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Theory of strongly paired fermions with arbitrary short-range interactions
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We develop an effective field theory to describe the superfluid pairing in strongly interacting fermions with
arbitrary short-range attractions by extending Kaplan’s idea of coupling fermions to a fictitious boson state
[presented in Nucl. Phys. B 494, 471 (1997)]. This boson field is assigned with an unconventional kinetic term
to recover the exact scattering phase shift obtained either from scattering data or model calculations. The theory
works even if the explicit form of the interaction potential has not been constructed from scattering data. The
contact boson-fermion coupling allows us to go beyond mean-field to include Gaussian pair fluctuations, yielding
reliable predictions on equations of state. As an application, we use our theory to address the nonuniversal
ground-state energy of strongly paired fermions due to the nontrivial momentum dependence of the phase shift
characterized, for example, by effective range. We find a good agreement between our predictions and recent
quantum Monte Carlo simulations on the effective-range dependence in both three and two spatial dimensions.
We propose that in cold-atom experiments, the nonuniversal dependence in thermodynamics can be probed using
dark-state optical control of Feshbach resonances.
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I. INTRODUCTION

In quantum many-body Fermi systems, attractive inter-
particle interaction leads to Cooper pairing and superfluid-
ity [1–4]. Increasing the attraction strength will induce a
crossover from a Bardeen-Cooper-Schrieffer (BCS) superfluid
state with largely overlapping Cooper pairs to a Bose-Einstein
condensate (BEC) of tightly bound molecules [5–11]. Ultra-
cold atomic Fermi gases near magnetic-field-tuned Feshbach
resonances provide clean systems to demonstrate the BCS-
BEC crossover [12–14] and explore many-body phenomena
such as universal thermodynamics [15–21].

The universal properties of an ultracold Fermi gas stem
from its simple form of the scattering phase shift in the
dilute limit, characterized by a large s-wave scattering length
and negligible effective range [22–37]. In realistic systems,
however, nonuniversal effects could be important due to the
nontrivial momentum dependence in the phase shift, which
leads to, for example, nonzero effective range. For instance,
neutron superfluid with a large s-wave scattering length ann �
−18.5 fm and a sizable effective range rnn � 2.7 fm may exist
in the inner crust of neutron stars [38–40]. Certainly, it is of
great interest to use cold atoms to simulate and understand any
nonuniversal properties associated with realistic short-range
interaction potential, particularly in thermodynamics.

In this work, we aim to establish a genuine and elegant
theory to describe strongly paired fermions with arbitrary
short-range interaction V (r). The conventional way to handle
this problem is technically difficult. For example, within
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mean-field theory one needs to solve the gap equation,

�k = −
∑

k′
Vkk′

�k′

2Ek′
, (1)

where �k is the gap function, Vkk′ is the Fourier transform
of the interaction potential, and Ek is the BCS-type single-
particle dispersion. Even at the mean-field level, this integral
equation is not easy to solve [41–43]. Apart from numerically
expensive quantum Monte Carlo (QMC) simulations, going
beyond mean-field seems impossible, since Vkk′ is generally
not separable. Here, our strategy is to develop an effective
field theory following the pioneering work by Kaplan [44],
who introduced a fictitious boson state and coupled it to
fermions via a contact interaction. In this way, the effective-
range expansion of the scattering phase shift is recovered
in the two-body limit [44,45]. Interestingly, the boson state
introduced by Kaplan is no longer fictitious with the recent
realization of magnetic-field-tuned Feshbach resonances [46]:
it is a real dimer state in the closed channel.

The key advantage of our effective field theory is that it is
constructed to precisely reproduce the full two-body scattering
phase shift of the potential V (r) of interest, which is assumed
to be known, either directly from scattering data (i.e., for
nucleon superfluids [39]) or from model calculations (i.e., for
quasi-two-dimensional gases [47]). Thus, all the information
of the interaction potential is retained, beyond the effective-
range expansion adopted earlier [48–51]. The contact boson-
fermion interaction then allows us to include crucial quantum
fluctuations beyond mean-field and hence to provide a reliable
description of strongly paired fermions.

As a simple application, we predict the effective-range de-
pendence of the ground-state energy near s-wave resonances
in both three (3D) and two dimensions (2D). Our results
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are in good agreement with existing QMC calculations. To
demonstrate the potential of using cold atoms to understand
the nonuniversal properties of strongly paired fermions due
to the effective-range effect and beyond, we propose dark-
state optical control of Feshbach resonances, which leads
to a nontrivial momentum dependence of the phase shift
and consequently nonuniversal thermodynamics. Our results
pave the way to using cold atoms to simulate realistic many-
body Fermi systems, which exist ubiquitously in all fields of
physics.

The paper is organized as follows. In Sec. II, we construct
a general effective Lagrangian for an arbitrary short-range
interaction. In Sec. III, we formulate the many-body theory
of strongly paired fermionic superfluids based on the effec-
tive Lagrangian. The effective-range dependence of strongly
paired fermions is studied in Sec. IV, and an experimental
scheme to probe the nonuniversal thermodynamics is pro-
posed in Sec. V. We summarize in Sec. VI.

II. EFFECTIVE LAGRANGIAN

For the sake of simplicity, we assume that the short-range
two-body interaction V (r) is around an s-wave resonance, and
thus we neglect the contributions from higher partial waves.
The s-wave scattering amplitude A(E ) can be expressed in
terms of the s-wave scattering phase shift δ(k), where E =
k2/m is the scattering energy and m is the mass of fermions
(h̄ = 1 hereafter). In 3D, we have

A(E ) = 4π

m

1

k cot δ(k) − ik
. (2)

For a short-range interaction, k cot δ(k) is an analytical func-
tion of E , leading to the expansion

k cot δ(k) = −4π

m

∞∑
n=0

cnEn. (3)

Truncating to the first two terms, we obtain the so-called
effective-range expansion, with c0 = m/(4πa) and c1 =
−m2re/(8π ), where a and re are the scattering length and
effective range, respectively.

A low-energy effective Lagrangian including only fermion
fields ψσ (x) (σ =↑,↓) can be constructed order by order
according to the expansion (3) [52], where x = (t, r), with
t being the time and r the spatial coordinates. Here we aim
to construct an effective Lagrangian that recovers exactly the
scattering phase shift δ(k). Following Kaplan [44,45], we
introduce a boson field φ(x) that couples to the fermions.
Because of the Galilean invariance, the general effective La-
grangian takes the form

Leff =
∑

σ=↑,↓
ψ†

σ K̂Fψσ + φ†F (K̂B)φ − (φ†ψ↓ψ↑ + H.c.),

(4)

where K̂F = i∂t + μ + ∇2/(2m) and K̂B = i∂t + 2μ +
∇2/(4m) are the Galilean invariant kinetic operators for
fermion and boson, respectively, with μ being the chemical
potential of fermions. The crucial point of our construction
is that the boson field has an unconventional kinetic term,

represented by the function F (K̂B), which can be designed to
recover precisely the phase shift δ(k).

To see this, let us recall that the scattering amplitude A(E )
is given by the ladder summation with an interaction vertex
F−1(E ), which gives

A(E ) = −F−1(E )
∞∑

n=0

[F−1(E )B(E )]n

= 1

B(E ) − F (E )
. (5)

Here, the two-particle bubble diagram reads

B(E ) =
∑

p

1

E + iε − 2εp
, (6)

with εp = p2/(2m) and
∑

p = ∫
d3p/(2π )3 for 3D. The ul-

traviolet (UV) divergence in B can be regularized via a hard
cutoff � for |p|, leading to

B(E ) = − m

4π
ik + D(�), (7)

where the divergent part is given by

D(�) = m�

2π2
=

∑
p

1

2εp
. (8)

Thus, the scattering amplitude takes the same form of Eq. (2),
with the phase shift given by

k cot δ(k) = −4π

m
FR(E ). (9)

Here FR(E ) = F (E ) + D(�) is the renormalized version of
the F-function. It is readily seen that the expansion Eq. (3)
allows us to determine the F-function as a polynomial in K̂B,
i.e.,

FR(K̂B) =
∞∑

n=0

cn(K̂B)n. (10)

Since all terms in Eq. (3) are included, our construction of
the effective Lagrangian Eq. (4) is valid beyond the radius of
convergence of the effective-range expansion.

The effective Lagrangian (4) also applies to 2D systems,
where ∇2 = ∂2

x + ∂2
y . In 2D, the the s-wave scattering ampli-

tude is given by [53]

A(E ) = 4π

m

1

π cot δ(k) − iπ
. (11)

For a short-range interaction, we have

π cot δ(k) = ln

(
E

ε2D

)
− 4π

m

∞∑
n=1

cnEn, (12)

where ε2D = 1/(ma2
2D), with a2D being the 2D scattering

length. The 2D effective range can be defined as R2D =
−4πc1/m2, which has units of length2. Even though the
leading term is nonanalytical in E , it is purely from the
two-particle bubble diagram B(E ). Using the same cutoff
regularization, we obtain

B(E ) = − m

4π

[
ln

(
�2

mE

)
+ iπ

]
. (13)
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Direct ladder summation shows that

π cot δ(k) = ln

(
E

ε0

)
− 4π

m
FR(E ), (14)

where the renormalized F-function reads FR(E ) = F (E ) +
D(�), with the counter term

D(�) = m

4π
ln

(
�2

mε0

)
=

∑
p

1

2εp + ε0
. (15)

The energy scale ε0 can be chosen arbitrarily, and we set ε0 =
ε2D for convenience. Thus in 2D, the F-function is given by

FR(K̂B) =
∞∑

n=1

cn(K̂B)n. (16)

III. MANY-BODY THEORY

We consider a Fermi gas with a short-range two-body
interaction V (r). Now we can solve the many-body problem
based on the effective Lagrangian (4), instead of directly
using the interaction potential V (r). In the imaginary-time
path-integral formalism, the partition function Z is given by

Z =
∫

[dψ][dψ†][dφ][dφ†] exp

[∫
dx Leff

]
, (17)

where x = (τ, r) and
∫

dx = ∫ β

0 dτ
∫

dr after the replace-
ment t → −iτ , with τ being the imaginary time and β =
1/(kBT ) the inverse temperature. The fermions can be directly
integrated out, and we obtain

Z =
∫

[dφ][dφ†] exp {−Seff [φ, φ†]}, (18)

where the bosonic effective action reads

Seff = −
∫

dx φ†F (K̂B)φ − Tr ln MF[φ, φ†], (19)

with the fermion matrix

MF[φ, φ†] =
(

K̂F φ

φ† −K̂∗
F

)
. (20)

The partition function can be alternatively expressed as

Z =
∫

[dφ][dφ†] det MF exp

[∫
dx φ†F (K̂B)φ

]
, (21)

Thus the many-body problem can be simulated using the
lattice Monte Carlo method since the fermion determinant
det MF is positive, which has been applied to the zero-range
interaction case [54].

In this work, we aim to develop an analytical theory. One
advantage of the effective Lagrangian (4) is that the saddle
point or classical part of the boson field φ directly serves as the
superfluid order parameter. The mean-field theory amounts
to searching for the static and uniform saddle-point solution
φ(x) = � that minimizes the effective action Seff . In 3D and
at zero temperature, the mean-field contribution to the grand
potential � = −(T/V ) lnZ can be evaluated as

�MF =
∑

k

(
ξk − Ek + |�|2

2εk

)
− |�|2FR(2μ). (22)

Here ξk = εk − μ and Ek = (ξ 2
k + |�|2)1/2. Without loss of

generality, we can set � to be real and positive. At T = 0, the
gap equation determining �(μ) is given by

∑
k

(
1

2Ek
− 1

2εk

)
= −FR(2μ). (23)

In the strong attraction limit, the system forms a BEC of
tightly bound dimers and we have � 
 |μ|. The gap equation
thus reduces to a two-body equation determining the negative-
energy pole of the scattering amplitude,

A−1(2μ = −εB) = 0, (24)

where εB is precisely the binding energy of the dimer state
determined by solving the Schrödinger equation with the
interaction potential V (r). In the weak attraction limit, where
μ � εF, with εF = k2

F/(2m) being the Fermi energy, the gap
equation provides a reasonable effective-range dependence of
the pairing gap. By approximating the F-function as FR(E ) �
c0 + c1E , the pairing gap reads

� � 8

e2
εF exp

(
π

2kFa
− π

4
kFre

)
, (25)

indicating that a positive (negative) effective range suppresses
(enhances) the pairing gap.

The mean-field theory is only qualitatively correct for
strongly paired fermions. To have a more quantitative de-
scription, we consider quantum fluctuations around the saddle
point by writing φ(x) = � + ϕ(x). The effective action can
be expressed as

Seff = βV �MF + SFL[ϕ, ϕ†] (26)

and the partition function becomes

Z = e−βV �MF

∫
[dϕ][dϕ†]e−SFL . (27)

An exact analytical treatment of the fluctuation contribu-
tion SFL is impossible. Here we consider only the Gaussian
fluctuations, i.e., the contributions that are quadratic in ϕ(x)
and ϕ†(x), corresponding to the contributions from collective
modes. In the momentum space, this Gaussian fluctuation
contribution, SGF, can be expressed as

SGF = 1

2

∑
Q

�†(Q)M(Q)�(Q), (28)

where �(Q) = [ϕ(Q), ϕ†(−Q)]T. The inverse Green’s func-
tion of collective bosonic modes, M(Q), is a 2 × 2 matrix,
with elements satisfying the relations M11(Q) = M22(−Q)
and M12(Q) = M21(Q). Here and in the following, we use
the notation Q = (iql , q), with ql = 2π lT (l ∈ Z) being the
bosonic Matsubara frequency. At T = 0, the elements of M
can be explicitly evaluated as

M11(Q) =
∑

k

(
u2

+u2
−

Y−
− υ2

+υ2
−

Y+
+ 1

2εk

)
− FR(Z ),

M12(Q) =
∑

k

u+υ+u−υ−

(
1

Y+
− 1

Y−

)
, (29)
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where Z = iql + 2μ − q2/(4m), Y± = iql ± (E+ + E−), and
the BCS distribution functions are defined as u2

k = 1 − v2
k =

(1 + ξk/Ek )/2. The plus and minus signs denote the momenta
k + q/2 and k − q/2, respectively.

Within the Gaussian pair fluctuation (GPF) approximation
[24–27], i.e., SFL � SGF, the path integral over the fluctu-
ations can be carried out, and the grand potential is given
by � � �MF + �GF, where the contribution from Gaussian
fluctuations reads

�GF = −
∑

q

∫ ∞

−∞

dω

π

1

eβω − 1
δM(ω, q), (30)

and the phase shift δM(ω, q) = −ImW (ω + iε, q), with the
W-function given by

W (Q) = ln M11(Q) + 1

2
ln

[
1 − M2

12(Q)

M11(Q)M11(−Q)

]
. (31)

The grand potential �(μ) in the GPF theory can be deter-
mined by solving �(μ) from the gap equation (23). The
density equation of state is then calculated using n(μ) =
−∂�(μ)/∂μ.

It is worth noting that as the full scattering phase-shift
is reproduced by our theory in the two-body limit, we re-
cover correctly the virial expansion of the equation of state
at high temperature, i.e., the Beth-Uhlenbeck formalism for
the second-order virial coefficient can be derived. At high
temperature, the system is a normal gas with large but negative
μ. The equation of state can be expanded in powers of the
fugacity z = eβμ 
 1 [55]. In 3D we have

� = − 2

βλ3
T

(z + b2z2 + b3z3 + · · · ), (32)

where λT = √
2πβ/m is the thermal wavelength. Our the-

ory recovers the correct virial equation of state up to the
order O(z2). To see this, we write b2 = b(1)

2 + b(2)
2 , where the

one-body contribution b(1)
2 = −2−5/2. To find the two-body

contribution b(2)
2 , it is sufficient to use Eq. (30), with the phase

shift δM(ω, q) replaced by the two-body one δ2B(ω, q). Using
a new variable E = ω + 2μ − q2/(4m), we obtain

�
(2)
2 = −z2

∑
q

∫ ∞

−∞

dE

π
e−β(E+ q2

4m )δ2B(E ), (33)

where δ2B(E ) = −Im ln[A−1(E )]. Using Eq. (2), we recover
the elegant Beth-Uhlenbeck formalism,

b(2)
2√
2

= e−βεB +
∫ ∞

0

dk

π
e−β k2

m
dδ(k)

dk
, (34)

where εB is the exact binding energy and δ(k) is the exact
phase shift.

The many-body theory for 2D is quite similar to the
3D case. Due to the energy scale ε0 = ε2D, the mean-field
thermodynamics and gap equation are modified to

�MF =
∑

k

(
ξk − Ek + �2

2εk + ε2D

)
− �2FR(2μ) (35)

and
∑

k

(
1

2Ek
− 1

2εk + ε2D

)
= −FR(2μ), (36)

respectively. Moreover, for the Gaussian fluctuations, the ma-
trix element M11(Q) takes the form

M11 =
∑

k

(
u2

+u2
−

Y−
− υ2

+υ2
−

Y+
+ 1

2εk + ε2D

)
− FR(Z ). (37)

All the notations, i.e., u2
±, v2

±, and Y±, are the same as in the
3D case.

The consistency and validity of the GPF theory has been
studied for both 3D [24,25] and 2D [26,27] cases with zero-
range interactions. The truncation of the pair fluctuations at
the Gaussian level provides a quantitatively good description
of the BCS-BEC crossover at T = 0, since the most important
fluctuation contribution, the Goldstone mode fluctuation, is
taken into account properly. The missing Fermi liquid cor-
rection in the BCS limit of the mean-field theory is naturally
recovered by the GPF contribution [25]. In the BEC limit,
the GPF contribution is significant to give a quantitatively
good boson-boson interaction [24,25]. In particular, in 2D the
boson-boson interaction is missing in the mean-field theory,
leading to a qualitatively incorrect equation of state in the
BCS-BEC crossover. The correct boson-boson interaction is
naturally recovered by the GPF contribution, leading to a
correct equation of state [26]. In this work, the GPF theory
has been generalized to finite-range interactions. We will see
that the GPF theory also provides a better description of the
effective-range dependence than the mean-field theory.

IV. EFFECTIVE-RANGE DEPENDENCE

We now consider the zero-temperature equation of state of
a Fermi gas with fixed density n = k3

F/(3π2) in 3D. We focus
on the effective-range dependence of the ground-state energy
at resonance, where the F-function is approximated as

FR(E ) � c0 + c1E . (38)

While the theory in Sec. III applies for both positive and
negative effective ranges, here we focus on a negative effec-
tive range since it is relevant to cold-atom systems and the
computational cost is small (see the Appendix). For a neg-
ative effective range, re < 0, this truncation is equivalent to
the two-channel model description of the Feshbach resonance
[11]. At large negative effective range, the model can be
treated perturbatively according to a small parameter (kFre )−1

[11]. The mean-field theory provides an accurate description
for kFre → −∞. As shown in Fig. 1(a), we find that the
mean-field and the GPF results converge at large kF|re|, as
anticipated. At small and moderate effective range, the GPF
result agrees well with the QMC data [56]. For small kFre, the
ground-state energy at resonance can be expressed as

E

EFG
= ξ + ζkFre + O[(kFre )2], (39)

where the Bertsch parameter reads ξ = 0.591 in the mean-
field theory and ξ = 0.401 in the GPF theory. The GPF result
agrees well with the latest experimental [17–21] and QMC
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FIG. 1. Effective-range dependence of the ground-state energy of
3D Fermi gases at resonance (a) and of 2D Fermi gases at vanishing
mean-field chemical potential (b). The GPF results (solid lines) are
compared with the mean-field predictions (dotted lines) and the
diffusion QMC data (solid circles) in 3D [56] and 2D [60]. The
energy is in units of the ground-state energy EFG of a noninteracting
Fermi gas.

[34–37,56] results, which lie in the range 0.36–0.42. The
coefficient ζ can also be determined. It reads ζ = 0.273 in
the mean-field theory and ζ = 0.105 in the GPF theory. We
note that our GPF result ζ = 0.105 is in good agreement with
the result ζ = 0.087(1) [56] or ζ = 0.127(4) [57] from the
diffusion QMC and ζ = 0.11(3) [37] from the auxiliary-field
QMC.

In the BEC limit, the effective interaction between two
composite dimers may be deduced. As μ → −∞ and � 

|μ|, we expand the gap equation (10) in powers of �/|μ| and
obtain

FR(2μ) = m

4π

√
2m|μ|

(
1 + �2

16|μ|2
)

. (40)

The solution can be expressed as 2μ = −εB + μB, with μB 

εB being the dimer chemical potential. We find

μB = �2

2εBC
, (41)

where C = 1 + 8π
√

mεBF ′
R(−εB)/m2, with F ′

R(x) =
∂FR(x)/∂x. Meanwhile, the number equation becomes

n = (1 + α)Cm2�2

4π
√

mεB
, (42)

where α ∼ O(1) comes from the Gaussian-fluctuation contri-
bution and depends on the details of the F-function. Thus,
we recover the Bogoliubov equation of state for weakly
interacting bosons, μB = 4πaddnB/mB, where mB = 2m is the
mass of the dimers and nB = n/2 is the density of the dimers.
The dimer-dimer scattering length add is then given by

add(re) = 1

(1 + α)C2

2√
mεB

. (43)

Note that the above discussions are valid only for the case
C > 0, i.e., for a repulsive dimer-dimer interaction.

For zero-range interaction, we have add(0) = 2a from the
mean-field theory and add(0) � 0.57a from the GPF theory.
The GPF result is close to the exact result add(0) = 0.6a from
solving the four-body problem [58]. Considering only the
effective-range effect, i.e., FR(E ) � c0 + c1E , and neglecting
the weak dependence of α on re, we obtain

add(re )

add(0)
= 1 + √

1 − 2re/a

2(1 − 2re/a)
. (44)

For a large negative effective range, |re| � a, we have add �
a2/(2|re|) 
 a. For a positive effective range, add is enhanced.
The divergence at re = a/2 is artificial due to our simple
truncation to effective range and is likely cured by the in-
clusion of the shape term O(E2). We also observe that the
quantity C vanishes at re = a/2, indicating that the dimer-
dimer interaction turns to be attractive for a larger effective
range. The qualitative change around re ∼ a indicates that
the present analysis fails and the ground state in this regime
remains to be explored. Recent few-body calculation shows
that two dimers may form a cluster state for re > 0.46a [59].

We also calculated the ground-state energy of a 2D Fermi
gas with fixed density n = k2

F/(2π ) as a function of the
effective-range parameter k2

FR2D. In Fig. 1(b), we show the
energy in the strongly interacting regime where the 2D scat-
tering length a2D is determined by requiring μ = 0 within
mean-field theory. If the effective-range parameter is not large,
our GPF result shows an excellent agreement with the QMC
result [60]. However, both in 2D and 3D, our GPF predictions
with the simple truncation FR(E ) � c0 + c1E notably deviate
from the QMC results at high density or a large effective
range, indicating that the higher-order contributions beyond
the effective-range expansion may become important. These
corrections could depend sensitively on the model potentials
used in QMC simulations.

V. PROBING NONUNIVERSAL THERMODYNAMICS

In cold-atom experiments, the s-wave scattering length a is
tuned by magnetic field [46,61], and the effective range is

r0 = − 2

mabgγ B�

, (45)
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FIG. 2. Ground-state energy of a resonantly interacting atomic
Fermi gas as a function of kFre. The black solid line is the result from
the effective-range expansion. The red dotted and blue dot-dashed
lines show the results for 40K and 6Li atom gases, calculated by
using the full phase shift in Eq. (46) under the scheme of dark-state
optical control.

where abg is the open-channel background scattering length,
γ is the difference of the magnetic moment between the open
and the closed channels, and B� is the resonance width. For
broad resonances in experiments, such as 6Li at 832 G and
40K at 202 G, the effective range kFr0 is negligible.

Here we consider dark-state optical control of the Fesh-
bach resonance [62–64], where two laser beams couple the
molecular state |1〉 responsible for the resonance and another
molecular state |2〉 in the closed channel to an excited molec-
ular state |e〉. Near the resonance, the scattering phase shift is
modified to [62,65,66]

k cot δ(k) = − 1

abg

E − �(E )

E − �(E ) + γ B�

, (46)

where �(E ) is the optically induced Stark shift. In the dark-
state regime, we have �(0) = 0 and �′(0) = −�2

1/�
2
2, where

�1 and �2 are the Rabi frequencies for the transitions |1〉 ↔
|e〉 and |2〉 ↔ |e〉. Thus the resonance does not shift but the
effective range can be tuned by changing the ratio �1/�2

[62]:

re = r0

(
1 + �2

1

�2
2

)
. (47)

Figure 2 shows the ground-state energy as a function of
kFre for 6Li and 40K atom gases at resonances 832 and 202 G,
respectively. The density n is chosen as 2 × 1014 cm−3, a typ-
ical value realized in cold-atom experiments. The effective-
range parameter without optical control is kFr0 = 4.5 × 10−4

for 6Li and kFr0 = 2.7 × 10−2 for 40K . We find that the
result from a 40K atom gas agrees well with the effective-
range expansion. This is because the resonance for 40K has
a relatively large intrinsic effective range r0. To reach kFre ∼
O(1), we need �1/�2 ∼ 10 for 40K and a much larger value
�1/�2 ∼ 100 for 6Li . As a result, for 6Li the higher-order
terms beyond the effective-range expansion of Eq. (46) be-
come important.

VI. SUMMARY

We have proposed a convenient way to describe strongly
paired fermions without knowing the details of the short-range
interaction potential. Within our effective field theory, it is
easy to go beyond mean field to include quantum fluctuations
for arbitrary potential. The predicted effective-range depen-
dence of the ground-state energy is in good agreement with
recent quantum Monte Carlo simulations. At a large effective
range, the effect beyond the effective-range expansion may
become significant. Our theory can be readily generalized to
include the contributions from higher partial waves [67,68]
and extended to study bosonic systems [69,70]. It is also inter-
esting to study the case of a positive effective range, which is
relevant to the equation of state at low-density neutron matter
of astrophysical interest [38–40].

ACKNOWLEDGMENTS

We thank Xiangyu Yin and Ren Bi for useful discussions.
This research was supported by the National Natural Science
Foundation of China, Grants No. 11775123 and No. 11890712
(L.H.), National Key Research and Development Program of
China, Grant No. 2018YFA0306503 (L.H.), and Australian
Research Council’s (ARC) Discovery Program, Grants No.
FT140100003 (X.-J.L.), No. DP180102018 (X.-J.L.), and No.
DP170104008 (H.H.).

J.H. and F.W. contributed equally to this work.

APPENDIX: EVALUATING THE FLUCTUATION
CONTRIBUTION �GF AT T = 0

At T = 0, there is a much easier approach to evaluate �GF

for some cases proposed by Diener, Sensarma, and Randeria
[25]. We define two functions MC

11 and MC
22, which in 3D are

given by

MC
11(Q) = −FR(Z ) +

∑
k

(
u2

+u2
−

iql − E+ − E−
+ 1

2εk

)
(A1)

and MC
22(Q) = MC

11(−Q). In 2D, we need to replace 1/(2εk )
with 1/(2εk + ε2D). At T = 0, the boson Matsubara sum is
converted to a continuous integral over an imaginary fre-
quency iω, i.e.,

1

β

∞∑
l=−∞

F (iql ) =
∫ ∞

−∞

dω

2π
F (iω). (A2)

Therefore, if the Matsubara sum
∑

l ln MC
11(Q) vanishes even

without the convergent factor eiql 0+
at T = 0, we arrive at an

alternative convergent expression for �GF [25]:

�GF =
∑

q

∫ ∞

0

dω

2π
ln

[
M11(ω, q)M11(−ω, q)−M2

12(ω, q)

MC
11(ω, q)MC

11(−ω, q)

]
.

(A3)

Here we have used the fact that the integrand is even in ω.
If we consider only the effective-range effect and ap-

proximate the F-function as FR(E ) � c0 + c1E , the counter
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function in 3D can be expressed as

MC
11(Q) = m2re

8π

(
iql − q2

4m

)
+

∫
d3k

(2π )3

(
u2

+u2
−

iql − E+ − E−
+ 1

2Ek

)
. (A4)

For negative effective range (re < 0), the function MC
11(z, q) has no zeros in the left half-plane (Rez < 0) for an arbitrary value

of q. Therefore, the Matsubara sum
∑

l ln MC
11(Q) vanishes at T = 0 and the above trick applies. After some manipulations, we

obtain

�GF =
∑

q

∫ ∞

0

dω

2π
ln

[
1 − 2�4 A(ω, q)C(ω, q) + ω2B(ω, q)D(ω, q) + 2F 2(ω, q)

A2(ω, q) + ω2B2(ω, q)
+ �8 C2(ω, q) + ω2D2(ω, q)

A2(ω, q) + ω2B2(ω, q)

]
. (A5)

The functions A, B, C, D, and F are defined as

A(ω, q) = m2re

8π

(
2μ − q2

4m

)
+

∫
d3k

(2π )3

[
1

2Ek
− 1

4

(
1

E+
+ 1

E−

)
(E+ + ξ+)(E− + ξ−)

(E+ + E−)2 + ω2

]
,

B(ω, q) = − m2

8π
re +

∫
d3k

(2π )3

1

4E+E−

(E+ + ξ+)(E− + ξ−)

(E+ + E−)2 + ω2
,

C(ω, q) =
∫

d3k
(2π )3

1

4

(
1

E+
+ 1

E−

)
1

(E+ + ξ+)(E− + ξ−)

1

(E+ + E−)2 + ω2
,

D(ω, q) =
∫

d3k
(2π )3

1

4E+E−(E+ + ξ+)(E− + ξ−)

1

(E+ + E−)2 + ω2
,

F (ω, q) =
∫

d3k
(2π )3

1

4

(
1

E+
+ 1

E−

)
1

(E+ + E−)2 + ω2
. (A6)

This expression for �GF leads to a rapidly convergent result. However, for positive effective range (re > 0), the function
MC

11(z, q) has zeros in the left half-plane for sufficiently large values of |q|. In this case, the above trick fails and we need to use
the phase shift expression (30). The convergence of the integral over the real frequency is rather slow, and the computational
cost becomes large. Similar discussions also apply to the two-dimensional case.
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