminates a Gaussian
cloud of two-level atoms (transition linewidth �, optical depth b0). The time-dependent scattered light intensity is measured at an angle of
θ = 35◦ from the axis of the incident beam. (b)–(d) Experimental time-dependent intensity response for various cloud and laser parameters
showing damped Rabi oscillations. The damping depends on the optical depth b0 and �. Lines denote a full numerical simulation of linear-
optics equations of motion (see text) and reproduce the experiment very well due to the low saturation parameter (s ≈ 0.02).

II. SWITCH-ON DYNAMICS IN
THE LINEAR-OPTICS REGIME

In this section, we show how superradiance can be ob-
served in an experiment monitoring the switch-on dynamics
of a cold-atom cloud in the linear-optics regime. We start
by briefly describing the experimental setup (Sec. II A) and
the linear optics model (Sec. II B). We then compare full
numerical simulations to experimental data (Sec. II C) and
show that the cloud dynamics can be modeled by the dynamics
of a single effective driven and damped dipole (Sec. II D).
We then demonstrate (Sec. II E) that the damping of the
collective oscillation exhibits a superradiant rate similar to the
one observed in the switch-off dynamics [5].

A. Experimental setup

The experimental data discussed in this section were ob-
tained with the same setup as in [5]. A precise description of
the experiment can thus be found in that reference.

In brief, we produce a three-dimensional Gaussian cloud
(rms width R ≈ 1 mm) of N ≈ 109 randomly distributed 87Rb
atoms [see sketch in Fig. 1(a)]. The atoms behave essen-
tially as two-level systems, using the closed atomic F = 2 →
F ′ = 3 transition (wavelength λ = 2πc/ω0 = 780.24 nm and
linewidth �/2π = 6.07 MHz). The cloud is homogeneously
illuminated by a linearly polarized monochromatic probe
beam with beam waist w ≈ 5.7 mm, frequency ωL, and detun-
ing � = ωL − ω0 from the atomic transition. It is propagating
along the z direction, k0 = k(0, 0, 1)T , k = 2π/λ.

Multiple series of pulses with 10%–90% rise time of about
6 ns, which is short compared to the lifetime of the excited
state τat = �−1 = 26.2 ns, are produced by acousto- and
electro-optical modulators used in series. During a cycle of
pulses the atomic cloud expands ballistically, which allows
us to probe different on-resonance peak optical depths. The
optical depth is defined as b0 = σsc

∫
ρ(0, 0, z)dz, with σsc

the atomic cross section. Accounting for the internal structure
of rubidium, this corresponds to b0 = (7/15)3N/(kR)2 in
the experiment. In the scalar-light model used below, the
optical thickness is given by bS

0 = 2N/(kR)2. We also vary
the detuning of the probe pulses but then adjust the light

intensity accordingly to keep a constant saturation parame-
ter of s � (2.2 ± 0.6) × 10−2. The time-dependent scattered
light intensity is recorded by a photon detector in the far field
at an angle of θ = 35◦ from the z axis.

To clean the recorded intensity signal from remaining
technical imperfections of the light switch-on dynamics, such
as small overshoots, we divide the normalized temporal signal
recorded with the atoms by a normalized reference profile
of the laser without atoms (and white paper as scattering
medium). The experimental signal is averaged over a large
number of realizations (≈5 × 105 cycles) and normalized to 1
in the steady state.

B. Linear-optics dynamics

In the limit of low excitation in the cloud, i.e., in a regime
where the atoms are only virtually excited and all population
remains in the ground state (see Sec. III for a detailed deriva-
tion), the dynamics is governed by the well-known linear
coupled-dipole (CD) equation

d

dt
b(t ) = Mb(t ) + w. (1)

Here, the system is described by the vector of complex
excitation amplitudes, b(t ) = [β1(t ), β2(t ), . . . , βN (t )]T . The
laser excitation is governed by the Rabi-frequency vector w =
−i[�1,�2, . . . , �N ]T /2, where the complex �n = �0eik0·rn

contain the single-atom Rabi frequency as well as the laser
phase due to the random positions of the atoms, rn. Explicitly,
the elements of the matrix M are

Mnm = δnm

(
i� − �

2

)
+ (δnm − 1)Gs

nm. (2)

The diagonal term governs the single-atom dynamics, while
the off-diagonal part includes all long-range dipole-dipole
couplings between the atoms. In our setup we consider a
cloud of low density, with typical separation, between two
atoms n and m, rnm = |rn − rm| � k−1. In particular, our
experimental peak density of ρ0 ≈ 0.06λ−3 corresponds to a
typical particle separation of r̄nm = 2ρ

−1/3
0 ∼ 30k−1. Given

the large distance between neighboring atoms the physics
will be largely dominated by the dipole-dipole far-field terms.
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Such a regime is well described by a scalar-light model, for
which one finds [38]

Gs
nm = �

2

eikrnm

ikrnm
. (3)

The formal time-dependent solution of the problem when
initially all atoms are in the ground state is

b(t ) = [eMt − 1]M−1w. (4)

The experimentally measured intensity is related to the square
of the electric far field at the detector position. Defining
the observation direction n̂ = (sin θ cos φ, sin θ sin φ, cos θ ),
with angles defined for spherical coordinates with the incident
laser wave vector k0 along the z axis, the intensity signal is
proportional to

I (θ, φ) =
N∑

n,m

β∗
n βmeikn̂·(rn−rm ). (5)

In our numerical simulations we integrate the signal over the
azimuthal angle φ, Iθ ≡ ∫ 2π

0 dφ I (θ, φ), to reduce small-N
fluctuations, and use θ = 35◦ as in the experimental setup.
We always consider the normalized steady-state value Iθ (t →
∞) ≡ Is = 1.

C. Numerical comparison

In Figs. 1(b)–1(d) we compare the experimentally recorded
time-dependent response signal to a full numerical simulation
of the cloud. Since treating N = 109 atoms is out of reach
numerically, even for the linear regime, we model the experi-
ment with an effective cloud consisting of Neff = 5000 atoms
and a rms radius chosen to match the experimental optical
thickness, i.e., R = k−1√2Neff/b0. For the results in Fig. 1
we take the average over 100 realizations of random positions
of the atoms. For numerical stability we exclude realizations
with two atoms much closer than the typical distance between
neighbors; here we chose dmin = 0.1ρ

−1/3
0 with ρ0 the peak

density of the effective cloud.
The three panels correspond to different experimental

situations with varying detuning and optical thickness: (b)
b0 = 14.2 and � = −8�; (c) b0 = 13.4 and � = −3�; and
(d) b0 = 46.3 and � = −3�. The intensity evolution is re-
produced by the simulations of the linear model very well,
although the number of particles used is different from that
of the experiments by orders of magnitude. This highlights
the central role of the resonant optical thickness as control
parameter of the collective dynamics of the dipoles. In order
to validate the simulations we checked that results for different
Neff (and thus different densities) as well as different dmin are
indistinguishable from each other. We find the main difference
to the experiment in the height of the first oscillation, which
is typically lower in the experiment than in the simulation.
We attribute this more damped behavior mainly to the finite
switch-on time for the laser.

The oscillations after switch-on are generally more damped
with increasing b0 and decreasing |�|. This is seen, e.g., by
the decreased amount of visible oscillations when decreasing
|�| at constant b0 [going from panel (b) to panel (c)], and
even by the increased damping when keeping � constant and

increasing b0 [going from panel (c) to panel (d)]. A systematic
study of the damping as function of � and b0 is discussed in
Fig. 4 below.

Note that the experimental observation agrees excellently
not only with the CD simulations but also with a linear-
dispersion theory [39]. This was demonstrated in [29], where
we showed that a modification of the oscillation frequency
can be very well understood in terms of a multimode vacuum
Rabi-splitting within this linear-dispersion theory framework.

D. Effective mode

Remarkably, we find that the intensity dynamics of the
cloud (averaged over many experimental runs) approximately
resembles the evolution of an effective single driven-damped
dipole. This implies that we can fit it well to a phenomenolog-
ical function of the form [23,29]

Iθ = Is|1 − e(i�N −�N /2)t |2, (6)

where �N and �N denote the decay rate and generalized
Rabi frequency of the effective mode, respectively. Three
examples of fits are shown in Figs. 2(a)–2(c), where both
the experimental data and the full numerical simulations have
been fitted using Eq. (6). The fit to CD simulations becomes
nearly perfect in the limit of low b0 and large |�| [Fig. 2(a)].
For larger b0 and smaller |�| the fits are still remarkably good
and allow us to extract effective mode properties of the cloud.
Similarly, we find that most of the experimental data can be
very well fitted by Eq. (6) as also shown in Fig. 2. In the
following we discuss the effective mode picture in different
limits.

1. Single-mode limit (timed Dicke regime)

The agreement of the single-mode fits to the linear
coupled-dipole theory in the limit |�| � � can be understood
from the fact that the equilibration dynamics (on the scale
of t� ∼ 10) is dominated by a single macroscopic scatter-
ing mode, which has been understood, e.g., in terms of the
excitation of a timed Dicke state [11,40]. Since the dipoles’
excitation is essentially determined by the laser in the regime
of low optical thickness (b0 ∼ 0.1–1), it is convenient to move
to the laser frame by defining

β̃n = e−ik0·rnβn. (7)

This leads to coupled dipole equations of the form

d

dt
b̃(t ) = M̃b̃(t ) + w̃, (8)

where the Rabi frequency vector is now homogeneous in
phase, w̃ = −i(�0/2)[1, 1, . . . , 1]T , and the coupling matrix
M becomes

M̃nm = δnm

(
i� − �

2

)
+ (δnm − 1)Gs

nmeik0·(rm−rn ). (9)

Taking advantage of this uniform driving in the laser
frame, we may replace the amplitude vector with identical
amplitudes, b̃(t ) ≡ β̄[1, 1, . . . , 1]T . This structure is enforced
by taking β̄ to evolve as the mean value of all individual
coherences, i.e., by summing Eq. (8) over the atoms (this
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FIG. 2. Examples of an effective mode fitting [Eq. (6)] to signals from the experiment (points: data; solid lines: fit) and to CD simulations
(triangles: simulation; dashed lines: fit) in various regimes: In the underdamped case (a) the fit to the CD theory is nearly perfect. In the more
damped cases (b),(c) small deviations from the effective mode (also in CD simulations) are visible.

implies that the sum of dipole-dipole interactions for each
atom is approximated by its mean value), so one obtains

d

dt
β̄(t ) =

[
i� − �

2
− C

]
β̄(t ) − i

�0

2
, (10)

with the following complex correction:

C = 1

N

N∑
n,m;n =m

Gs
nmeik0·(rm−rn ). (11)

By definition, in this approximation the solution to (10) is
given by that of a single dipole,

β̄(t ) = [
1 − e(i�sd

N −�sd
N /2)t

] i�0

2i�sd
N − �sd

N

, (12)

with modified frequency and damping

�sd
N ≡ � + 2 Re C, (13)

�sd
N ≡ � − ImC. (14)

For the time-dependent intensity signal, this implies

I (t ) = |β̄(t )|2
N∑

n,m

ei(kn̂−k0 )·(rn−rm ). (15)

In this single-mode limit, the intensity evolution is thus re-
produced by a fitting function of the form of Eq. (6). The
geometrical factor in Eq. (15), depending on particle and
detector position, only modifies the normalization factor, i.e.,
the steady-state intensity. The time-dependence of the inten-
sity evolution is independent of the measurement direction in
the effective-mode approximation. Note that the geometrical
factor features the characteristic ∝N2 enhancement for an
intensity measurement in the laser direction, when all terms
in the double sum in Eq. (15) contribute coherently [10].
Off-axis measurements only lead to an intensity ∝N , since
the different random phases for n = m in the sum average to
zero. Note that this property is generally not found to be true
when experimentally studying the collective frequency, where
a more elaborate theoretical analysis is necessary [29].

To compute the value of C, we assume a Gaussian distribu-
tion of atoms and replace the sums in Eq. (11) by an integral.

The integration gives

C = �N

2(2π )3R6i

∫
dr

∫
dr′ eik|r−r′ |

k|r − r′|eik0·(r−r′ )e
−r2+r′2

2R2

= −�

2

bS
0

8

[
2i

D(2kR)√
π

− (1 − e−4k2R2
)

]
(16)

Here, D(· · · ) denotes the Dawson integral, which asymptoti-
cally behaves as D(x → ∞) ∼ 1/(2x). This leads to a shift in
frequency of the single mode in dilute clouds that scales with
the density, reminiscent of cooperative Lamb shifts [41]. In
our dilute sample (kR ∼ 104 for the experiment and kR � 10
for the simulations), the imaginary part of C is much smaller
than the transition natural linewidth. Consequently, in our
dilute clouds this density-dependent shift cannot be seen. In
contrast, optical thickness-dependent shifts in the oscillation
frequencies observed at the switch-on can be interpreted as a
multimode vacuum Rabi splitting, and represent a measure of
the coupling strength of the light modes to the atomic cloud, as
shown in [29]. Those shifts are not included in the simplistic
single-mode limit.

As for the decay rate, the exponential term in Eq. (16) is
strongly suppressed in large clouds, so that

C = �

2

bS
0

8
. (17)

This implies that in the single-mode limit the damping rate of
the effective dipole would be expected to be

�sd
N = �

(
1 + bS

0

8

)
. (18)

Note that the single-mode assumption thus reproduces the
well-known result for the scaling of the decay rate due to
collective single-photon superradiance after an excitation of
a timed Dicke state [11,40]. This can be expected since, by
assuming an optically dilute cloud, we consider the excitation
of the cloud to remain driven mainly by the laser, thus leading
to the well-known superradiant behavior of the cloud acting
as a single large dipole. Here, we have rederived this result
for the switch-on evolution of the intensity from the cloud. Fi-
nally, we note that differently from clouds with homogeneous
densities, which may exhibit strong topological effects due to
the sharp transition in refractive index at the boundaries (e.g.,
whispering gallery modes) [42,43], the smooth density of the
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Gaussian distributions under consideration prevents a strong
contribution from boundary conditions.

Below, in Fig. 4(a), we demonstrate that the damping
parameters obtained from fits to CD simulations follow the
predictions from a single-dipole limit only in the limit of very
small “actual” optical thickness b(�) � 1, where

b(�) = b0

1 + 4(�/�)2
. (19)

Note that generally the validity of the timed Dicke state
approximation also requires negligible dephasing of the probe
beam across the sample, and therefore b(�)(�/�) � 1. In
our setup, we expect to be outside of this regime and that
multiple modes will be involved in the excitation dynamics.

2. Multiple modes

To analyze the mode structure it is convenient to diagonal-
ize the coupled-dipole matrix M̃ in Eq. (8). This symmetric
complex (not Hermitian) matrix can always be diagonalized
by an orthogonal transformation AM̃AT = D with AT A = 1.
Here, D is a diagonal matrix containing the complex mode
eigenvalues λη. In the transformed frame, the amplitudes of
each mode αη ≡ (Ab̃)η = ∑

m Aη,mβ̃m evolve as

αη(t ) = w̃η

λη

(eληt − 1). (20)

The solution only depends on the complex eigenvalues, and
the overlap of the uniform Rabi-frequency vector with the
eigenmodes, w̃η = (Aw)η = i�

∑
m Aη,m. The real and imag-

inary parts of each eigenvalue, λη ≡ −�η/2 − i�η, give rise
to a damping and oscillation of the respective mode. As
analyzed in [44] the mode population in the steady state
|αη(t → ∞)|2 = |w̃η|2/|λη|2 and depends on the geometrical
factor |w̃η|2 and the spectral factor 1/|λη|2. Furthermore, here
it becomes evident that the respective mode occupations also
depend on time. It is interesting to note that at short times,
at leading order (valid for t |λη| � 1), |αη(t → 0)|2 = |w̃η|2t2.
This implies that for short times the population of the collec-
tive modes of the problem only depends on the geometrical
factor. The independence from the spectral factor can be
understood by the large frequency broadening of the driving
laser at the switch-on. This means that in an experiment the
duration of the excitation pulse could be used to control the
occupation of the different modes [39].

The time-dependent intensity signal, for the multimode
case, can be written in the general form

I (t ) =
∑
η,μ

αη(t )αμ(t )Gη,μ, (21)

Gη,μ ≡
∑
n,m

A∗
η,nAμ,mei(kn̂−k0 )·(rn−rm ). (22)

Here, from the geometrical contribution Gη,μ it becomes clear
that if the measurement is in the forward direction (coherent
scattering), cross-terms between modes play an important
role, whereas if the measurement is off-axis and if an angle
and/or realization average is considered (diffuse scattering),
different phases from different atoms average to zero, and the
dominating contribution to the intensity signal stems from the
diagonal mode populations |αη|2.

0 2 4
0

1

2

0 2 4 6
0

1

2
(a)

0 5 10
0

1

0 5 10
0

1

(b)

Neff = 5000 Neff = 2000

(c) (d)

FIG. 3. CD simulations for the parameters from Fig. 2.
Besides the realization averaged curves (orange lines), we also show
100 single realization results (thin grey lines). (a)–(c) Neff = 5000,
(d) Neff = 2000. For small |�| and large b0 we observe large fluctu-
ations that are independent of Neff .

We find numerically that, considering single atom position
realizations, the multi-mode structure can become clearly
visible in the intensity signal. This is shown in Fig. 3.
There, for CD simulations, besides the averaged intensity
signal from Fig. 2, we also show the intensity dynamics
for 100 different realizations. For small b(�) ≈ 0.02 (b0 =
7.8, |�| = 10) [Fig. 3(a)] there are only small differences
between position realizations, especially for short times, and
all realizations follow closely the same curve that can be well
fitted by Eq. (6) [Fig. 2(a)]. In contrast, for larger b(�), each
realization exhibits very different dynamics already at short
times [Figs. 3(b) and 3(c) with b(�) ≈ 0.2 and b(�) ≈ 4.3,
respectively]. Furthermore, those large fluctuations are also
robust to the different Neff that are accessible in simulations
[compare panels (c) and (d)]. We interpret this behavior as
a signature of multimode excitations, whose population and
structure fluctuate from one realization to another.

Remarkably, we find that the realization averaged signal
can still be decently modeled by just the effective mode
fitting function (6), although multiple modes are excited.
For example, as we have recently shown [29], for large b0

two frequencies stemming from a multimode vacuum Rabi
splitting play a crucial role in the dynamics, leading to an
imperfect single-mode fit. Nevertheless, the fits still allow
us to find effective mode properties of the cloud that are
discussed in the next section.

E. Observation of superradiant damping

We now analyze the properties of the effective mode of
the cold-atom cloud, and show that its excitation dynamics
indeed features superradiant decay as previously observed in
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FIG. 4. Collective decay rate �N showing superradiant behavior,
reminiscent of previous switch-off experiments [5]. (a) Fits to CD
simulations. (b) Fits to experimental data. We only kept fits for which
the fitting function Eq. (6) works well with a value of R2 > 0.85. For
small b(�) the CD theory agrees with the single-mode prediction
[lines from Eq. (18)]. Generally, the experiment exhibits a more
damped behavior.

the switch-off in [5]. In Fig. 4 we summarize the scaling of
the damping rate �N as a function of the laser detuning and
optical thickness for both the CD simulations, Fig. 4(a), and
the experiment, Fig. 4(b). The parameters are extracted from
the fitting function (6) of the time-dependent intensity signal.
For each fit we evaluate the R2 value, and keep only points
with R2 > 0.85.

As shown in Fig. 4, we find that indeed the collective
damping shows a superradiant behavior, i.e., �N > 1. The
behavior is very reminiscent of the results for the switch-off
dynamics obtained in [5], where two regimes of parameters
can be identified. When the actual optical thickness is very
small, b(�) � 1, �N scales with the resonant optical thick-
ness b0 as predicted in the single-mode limit. This regime is
highlighted in Fig. 4(a) by the comparison with Eq. (18) (solid
lines). In the opposite regime, b(�) � 1, the superradiant
rate presents a reduction due to attenuation and multiple
scattering, which can be attributed to an effectively reduced
population of superradiant states close to resonance [44]. Then
b(�) becomes the relevant scaling parameter, as seen by a

collapse of the points onto a single curve when �N is plotted
as a function of b(�) [5]. This behavior seems to also appear
on the right edge in Figs. 4(a) and 4(b).

The observed experimental scaling in Fig. 4(b) is similar
to the full numerical CD simulation in Fig. 4(a); both are
realized using the same b0, yet very different densities and
atom numbers. However, especially for the underdamped case
b(�) � 1, we find a systematically larger �N in the exper-
iment than in the CD simulations. Most relevant dynamics
occurs on a very short timescale, and we thus attribute some
of this systematic deviation to the finite switch-on time in the
experiment. We generally find that a more damped behavior
at short times leads to significantly larger estimations of �N

in the effective mode fit for those data points. Nevertheless,
besides a systematic offset to larger values, the �N extracted
from the experiment exhibit a similar scaling with b0 in the
regime of b(�) � 1.

III. BEYOND THE LINEAR-OPTICS REGIME

While all results in the previous section were for a low
saturation parameter in the experiment (s ≈ 0.02), we now
analyze the switch-on dynamics for larger saturation, beyond
the linear-optics regime. We first provide a systematic deriva-
tion of a mean-field theory (Sec. III A). Then we show that
the mean-field theory is capable of simulating experimentally
observed switch-on dynamics for larger saturation (Sec. III B).

A. Theory beyond the linear-optics regime

1. Full quantum problem

Fully quantum mechanically, the system of N two-level
atoms is represented by a many-body density matrix ρ̂ which
consists of a complex Hermitian 2N × 2N matrix. The nonrel-
ativistic dynamics of the system is described by a quantum
master equation (h̄ ≡ 1) [41,45,46]:

d

dt
ρ̂ = −i[Ĥ, ρ̂] + L(ρ̂ ). (23)

Here, the first part describes coherent Hamiltonian dynamics,
i.e., the laser drive and exchange of excitations:

Ĥ = − �
∑

n

σ̂+
n σ̂−

n + 1

2

∑
n

(�nσ̂
+
i + �∗

nσ̂
−
n )

+
∑
i = j

gi j σ̂
+
i σ̂−

j , (24)

where σ̂±
n denote the standard spin raising and lowering

operators for a two-level atom at a position rn. The system
is considered in a frame oscillating at the laser frequency
(rotating wave approximation). The complex Rabi frequency
corresponds to the one defined in Sec. II B and the coherent
coupling is gnm = ImGs

nm. Note again that throughout this
paper we only consider the scalar-light model as a toy model,
and thus neglect the near-field dipole-dipole terms, but they
can be easily included by modifying the interaction kernel
Gs

nm [38].
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The second term in Eq. (23) describes dissipative processes
in the form of mutual decay, and has the general form

L(ρ̂ ) =
∑
n,m

fnm(σ̂−
n ρ̂σ̂+

m − {σ̂+
m σ̂−

n , ρ̂}) (25)

=
∑

μ

γμ(2Lμρ̂L̂†
μ − {L̂†

μL̂μ, ρ̂}). (26)

Here, {∗, ∗} denotes the anticommutator, and the incoher-
ent decay rates are encoded in the symmetric matrix fnm =
Re Gs

nm (including the n = m elements). In the second line we
have written the dissipator in a standard Lindblad form with
the jump operators L̂μ = ∑

n unμσ̂−
n that follow from a diago-

nalization of the real symmetric matrix fnm = ∑
μ γμunμumμ.

The eigenvalues γμ determine whether the decay channel is
super- or subradiant.

Because of the exponential growth of the Hilbert space
with N , an exact time-dependent simulation of the full quan-
tum problem is computationally hard and currently limited to
∼20 atoms (using tricks such as quantum trajectories [47]).
The experimental setup is performed in a regime of small
density and large optical thickness, for which simulations
of much larger systems with N ∼ 103 are necessary. In the
following we discuss how to reduce the complexity to tackle
this regime.

2. Mean-field product state ansatz

To drastically reduce the size of the Hilbert space, a com-
mon ansatz is to neglect any type of entanglement between
the atoms. In such a mean-field (MF) situation the full density
matrix is considered to remain in a product state of the form

ρ̂ =
∏

n

ρ̂s
n. (27)

Enforcing this factorized form at all times leads to time-
dependent equations for each local density matrix ρ̂s

n:

d

dt
ρ̂s

n = Trm =n

(
d

dt
ρ̂

)
. (28)

Due to the partial trace operation on the right-hand side the
MF equations of motion become nonlinear. Note that the

factorization property from Eq. (27) has also been used in
the Maxwell-Bloch description of a high-saturation regime in
[23].

Every single-atom density matrix, ρ̂s
n, can be parameter-

ized by the complex expectations of βn = 〈σ̂−
n 〉 and by zn =

〈σ̂+
n σ̂−

n − σ̂−
n σ̂+

n 〉 via ρ̂s
n = (1 + 2β∗

n σ̂−
n + 2βnσ̂

+
n + znσ̂

z
n )/2.

Then, the Hamiltonian (24) and dissipator (25) lead to the
following compact form of the MF equations:

β̇n =
(

i� − �

2

)
βn + iWnzn, (29)

żn = −�(1 + zn) − 4Im(βnW
∗

n ). (30)

Here, we defined the general field acting on atom n as

Wn = �n

2
− i

∑
m =n

Gs
nmβm. (31)

Importantly the number of the nonlinear set of equations
in Eqs. (29) and (30) only scales linearly with the system
size, and thus a direct numerical integration is still feasible
for thousands of atoms. The physics behind the MF model
is quite evident: All the atoms m create a mean field that
acts upon dipole n, Wn. The “coherent” real part of Wn

drives atom n just like the external laser, it comes from the
virtual photon exchange in the dipole-dipole couplings. The
“incoherent” imaginary part of Wn gives rise to damping, and
also to nontrivial evolution, which can lead to effects such as
synchronization [48,49].

The MF equations (29) and (30) become linear in the low-
excitation limit, as in the full quantum case. Then, one can
approximate zn ≈ −1 at all times, and recover the coupled-
dipole equations

β̇n =
(

i� − �

2

)
βn − iWn, (32)

which are identical to Eq. (1).
In Fig. 5 we analyze the validity of the MF approximation

by studying the switch-on dynamics for a small toy-model
cloud consisting of Neff = 6 atoms. Here, we uniformly dis-
tribute the atoms in a sphere with different radii kR. For this
small system we compare an exact simulation of the master

FIG. 5. Comparison between exact simulations of the master equation (E), Eq. (23), mean-field simulations (MF), Eqs. (29) and (30), and
the coupled-dipole model (CD), Eq. (1). The intensity is not normalized to the long-time value. We use a small cloud with uniform density
(Neff = 6). Here, � = −4 and we use two sphere radii kR = 1 (a,b) and kR = 5 (c). We tune the Rabi frequency to obtain small and large
saturation parameters, s = 0.01 (a) and s = 2 (b),(c), respectively. MF is superior to CD in reproducing the full quantum results for high
saturation (c) and only fails for dense clouds and high saturation (b). Exclusion distance kdmin = 0.1, average over 21 realizations.
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FIG. 6. Comparison between the normalized intensity evolution from the experiment with MF and CD simulations in a large saturation
regime (s � 0.1) and with b0 ∼ 60: (a) s = 0.13, (b) s = 0.34, (c) s = 0.63. Here, � = −4�. For the simulations Neff = 5000 and results for
78 random atom positions have been averaged.

equation [Eq. (23)] to the prediction given by the MF product
state ansatz [Eqs. (29) and (30)] and the coupled-dipole model
[Eq. (1)]. Note that, for numerical stability, in the toy-model
setup of Fig. 5 we still only consider far-field terms in the
interaction kernel, although at such close distances near-field
interaction terms would play the dominant role.

For a small saturation parameter, here defined by s =
2�2

0/(4�2 + �2) [s = 0.01 in Fig. 5(a)], we find that, as
expected, all three models agree relatively well with each
other, even though the effective density is very high (kR = 1,
sphere density ρs ∼ 1.4k3). For a larger saturation of s = 2.0
in the high-density sphere, the linear coupled-dipole model
provides very inaccurate results, as seen in Fig. 5(b). Here,
the MF result fails in capturing a slow decreasing slope for
the intensity at later times, but still reproduces the frequency
of the oscillation reasonably well. For a larger sphere (kR = 5,
sphere density ρs ∼ 0.01k3) and high saturation of s = 2.0
we observe that MF can perfectly capture the exact intensity
evolution [Fig. 5(c)], while the CD simulation clearly fails.
Note that here we do not normalize the intensity evolution
in the long-time limit. The CD simulations do not feature
any population inversion and thus lead to very inaccurate
predictions for the steady-state magnitude of the intensity for
larger saturation parameters in Figs. 5(b) and 5(c).

The only approximation for our MF simulation is the
product-state assumption from Eq. (27), which limits the
amount of possible quantum correlations between the atoms.
For example, entangled pure atomic states are not supported
by this ansatz. Our results thus highlight the importance of
strong correlations between atoms for observing quantum
effects in light-scattering experiments. From our comparisons
we conclude that, for studying the time-dependent inten-
sity evolution, interatomic correlations are mostly relevant
in the high density limit. For very closely spaced atoms,
large Hamiltonian interactions can induce strong correlations
between atoms, leading to a breakdown of the MF ansatz. In
contrast, for a relatively dilute cloud (for which the optical
thickness can still be high) we find that the MF assumption
provides valid results. Importantly, in the low density sce-
nario, MF simulations then also provide good estimations for
large saturation. Note that one can include more quantum
correlations between atoms by further adding, e.g., two-atom

correlation observables in the equations of motions [19].
Such corrections, however, come at the price of increasing
the complexity of simulations to ∼N2

eff , and currently limit
simulations to systems with a few hundreds of atoms.

B. Comparison with the experiment
beyond the linear-optics regime

Finally, we compare experimental switch-on dynamics in a
high-saturation regime to simulations. The experimental data
discussed in this section were taken on the same apparatus
as in Sec. II with a few upgrades described in Refs. [8,9].
However, the 10% to 90% rise time of the probe laser is
now slightly longer, about 17 ns, because only acousto-optical
modulators are used to produce the pulses. This results in
a more diffuse and slow onset of the intensity signal. In
comparisons with theory we compensate for this by shifting
the time signals to match the first peak position. For all
data points we find good agreements with a shift of ∼�−1,
consistent among the panels in Fig. 6.

In Fig. 6 we show results, at large saturation parameters,
and compare between experimental data and the mean-field
predictions, as well as the linear-optics CD simulations. We
show results for a large optical thickness of b0 ∼ 60 and for an
increasingly large saturation parameter of s = 0.13, s = 0.34,
and s = 0.63 in panels Figs. 6(a)–6(c), respectively. It is strik-
ing that, while the CD simulations are capable of describing
the experiment for a value of s ≈ 0.02 in Sec. II, here for s �
0.1 this linear model is insufficient. Moreover with increasing
s, we observe that the CD prediction (which does not depend
on s due to the linearity of the CD equations) becomes worse.
The MF simulations, in contrast, predict the trend of the
experimental data of exhibiting a more pronounced oscillation
with increasing s.

IV. CONCLUSION AND OUTLOOK

We have demonstrated that the time evolution of the inten-
sity of laser light scattered off a cold-atom cloud can be used
to observe collective effects, in particular superradiance. Here
we have shown that superradiance can be observed not only
after the laser is rapidly switched off, as in [5], but also in the
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damping of oscillations immediately after the laser is switched
on.

In a limit of low saturation (low intensity), the dynamics
can be described by a linear-optics coupled-dipole model,
which matches the experimental behavior very well. For low
optical thickness, the results for superradiant damping follow
the predictions of a single “mean” mode approximation (timed
Dicke state excitation). In general, and especially for larger
optical thickness, multiple modes are excited. Nevertheless,
the cloud can still be reasonably well modeled by an effective
single-mode response.

We furthermore showed that when the saturation is in-
creased the coupled-dipole model becomes insufficient, as
expected. Instead, for this regime we find that experimental
data can be well described by a simulation of nonlinear mean-
field equations that follow from a product state ansatz. We
showed that this efficient numerical approach works well for
simulating dynamics in dilute clouds with large excitation
fractions and large optical thickness.

It will be interesting to analyze signatures going beyond the
coupled-dipole and mean-field assumptions discussed here,
which has been a topic of recent interest [17–20,25]. Here,
in particular, we showed that the time-dependent switch-
on intensity signal does not discern such signatures unless
going to a high-density regime. There the time-dependent
response could be a useful tool for quantum signatures
[10,22,23,26,50]. Beyond-mean-field corrections could be
included using approaches that take into account quantum
correlations between pairs of atoms [19], by exploiting a

semiclassical phase space approach [51], or a combination of
both [52].

ACKNOWLEDGMENTS

We thank I. Krešic and M. Araújo for their contribution
in setting up the fast switch-on system and Luis Orozco for
fruitful discussions. Part of this work was performed in the
framework of the European Training Network ColOpt, which
is funded by the European Union (EU) Horizon 2020 pro-
gram under the Marie Sklodowska-Curie action, Grant Agree-
ment No. 721465. R.B. and T.S.d.E.S. benefited from Grants
from São Paulo Research Foundation (FAPESP) (Grants
No. 2017/10294-2, No. 2018/01447-2, No. 2018/15554-5,
and No. 2019/02071-9) and from the National Council for
Scientific and Technological Development (CNPq) Grants
No. 302981/2017-9 and No. 409946/2018-4. R.B. and R.K.
received support from project CAPES-COFECUB (Ph879-
17/CAPES 88887.130197/2017-01). P.W. is supported by
the Deutsche Forschungsgemeinschaft (Grant WE 6356/1-1).
J.S. is supported by the French National Research Agency
(ANR) through the Programme d’Investissement d’Avenir un-
der contract ANR-11-LABX-0058_NIE within the Investisse-
ment d’Avenir Program ANR-10-IDEX-0002-02. Research
was carried out using computational resources of the Center
for Mathematical Sciences Applied to Industry (CeMEAI)
funded by São Paulo Research Foundation (FAPESP) (Grant
2013/07375-0) and the Centre de calcul de l’Université de
Strasbourg.

[1] W. Guerin, M. T. Rouabah, and R. Kaiser, J. Mod. Opt. 64, 895
(2017).

[2] D. V. Kupriyanov, I. M. Sokolov, and M. D. Havey, Phys. Rep.
671, 1 (2017).

[3] A. Goban, C.-L. Hung, J. D. Hood, S.-P. Yu, J. A. Muniz, O.
Painter, and H. J. Kimble, Phys. Rev. Lett. 115, 063601 (2015).

[4] W. Guerin, M. O. Araújo, and R. Kaiser, Phys. Rev. Lett. 116,
083601 (2016).
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