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Characterizing the phase diagram of finite-size dipolar Bose-Hubbard systems
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We use state-of-the-art density matrix renormalization group calculations in the canonical ensemble to
determine the phase diagram of the dipolar Bose-Hubbard model on a finite cylinder. We consider several
observables that are accessible in typical optical lattice setups and assess how well these quantities perform
as order parameters. We find that, especially for small systems, the occupation imbalance is less susceptible
to boundary effects than the structure factor in uncovering the presence of a periodic density modulation.
By analyzing the nonlocal correlations, we find that the appearance of supersolid order is very sensitive to
boundary effects, which may render it difficult to observe in quantum gas lattice experiments with a few tens
of particles. Finally, we show that density measurements readily obtainable on a quantum gas microscope allow
distinguishing between superfluid and solid phases using unsupervised machine-learning techniques.

DOI: 10.1103/PhysRevA.101.013616

I. INTRODUCTION

The milestone observation of the superfluid-Mott insulator
transition of the Bose-Hubbard model with ultracold atoms in
an optical lattice [1,2] sparked a revolution in our approach to
studying strongly correlated quantum systems. Experimental
advances since then in the control and measurement of cold
atomic gases have led to remarkable observations, among
which are the development of quantum gas microscopes for
both bosons and fermions [3–5].

As a result, cold atomic systems are generally regarded
as the go-to setting to study the competition between kinetic
energy and interaction in strongly correlated systems because
of their high degree of tunability and precision [6]. However,
interactions between neutral alkali atoms are usually of very
short range. This precludes their use in studying systems with
long-range interactions, for which theoretical calculations
point to the existence of exotic phases including supersolid
order [7–9], and spin-glass [10] and spin-ice [11] phases.
A number of experimental platforms are being developed
to study long-range strongly correlated phases, from atomic
ions in Penning traps [12,13], to systems with dipole-dipole
interactions (DDI) such as Rydberg atoms [14–16], highly
magnetic atoms [17–21], or ultracold molecules [22–24].

An important question arising in this context is how these
exotic phases can be experimentally detected in finite, fre-
quently small (N ∼ 102 particles), systems. In theoretical cal-
culations, these phases are generally identified, in the grand-
canonical ensemble, through order parameters—observables
whose values undergo a sharp change when crossing a phase
transition in the thermodynamic limit (N → ∞). Typical ex-
amples readily available in computations are the static struc-
ture factor to detect periodic density modulations characteris-
tic of solids or the superfluid density or superfluid stiffness to
detect superfluidity. However, it is unclear how these phases
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appear in finite samples with a fixed number of particles
(canonical ensemble), and what the best observables are to
uncover them with the toolbox of quantum gas experiments.

Here, using density matrix renormalization group (DMRG)
calculations on two-dimensional (2D) finite systems with
sizes accessible to current experiments, we present a system-
atic analysis of several experimentally available observables
as candidate order parameters to capture the phases of a
paradigmatic model with long-range interactions, the dipolar
Bose-Hubbard model [7]. We consider the occupation imbal-
ance [25–27], and show that it can reliably predict the appear-
ance of a periodic density modulation (a “density wave,” DW).
In addition, superfluidity (SF) is ascertained by establishing
the algebraic decay of correlations in the one-body density
matrix [28–30]. More generally, the entanglement entropy
appears as the most flexible tool to detect phase transitions
[31–34]. This set of observables allows us to identify a su-
persolid phase in the system [7–9], which we find to be very
sensitive to finite-size effects.

Finally, motivated by recent work to identify phases with
machine-learning techniques [35–37], we compare our mi-
croscopic calculations with an approach based on unsuper-
vised learning. We find that a principal component analy-
sis (PCA) of (simulated) experimental density measurements
with single-site resolution is able to pinpoint the transition
into density-ordered phases, but cannot distinguish a DW-
ordered system from a supersolid, as it has no access to
phase-coherence information.

This paper is organized as follows. In Sec. II we introduce
the dipolar Bose-Hubbard Hamiltonian, and briefly summa-
rize our numerical approach to determine its ground state.
In Sec. III we present our numerical results benchmarking
the candidate order parameters to detect density modulations
(Sec. III A), off-diagonal long-range order (Sec. III B), and the
entanglement entropy (Sec. III C) in a small lattice system at
half-filling. After cross validating the various order parame-
ters, in Sec. IV we consider doping the system with a single
particle above half-filling and look for evidence of supersolid
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order. Finally, we compare the approach to phase identifi-
cation based on order parameters with a machine-learning
strategy utilizing single-site-resolved density measurements
in Sec. V. We conclude with a discussion of our findings in
Sec. VI.

II. MODEL AND METHODS

The dipolar Bose-Hubbard (dBH) model is described by
the Hamiltonian

H = −J
∑

〈i, j〉
b†

i b j + U
∑

i

ni(ni − 1) + 1

2

∑

i �= j

V

r3
i j

nin j, (1)

where bi is the annihilation operator for a spinless boson at
a site labeled by the index i, satisfying bosonic commutation
relations [bi, b†

j] = δi j , J is the hopping amplitude between
nearest-neighbor sites, U is the on-site interaction energy, and
ni = b†

i bi is the number operator at site i. V characterizes
the long-range static DDI, where the dipole moments of the
molecules are aligned and orthogonal to the lattice [22–24]; it
can be expressed as V = D2/a3 where D is the dipole moment
and a is the lattice spacing, such that ri j is the distance
between sites i and j in units of a.

The molecules are confined to a two-dimensional (2D)
plane by a strong transverse trapping field, with harmonic
frequency ω⊥, which prevents the molecules from collapsing
from the attractive interaction between aligned dipoles. By
appropriately tuning ω⊥ [38,39], the minimum available inter-
particle distance suppresses the tunneling to already occupied
sites [40]. Assuming that the initial configuration of the lattice
has no double occupations, the molecules effectively behave
as if they were hard-core bosons and therefore collisionally
stable, avoiding losses in multiply occupied sites due to in-
elastic collisions [41,42] and/or so-called “sticky collisions”
(whereby two molecules form a long-lived complex that is
unobservable) [43,44]. In the hard-core limit, the dBH model
has the Hamiltonian

H = −J
∑

〈i, j〉
b†

i b j + 1

2

∑

i �= j

V

r3
i j

nin j, (2)

where the local Hilbert space at each site is restricted to have
either zero or one boson and the on-site interaction term is
dropped. The DDI is generally understood to have long-range
character; however, we note that in two dimensions, it can
be considered a short-range interaction as its integral over
all space converges. We will show, however, that its study
using DMRG methods generally involves coupling between
far-away sites.

Here we consider the hard-core limit of the 2D dBH model
in the canonical ensemble, i.e., with a fixed number of bosons
N and a lattice filling ν = N/(LxLy), where Lx is the number of
sites of the lattice in the x direction and Ly in the y direction.
In our calculations we impose periodic boundary conditions
(PBC) along the y direction, turning the lattice into a cylinder.
Moreover, we truncate the range of the interaction to ri j =√

8 in units of the lattice spacing a, which is equivalent to
considering interactions up to the fifth nearest neighbor (see
Fig. 1). For the case of RbCs molecules (D ≈ 1.2 Debye) in
an optical lattice with a = 532 nm, this cutoff corresponds

FIG. 1. Long-range interacting terms considered in the Hamilto-
nian. The cutoff of the interaction is at a distance ri j = √

8 in units
of the lattice constant; this means we include up to the fifth nearest
neighbors. The sites are color coded according to their distance from
the site at coordinates i colored in black.

to neglecting interactions weaker than ≈kB × 3 nK, assuming
smaller interaction effects would be washed out by the finite
temperature of the sample (here kB is Boltzmann’s constant).

We determine the ground state by performing DMRG cal-
culations [45] with our TNT library [46]. To this end, we map
the 2D lattice to a one-dimensional (1D) chain by sequentially
going through each column of the lattice from bottom to top
as in [47]. For our model in Eq. (2), this 2D-to-1D mapping
turns the long-range interaction terms with range up to five
nearest neighbors in 2D, to interaction terms with range up
to 3Ly in 1D. To efficiently treat these long-range terms, we
build the matrix product operator (MPO) that describes the 2D
Hamiltonian with cylindrical boundary conditions using the
finite state automata technique [47,48]. To guarantee number
conservation, in all our calculations, we impose U (1) number
conservation symmetry. For all systems considered we obtain
converged results using a bond dimension χ up to 1000.

III. SURVEY OF ORDER PARAMETERS

We begin by considering the case of a small finite lattice at
half-filling, ν = 1/2, where we find only two phases, DW and
SF, separated by a first-order phase transition. We assess a set
of observables to characterise solid order as a periodic density
modulation (see Sec. III A), and superfluidity as off-diagonal
long-range phase coherence (Sec. III B), as well as computing
the entanglement entropy (Sec. III C).

A. Detecting periodic density modulations: Static structure
factor and occupation imbalance

Solid order is characterized by a modulation of the density-
density correlations. In solid state physics, the structure of a
crystal can be determined by x ray or neutron scattering. The
radiation impinging on a periodic density distribution will be
scattered, with radiation intensity peaks located at the maxima
of the static structure factor, which is calculated as the Fourier
transform of the density-density correlations as [6]

S(kx, ky)

= 1

L2
x L2

y

∑

x,y,x′,y′
ei[kx (x−x′ )+ky (y−y′ )]〈nx,ynx′,y′ 〉. (3)
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FIG. 2. (a) Static structure factor S(π, π ), occupation imbalance I , entanglement entropy Sent , and natural occupation number difference
δe as a function of the interaction strength V/J at filling ν = 1/2 for Lx × Ly = 16 × 8. (b) Correlation functions along the cylinder Cx (l ) for
the Lx × Ly = 16 × 8 system for the four interaction strengths indicated. The inset shows Cx (3) and Cx (8) as a function of the interaction
strength V/J . The diamonds mark the four interaction strengths used in the main panel. (c) Local density ñx,y for V/J = 0 (i), V/J = 3.8 (ii),
V/J = 8 (iii). Notice the different color bar scale for panel. (d) Condensate fraction e1/N and δe as a function of V/J in the Lx × Ly = 16 × 8
system. (e)–(h) The same quantities as in (a)–(d) are displayed, but for system size Lx × Ly = 12 × 6. In (g), V/J = 1 (i), V/J = 4.7 (ii),
V/J = 10 (iii).

where, for the sake of clarity, we switch to the notation
where the integer indices (x, y) represent the site coordinates
on the lattice, and 〈· · · 〉 represents expectation values with
respect to the ground state. Peaks of S(k) at momenta k =
(kx, ky) �= (0, 0) indicate the presence of solid order and a
periodic modulation of density defined as ñx,y = 〈b†

x,ybx,y〉
in a realization of the state. Because of this, the structure
factor has been repeatedly used to identify crystalline phases
in numerical simulations of optical lattice setups [49,50]. For
instance, for a checkerboard solid on the square lattice at
half-filling ν = 1/2, with the bosons localized on one of the
sublattices of the square lattice [see Fig. 2(c)], the structure
factor has nonzero peaks at (kx, ky) = (π, π ). These peaks
acquire a value S(π, π ) = 1/4 in the thermodynamic limit.

The static structure factor S(k) has been accessed experi-
mentally in cold-atom setups through measurements of com-
pressibility or density fluctuations [51,52]. In systems where
particles are confined to move on a discrete lattice, as our
dBH model, the lattice potential provides a privileged frame
from where to determine the density modulation. Based on
this, we consider here an alternative observable to detect solid
order that is readily accessible in quantum gas microscope se-
tups, the occupation imbalance [25–27]. For the checkerboard
solid, the occupation imbalance is defined as

I =
∣∣∣∣∣

∑
x,y(−1)(x+y)ñx,y∑

x,y ñx,y

∣∣∣∣∣. (4)

It quantifies the occupation imbalance of the two checker-
board sublattices that make up the system: it is 0 for a uniform
density and 1 for a checkerboard solid, and hence it condenses

information on the whole density profile into one number. (It
is straightforward to define analogous occupation imbalance
functions for other crystalline arrangement, such as the stripe
or star solids [7], see [53].) In our numerical calculations, the
two degenerate ground states of the system in the DW phase,
occupying either of the sublattices respectively, are selectively
obtained by varying the wave function used to initialize the
DMRG calculations.

We show in Figs. 2(a) and 2(e) the dependence of S(π, π )
and I on the interaction strength for ν = 1/2 and two sys-
tem sizes Lx × Ly = 16 × 8 [Fig. 2(a)] and Lx × Ly = 12 × 6
[Fig. 2(e)]. We find that these observables feature a similar
dependence on the interaction strength. Both of them are zero
or small at low V/J and converge to a finite value at large
V/J . The transition in the occupation imbalance is very sharp,
with a discontinuity around the critical interaction (V/J )c ≈
4–5, depending on the system size. The transition in S(k) is
smoother for the smaller system, but for 16 × 8 is also very
sharp, with the location of the transition in agreement with
that in I . The jump of both observables at a well defined
V/J agrees with the expectation of the transition being of first
order in the thermodynamic limit, given that two symmetries
are being broken simultaneously: the Z2 symmetry of the lat-
tice is present in the checkerboard solid [V/J > (V/J )c], and
the U (1) symmetry in the superfluid phase (see below). We
conclude from this discussion that the occupation imbalance
is able to detect the presence of a periodic density modulation
as well as the structure factor, with the advantage of being
readily accessible in quantum gas microscope experiments.

In addition, the occupation imbalance appears less sensi-
tive to finite-size effects in locating the point of the transition.
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Indeed, we attribute the smoother transition in S(π, π ) in
small systems to boundary effects. We can understand this
by analyzing the density profiles. The insets in Fig. 2(g)
shows the ground-state density of the 12 × 6 system for three
representative values of the interaction strength. At V/J = 1,
in the superfluid limit, the density is uniform in the bulk. For
a large value of the interaction strength, at V/J = 10, the den-
sity forms a checkerboard pattern. At V/J = 4.7, immediately
below the critical (V/J )c ≈ 4.9 identified by the occupation
imbalance, the central part of the lattice starts to show signs of
checkerboard ordering, which are picked up by the structure
factor S(π, π ). However, the difference in density of these
sites is of the order of 10−3, which is negligible for the
imbalance. Figure 2(c) shows the ground-state density of the
larger 16 × 8 system for three representative values of the
interaction strength. At V/J = 3.8, immediately below the
critical (V/J )c ≈ 3.9, there is no sign of checkerboard order,
indicating that the ground state is still a superfluid. In contrast
to this, for the 12 × 6 system the transition occurs at the
larger value (V/J )c ≈ 4.9, see Fig. 2(g). These values of the
critical transition for finite systems should be compared with
the value (V/J )c ≈ 3.5 obtained for the thermodynamic limit
by quantum Monte Carlo methods [8]. These results indicate
that (V/J )c is larger the smaller the system, and suggest the
range of interaction strengths that experiments will need to
explore to determine the actual position of the transition in a
finite-size setup.

B. Detecting superfluidity: Momentum distribution, natural
occupations, and particle correlations

In the previous section we showed the dBH system is a
DW solid for V/J > (V/J )c. In this section we discuss several
observables to characterize the phase of the system for V/J <

(V/J )c, and find it to be superfluid.
Superfluidity is a complex phenomenon associated with

a variety of properties of a system (dissipationless flow
through narrow capillaries, quantized circulation, etc.). It fre-
quently appears entwined with Bose-Einstein condensation—
the macroscopic occupation of one single-particle state
[30,54]. In two spatial dimensions, as we are concerned
with here, the Hohenberg-Mermin-Wagner theorem rules out
condensation in the thermodynamic limit, because of thermal
phase fluctuations of the order parameter [30]. However, for fi-
nite two-dimensional systems, algebraic decay of correlations
in the one-body density matrix (OBDM) is sufficient to yield
a nonzero superfluid density and nonvanishing condensate
fraction, in agreement with the Josephson relation between
these quantities [28,29]. On account of this result, we do not
compute the superfluid density or stiffness, which quantifies
the energy offset caused by the introduction of a slow in-plane
twist of the ground-state phase and is a measure of long-range
coherence, and has been used in previous studies based on
quantum Monte Carlo methods [7].

Experimentally, condensation in cold-atom lattice systems
has been demonstrated by measuring the momentum distri-
bution after release from the trap and ballistic expansion, see,
e.g., [2,26,55], while superfluidity in two dimensions has been
established, e.g., by the observation of dissipationless flow of
a cold atomic gas past an obstacle moving below a critical

velocity [56]. Based on these considerations, to determine
the nature of the phase at V/J < (V/J )c, we calculate the
one-body density matrix (OBDM), from which we access
the momentum distribution and the condensation fraction.
Additionally, we compute the nonlocal particle correlations
[57] directly from the OBDM, and evaluate their algebraic
decay as a signal of superfluidity in 2D.

We compute the OBDM as

ρ(x, y, x′, y′) = 〈b†
x,ybx′,y′ 〉, (5)

and diagonalize it to obtain its eigenvalues e j ( j =
1, . . . , Lx × Ly). These eigenvalues are also known as natural
occupation numbers. The condensate fraction of the ground
state then equals e1/N and e1/N = O(1) signals condensation
[58,59]. As noted above, the condensate fraction can be ex-
perimentally measured in optical lattice setups, associating e1

with the population of the lowest-momentum state [2,26,55];
however, there is no direct experimental access to higher
occupation numbers e j>1.

We have computed the natural occupation numbers for the
ground state of the 12 × 6 and 16 × 8 systems, and observed
that the condensate fraction vanishes for V/J > (V/J )c, the
critical interaction strength for the appearance of DW order-
ing, while it reaches ≈0.4 for V → 0, in agreement with the
findings in [7]. The fact that the condensate fraction is still
considerably smaller than 1 is indicative of the strong corre-
lations in the system, due to the hard-core constraint, which
leads to a considerable depletion of the dominant single-
particle state. Numerically we find that the difference δe =
e1/N − e2/N between the two largest natural occupations has
a similar behavior to the condensate fraction, but it converges
to zero more sharply on the DW side of the transition point,
see Figs. 2(d) and 2(h).

We compare in Figs. 2(a) and 2(e) the dependence of δe on
the interaction strength, with that of the structure factor and
occupation imbalance, for two system sizes. We observe in
Figs. 2(a) and 2(e) that all three order parameters point to a
first-order transition from a DW to a SF at a critical (V/J )c

that only depends on the system size. For the largest system
we have simulated, 16 × 8, this is (V/J )c ≈ 3.9 [Fig. 2(a)],
while for the 12 × 6 system (V/J )c ≈ 4.9 [Fig. 2(e)]. For both
systems, these critical values agree with those obtained from
the density imbalance in Sec. III A. In general, we find that all
observables point to the same critical value of V/J for a each
system size, with the sole exception of the structure factor,
which is more sensitive to finite-size effects as explained in
Sec. III A.

We obtain the momentum distribution as the Fourier trans-
form of the OBDM, n(kx,ky ) = 1/(LxLy)

∑
x,y,x′,y′ exp[i(kx(x −

x′) + ky(y − y′))]ρ(x, y, x′, y′). This quantity displays a dras-
tic change in behavior in the following two regimes (not
shown): in the SF regime it shows a narrow peak characteristic
of the condensate, whereas it gets spread out in the checker-
board DW limit.

We analyze next the decay of nonlocal correlations, which
provide a more in-depth insight into the nature of the state
of the system [54]; for a discussion on experimental methods
to measure nonlocal density correlations we refer the reader
to [57]. In a 2D SF state, the correlation functions decay
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algebraically, whereas in the checkerboard solid the decay is
exponential, due to the lack of long-range coherence. We first
focus our analysis on the correlation functions along the x
direction,

Cx(l ) = 〈b†
x,ybx+l,y〉. (6)

Furthermore, to minimize finite-size effects we average Cx(l )
over all lattice points (x, y) such that both x and x + l are at
least Lx/4 sites away from the boundaries, and for distances
l � Lx/2.

We show in Figs. 2(b) and 2(f) the dependence of Cx(l ) on
distance for four interaction strengths, representative of the
transition between the SF and DW limits for the two system
sizes we considered. Because of the finite size of the systems,
and the short distances available to compute the correlation
functions, it is not possible to obtain accurate exponents
for their decay. However, using a logarithmic scale for both
axes of the plot, the difference in decay behavior becomes
apparent: power-law decay looks linear, whereas exponential
decay has a downward bend. For interaction strengths smaller
than (V/J )c, the correlation function displays a linear behavior
on the log-log plot, which amounts to an algebraic decay, as
expected for the SF regime. In contrast to this, for V/J >

(V/J )c, Cx(l ) decays fast, in agreement with the expectation
for an exponential decay, in the DW phase.

The changing behavior of the correlation functions across
the transition can be illustrated more directly by fixing the
distance l and analyzing Cx(l ) as a function of the interaction
strength, as shown in the inset of Figs. 2(b) and 2(f). The
two curves represent Cx(l ) at distances l = 3 and l = Lx/2,
respectively, for varying V/J . For the larger system size, in
Fig. 2(b) we see a sharp drop in the value of the correlation
function at V/J = 3.9 which is in close agreement with all
other observables we have considered [see Fig. 2(a)]. For the
smaller system size, in Fig. 2(f), as a finite-size effect, the
transition is smoother.

C. Detecting the phase transition with the entanglement entropy

There is a large amount of theoretical research relating
changes in the entanglement properties of ground states with
the nature of correlations in the phases they support [60–62].
In particular, for systems with local interactions, the entangle-
ment entropy (EE) upon bipartition of a system is known to
satisfy scaling laws with respect to the size of the partition
boundary (“area laws”) [33,63], with coefficients containing
information on the nature of the ground state, e.g., its topolog-
ical character. This powerful tool has been recently exploited
to identify topological phases and to characterize the transi-
tion to many-body localization in quantum-gas experiments
[25,34]. The entanglement entropy of four-site and six-site
1D Bose-Hubbard systems in an optical lattice were measured
through the quantum interference of two copies of a state
[34,64]. Reference [25] assessed the growth of entanglement
entropy in larger 1D systems by measuring local density
fluctuations and comparing with DMRG simulations. Here we
calculate the EE to determine whether it can be used as an
additional quantity to discriminate between the SF and DW
phases.

The EE for a ground-state wave function is defined as the
von Neumann entropy of its reduced density matrix ρA. The
reduced density matrix ρA is obtained by dividing the system
into two subsets: A and its complement A. If the density
matrix of the entire system is ρ, the reduced density matrix is
calculated by tracing over the degrees of freedom of A to get
ρA = trAρ. For our system, we obtain a bipartition by cutting
the cylinder along its circumference in two equal parts, each
of size Lx/2 × Ly, with reduced density matrices ρA and ρA.
The EE of the bipartite system reads

Sent = −tr[ρA ln(ρA)] = −
∑

i

|λi|2 ln(|λi|2). (7)

The second part of the equation represents how the entangle-
ment entropy is explicitly calculated from the Schmidt decom-
position of the bipartite system where the λi are the Schmidt
coefficients. In our calculations, we derive the λi from the
matrix product form of the ground-state wave function, which
makes them readily accessible.

We show the EE as a function of the interaction strength
in Figs. 2(a) and 2(e) for the 16 × 8 and 12 × 6 systems,
respectively. In both cases we observe discontinuous behavior
of the EE at the same transition point indicated by the occu-
pation imbalance, the condensate fraction, and the difference
in natural occupations. This suggests that the EE is a useful
quantity to determine the position of the phase transition
in small systems. Moreover, the fact that Sent vanishes for
large values of the interaction informs us that the system
in this regime has no long-range coherence. On the other
hand, the finite value below (V/J )c is indicative of the long-
range correlations in the ground state for weaker interactions.
However, the EE cannot by itself inform us of the nature of
the underlying correlations in the SF phase.

IV. SUPERSOLIDITY TRIGGERED
BY ONE-PARTICLE DOPING

An exciting prediction of Ref. [7] is the existence of a su-
persolid phase in the dBH model around the Mott lobes, sepa-
rating the DW and SF phases, in systems with a fixed chemical
potential. In continuous systems, supersolidity appears when
two continuous U (1) symmetries are broken: one associated
with the translational invariance of a crystalline structure,
the other with a global phase of the SF state [65]. In lattice
systems, it is standard to define the spontaneous breaking of
translation invariance with reference to the discrete translation
symmetry of the Hamiltonian [65]. Here we analyze the
detectability of SS induced by doping the checkerboard solid
around half-filling [7] in small lattices with a fixed number of
particles. To do this, we add an extra particle to the system
with ν = 1/2 and observe how the increased density affects
the ground state of the system, by monitoring the behavior
of the order parameters for DW and SF order discussed in
Sec. III.

We show in Fig. 3(a) the dependence of the order pa-
rameters on the interaction strength for the ground state
of the 12 × 6 cylinder system with 37 bosons. We observe that
the static structure factor and occupation imbalance indicate
the presence of DW order for V/J � 4.9, while the difference
in natural occupations δe is nonzero for V/J � 5.8. Combined,
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FIG. 3. (a) Entanglement entropy Sent , occupation imbalance I ,
structure factor S(π, π ), and natural occupation number difference
δe as a function of the interaction strength V/J for a Lx × Ly = 12 ×
6 cylinder at filling ν = 37/72. (b) Correlation functions along the
cylinder Cx (l ) for four interaction strengths for the same system.

these results indicate the system to be a SF for V/J � 4.9, to
support DW order for V/J � 5.8, and to display supersolid
(SS) properties in the region 4.9 � V/J � 5.8. We notice
in particular the change in behavior of δe in this region of
interactions compared to the filling fraction ν = 1/2: it no
longer abruptly approaches zero at the transition, but satu-
rates at δe ≈ 0.025 ≈ 1/37, before becoming negligible for
V/J � 5.8. We interpret this behavior as indicating the extra
particle condensing “above” the checkerboard DW structure,
and providing it with long-range coherence.

This two-step transition is precisely captured by the en-
tanglement entropy, which features two sharp transitions at
V/J ≈ 4.9 and 5.8. This demonstrates once more that the
entanglement entropy is a useful quantity to determine the
locations of phase transitions—here the transition between SF
and SS and between SS and DW.

The correlation functions, calculated from the left edge
to the right, show a peculiar behavior in the SS phase [see
Fig. 3(b)]. They begin by decaying in a fashion close to
exponential but show resurgence when reaching the opposite
edge. This suggests the presence of correlated modes at the
edges of the system. To elucidate this point, we analyze in

FIG. 4. (a)–(c) Local density ñx,y for three representative values
of the interaction strength V/J for a Lx × Ly = 12 × 6 cylinder at fill-
ing ν = 37/72. (d)–(f) Correlation functions along the circumference
of the cylinder Cy(	y|x) in log scale for the same system size and
interaction strengths. Each line represents a separate x coordinate.

further detail the nature of the correlations in the ground state
as a function of position x along the cylinder.

Figures 4(a)–4(c) shows the local density ñx,y in the three
regimes. When 4.9 � V/J � 5.8 the extra particle in the sys-
tem occupies the two edge rings of the cylinder and for V/J �
5.8 it occupies either one of the edge rings. We interpret
this as phase separation occurring in the system where the
bulk is in the DW phase and the edge sites are in the SS
phase. The phase separation is induced by the presence of
the edges that energetically favors the occupation of bosons
because of the decreased interaction energy. We expect this
energetic effect to also play a significant role in experiments
on finite lattices, albeit it could be reduced in the presence of
harmonic trapping, an effect beyond the scope of our study.
The local density shows the presence of a density modulation
throughout the system.

To confirm that ODLRO appears at the edges of the system,
we consider the correlation function around the cylinder in the
y direction at a fixed position x along the cylinder,

Cy(	y|x) = 〈b†
x,0bx,	y〉, (8)

where, because of the PBC in y, 	y goes from 0 to Ly/2. If
the SS phase is limited to the edges and the bulk of the system
is solid, we expect a different behavior of this correlation
function for different values of x. Figures 4(d)–4(f) show the
behavior of the correlation functions Cy(	y|x) at the two
edges of the cylinder (x = 1, 12) and in the center (x = 6)
for the ground state of the system in the SF, SS, and DW
regimes. In the SF regime (V/J < 4.9), Cy(	y|x) decays by
only an order of magnitude as y increases for all values of x,
see Fig. 4(d). For V/J = 8 [DW regime, Fig. 4(f)], a similar
behavior of Cy(	y|x) is observed only at the edge of the
cylinder where the extra particle is to be found (x = 1 in
these simulations). In contrast to this, the correlations along
y fall by over two orders of magnitude at the center as well
as the opposite edge. In the SS regime [V/J = 5.2, Fig. 4(e)],
we observe an intermediate behavior: the correlations decay
by only an order of magnitude at the edges but fall more
drastically at the center. This indicates that in the SS regime
each edge supports ODLRO and superfluidity along the y
direction, together with a density modulation—i.e., each edge
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features SS order. Moreover, the resurgence of Cx(l ) from the
left edge to the right edge indicates that the two SS regions are
coherently correlated, which is in agreement with the nonzero
value of Sent and δe for 4.9 � V/J � 5.8.

We explore the robustness of this SS phase by changing the
doping of the system. We consider the same system with one
hole, at filling ν = 35/72, and with two extra bosons, at ν =
38/72. In neither of these two systems do we see evidence for
supersolidity in the investigated range of interaction strengths
V/J . The set of order parameters we calculate have similar
behavior to the purely half-filled case. The absence of super-
solidity contradicts the results in Ref. [7], which predicted SS
for both hole and particle doping. We explain this discrepancy
by noticing two differences in the features of our system.
First, we are considering small system sizes with definite
edges where the boundary effects are significant. Second,
we are cutting the range of the interaction at five nearest
neighbors. Calculations with quantum Monte Carlo methods
that similarly cut the range of the dipole-dipole interaction
after a few sites [9,66] also indicate a lack of stability of the
SS phase. This suggests that SS order is rather fragile and may
be washed out in lattice experiments even at nK temperatures.

Finally, we consider a system with size Lx × Ly = 24 × 6
and ν = 37/72, which has the same filling as the Lx × Ly =
12 × 6 system showing supersolidity. We find that the local
densities and correlation functions along y show a similar
behavior to those in Fig. 4. In particular, the local density
shows that the two additional particles localize, for a range
of values of V/J around the disappearance of SF order, on op-
posite edges. In this regime, the correlations in the y direction
indicate SS order localized on the edges, similar to the 12 × 6
system in the DW phase. However, the correlations in the x
direction show a persistent decay and no resurgence, which
means there is no coherence between the opposite edges. This
indicates that in the 24 × 6 system the two edge modes are not
correlated, and ODLRO is constrained along the (periodic)
y direction, which is not captured in δe or the entanglement
entropy upon cutting the cylinder along its circumference. In
agreement with this, for this system we observe no region of
V/J with a simultaneous nonzero structure factor S(π, π ) and
natural occupation number difference δe consistent with a SS
phase: all order parameters considered point to a transition
from a SF phase directly to a DW phase, analogous to Fig. 2(e)
for lattices at half-filling.

From this analysis of a larger system at the same filling,
we conclude that the long-range correlation along x found in
the 12 × 6 system is a finite-size effect, which may render its
observation challenging in experimental setups.

V. DETECTING PHASES WITH UNSUPERVISED
MACHINE LEARNING

A. Detecting phases from density measurements

In Secs. III and IV we have demonstrated the ability
to identify and characterize the phases of the dBH model
through the measurement and analysis of several observables
that serve as order parameters. Here, inspired by the recently
developed detection methods with single-site resolution in
quantum gas microscopes, we explore the prospects to detect

all the phases above just by applying machine learning (ML)
techniques to local density measurements.

Several papers have shown the power of both unsupervised
and supervised ML techniques to recognize phases and iden-
tify phase transition points in a broad range of physical sys-
tems [35–37,67–70]. Supervised methods need to be trained
on previously labeled data sets in order to draw conclusions
regarding new data. Unsupervised methods, on the other hand,
can provide insights into the properties of the systems without
any prior knowledge of the underlying system properties.
Among the existing unsupervised methods, we have chosen to
use principal component analysis (PCA) based on the spatial
density data (see details below) as the outcome of the data
analysis lends itself more readily to a physical interpretation
than that of other clustering methods, such as k-means or
t-SNE. Moreover, the ability of PCA to recognize orders,
symmetry breaking, and even identify the transition point in
quantum many-body settings has already been demonstrated
[35,71].

We apply PCA to a set of configurations of the system ob-
tained as simulated outcomes of a single-site-resolved density
measurement across the lattice. In situ detection is experi-
mentally achieved by increasing the lattice depth, such that
the density distribution of the gas is frozen. The parity of the
occupation of the sites is then obtained through fluorescence
imaging [72]. Despite this procedure being destructive for the
many-body state, the measurement captures fluctuations and
correlations in the system in addition to the particle density.
For the case of hard-core bosons, the measurement of the
parity is equivalent to observing the presence (ni = 1) or
absence (ni = 0) of a boson in each site.

In order to numerically replicate the outcomes of this type
of measurement, we consider the ground-state wave func-
tions obtained from our DMRG calculations and numerically
simulate a sequential projective measurement at each site as
follows. We simulate the outcome of a projective measure-
ment resulting in the detection of a boson in the first site
with probability equal to the expectation value of the number
operator in the site. We then update the ground-state wave
function by projecting it into the subspace of the Hilbert space
compatible with the measurement outcome (n1 = 0 or n1 =
1). We sequentially repeat this measurement and projection
procedure for all of the sites in the lattice. This simulated
measurement protocol results in an occupation pattern for
the lattice which takes the correlations between particles into
account as achieved in [72]. Figure 5 shows four sample
instances of the configurations generated in this way for the
16 × 8 system with filling ν = 1/2 for different interactions
strengths corresponding to the SF regime, the DW regime, and
immediately before and after the transition. The checkerboard
pattern becomes apparent after the transition, while in the SF
regime site occupations are relatively random. We generate
2000 such particle configurations for the whole range of inter-
action strengths. For each particle configuration, we turn the
set of 16 × 8 local-density values into a 128-feature vector,
and run the PCA algorithm on the resulting complete data set.

We show in Fig. 6(a) the fraction of the variance in the
configurations data captured by each principal component. We
observe that the first-principal component (PC1) accounts for
41% of the variance, more than one order of magnitude more
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FIG. 5. Four instances of the sampling obtained for the Lx ×
Ly = 16 × 8 cylinder at filling ν = 1/2. A blue square represents a
measurement of the lattice site resulted in finding a particle. A white
square represents a measurement of the lattice site resulted in finding
no particle. The four plots represent instances in the SF (a) and DW
regime (d), and immediately before (b) and after (c) the transition.

relevant than the other ones. Projecting the instances of the
sampling on the first two principal components [Fig. 6(b)]
leads to three clusters of points. The central one corresponds
to the instances with a small V/J , and we identify it with the
superfluid phase. The two other clusters represent the solid
phase at large V/J , with each of the clusters corresponding to
the particles inhabiting the two equivalent sublattices of the
square lattice. This interpretation is supported by plotting the
projected coordinate on PC1 as a function of the interaction
strength [Fig. 6(c)], which displays a single branch of values
PC1 ≈ 0 for all configurations generated with V/J < (V/J )c,
which then splits into two branches, corresponding to the two
Z2-equivalent ground states at V/J > (V/J )c. This is further

FIG. 6. Summary of the PCA analysis of the sampling for the
Lx × Ly = 16 × 8 cylinder at filling ν = 1/2. (a) Fraction of the
variance represented by each principal component. The inset shows
the first two principal components. (b) Distribution of the instances
when projected on the first- and second-principal components and
color coded according to the interaction strength. (c) First-principal
component as a function of the interaction strength V/J . (d) Second-
principal component as a function of the interaction strength V/J .

FIG. 7. Summary of the PCA analysis of the sampling for the
Lx × Ly = 12 × 6 cylinder at filling ν = 37/72. (a) Fraction of the
variance represented by each principal component. The inset shows
the first two principal components. (b) Distribution of the instances
when projected on the first- and second-principal components and
color coded according to the interaction strength. (c) First-principal
component as a function of the interaction strength V/J . (d) Second-
principal component as a function of the interaction strength V/J .

supported by the spatial representation of PC1 [top inset to
Fig. 6(a)], which shows it essentially represents the imbalance
between even and odd sites, similar the occupation imbalance
I in Eq. (4). The information contained in the PC1, therefore,
reconstructs the occupation imbalance. Regarding the second
component (PC2), its spatial representation does not give
straightforward insight into its meaning. In agreement with
this, it does not discriminate between the two phases [cf.
Fig. 6(d)].

We next apply the PCA approach to the doped system, to
assess whether density measurements are sufficient to reveal
the supersolid phase in the system with one additional particle.
We generate once again a number of simulated experimen-
tal measurements and perform a PCA in analogy with the
preceding paragraph. Our results are contained in Fig. 7.
These results are very similar to the ones obtained for the
undoped system. In particular, PC1 picks up the occupation
imbalance as a discriminant between phases with and without
DW order with the transition at V/J ≈ 4.9 (cf. Sec. III).
The second-principal component is dominated by boundary
effects, such that an analysis of PC1 and PC2 is insufficient
to reveal the existence of the SS phase. Even though the
additional particle does contribute to an increased average
density and density fluctuations in the empty sites of the
underlying checkerboard pattern, we conclude that boundary
effects dominate observations in these finite, but realistically
sized, systems thus precluding the detection of the SS phase
from density measurements.

B. Detecting phases from entanglement properties

We consider an alternative approach, based on our obser-
vations in Sec. III C, which rely on the entanglement proper-
ties of the system. In particular, we analyze the information
contained in the Schmidt coefficients of the reduced density
matrix, after a bipartition of the system [cf. Eq. (7)]. Although
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FIG. 8. (a) and (c) First- and second-principal components as
a function of the interaction strength V/J for a Lx × Ly = 16 × 8
cylinder at filling ν = 1/2. (b) and (d) Same as (a) and (c) for a
Lx × Ly = 12 × 6 cylinder at filling ν = 37/72.

the Schmidt coefficients are not experimentally available, they
are typically obtained in numerical simulations and we apply
PCA to extract from them information about the transition.
While the Schmidt coefficients do not have an immediate
physical interpretation, we still resort to PCA as our unsu-
pervised ML algorithm to analyze them for a fair compari-
son with the treatment of the density data in the preceding
Sec. V A. In this approach, the features making up each data
sample for a given interaction strength V/J are the χ largest
Schmidt coefficients {λn} in order of decreasing magnitude.

First, we consider the Lx × Ly = 16 × 8 system at filling
ν = 1/2 and perform a PCA on the Schmidt coefficients λn,
obtained by cutting the cylinder into two equal parts. Fig-
ures 8(a) and 8(c) show the first two principal components as a
function of the interaction strength. The first PC shows a sharp
change, reminiscent of the behavior of the order parameter
for a first-order transition at the same value of V/J obtained
from the analysis of order parameters in Fig. 2. The second PC
[see Fig. 8(c)] shows a cusp at the position of the transition,
showing that it is sensitive to it, although we could not find an
immediate interpretation of its physical content. Repeating the
same analysis for the Lx × Ly = 12 × 6 system doped with an
extra particle, we see that the first two principal components,
shown in Figs. 8(b) and 8(d), manage to capture three distinct
regimes. We notice a similarity in behavior between PC1
and the inverse of the entanglement entropy in both systems.
However, from the analysis of the ν = 1/2 system, we notice
that PC1 grows monotonically, but the entanglement entropy
does not decay monotonically.

VI. DISCUSSION AND SUMMARY

The use of ultracold gases in optical lattices to simulate
condensed matter physical systems has allowed the explo-
ration of previously inaccessible quantum regimes. However,
their different experimental realization raises the question
of what the best observables to characterize the phases of
the system are, especially in finite-size systems available in
near-future experiments. Many numerical investigations of

TABLE I. Phases present in the dipolar Bose-Hubbard model
[Eq. (2)] and observables used to identify them. DW stands for den-
sity wave, SS for supersolid, and SF for superfluid. The observables
are the static structure factor at finite momentum S(k) [Eq. (3)],
occupation imbalance I [Eq. (4)], nonlocal particle correlations
Cx (l ) [Eq. (6)] and Cy(l|x) [Eq. (8)], the natural occupations of the
one-body density matrix e1, δe [Eq. (5)], and the zero-momentum
population nk (0).

Solid order Condensation and superfluidity

Phase S(k) I Cx (l ) decay Cy(l|x) decay e1, δe nk (0)

DW �=0 �=0 exponential exponential 0 O(1)
SS �=0 �=0 – algebraic �=0 O(N )
SF 0 0 algebraic algebraic �=0 O(N )

ultracold atoms systems make use of quantities derived from
a condensed matter tradition that however cannot always be
obtained in an experimental setting.

We have performed state-of-the-art DMRG calculations
to systematically evaluate and compare a set of order pa-
rameters, used in both theoretical and experimental studies,
to characterize the superfluid and solid phases of a Bose-
Hubbard system with dipolar interactions. We considered a
finite system geometry with a number of particles in line with
current experimental setups for ultracold dipolar molecules.

For a given filling fraction, we find the ground state of the
system for various interaction strengths V/J , and calculate
a range of observables that can be used as order parameters
signaling the presence of a periodic density modulation, off-
diagonal long-range phase coherence, as well as the entangle-
ment entropy. Table I summarizes the behavior of all the order
parameters we have considered for each phase.

A compelling finding of our analysis is that the set of ob-
servables that are available from the ultracold atoms toolbox is
well suited to identify the phases of the system in small system
sizes, and even able to indicate the presence of supersolidity.
We have shown how the occupation imbalance and the static
structure factor are similarly able to capture the presence of
density modulations characteristic of solid order. Moreover,
we have observed that the occupation imbalance, which is
readily accessible in quantum gas microscope experiments,
is less sensitive to finite-size effects on small system sizes
as opposed to the static structure factor, commonly used in
numerical simulations. We have observed that the condensate
fraction offers a complementary order parameter to locate the
SF to DW transition. Its dependence on V/J for the dBH
model is also consistent with the analysis of the decay of the
correlation functions.

By analyzing these observables, we have noted that super-
solidity is very sensitive to finite-size and boundary effects
and may, therefore, be challenging to detect in an experi-
mental setting. This sensitivity may be connected with recent
QMC studies of the stripe phase at ν = 1/3 which lead to
opposing conclusions on its stability in the thermodynamic
limit, cf. [73,74]. We rationalize these findings as due to
the repulsive interaction between the particles, which favors
their localization on the edges of the system. It is possible
that this energetic effect could be mitigated in systems with
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an overall harmonic trapping potential. We can find some
evidence in this direction in recent work with a highly mag-
netic atom gas in a harmonic trap (and in the absence of a
lattice potential) which suggested that supersolidity was not
significantly affected by finite-size effects [75]. It will be
interesting for future research to address the competing effects
of long-range interactions with trapping in the stability of a
supersolid phase.

Moreover, we have shown how the entanglement entropy
proves to be a versatile parameter able to pinpoint the location
of the transitions, albeit not being able to offer specific insight
into the coherence of the phases.

Inspired by the recent progress in using ML methods to
identify phase transitions, we have employed unsupervised
learning techniques on simulated experimental measurements
of the occupation of single sites in the lattice. We found
that principal component analysis is able to discriminate
between superfluid and solid order and naturally extracts
the occupation imbalance as the relevant order parameter.
However, when applied to a doped system, PCA is not able
to distinguish the DW and SS phases. We conclude that the
information available from local density measurements is not
sufficient to identify the supersolid phase, and this result
implies that quantities encoding long-range coherence infor-
mation, such as the momentum distribution [19–21], need to
be considered to identify supersolidity.

Finally, from the PCA on the Schmidt coefficients, we
conclude this approach offers valuable insight into the phase
diagram of a strongly correlated system. In particular, it may
be a useful tool to locate phase transitions. On the other hand,
an analysis of physical observables across the detected phase
boundaries is still required to fully unravel the nature of each
phase and the particle correlations in it.

Further research should be undertaken to explore the scal-
ing of the entanglement entropy with the system size, which
can give information about the critical exponents of the phase
transitions in this system.
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