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Cooper-pair formation in a system of imbalanced fermions leads to the well-studied Fulde-Ferrell or Larkin-
Ovchinnikov superfluid state. In the former case the system forms spontaneous phase gradients while in the
latter case it forms a stripelike or a crystal-like density gradient. We show that in multicomponent imbalanced
mixtures, the superfluid states can be very different from the Fulde-Ferrell-Larkin-Ovchinnikov states. The
system generates gradients in both densities and phases by forming three-dimensional vortex-antivortex lattices
or lattices of linked vortex loops. The solutions share some properties with the ostensibly unrelated Skyrme
model of densely packed baryons and can be viewed as synthetic realization of nuclear Skyrme matter.
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I. INTRODUCTION

One of the most important examples of translation sym-
metry breaking in condensed-matter states is formation of a
crystal of topological defects. In the simplest superconduc-
tors and superfluids, the topological defects originate from
the fact that they are described by a complex field � =
|�|eiθ , where the 2π -periodic field θ is called the super-
fluid phase. As a consequence, superfluid and superconduct-
ing vortices are characterized by one of the simplest topo-
logical indices, the integer phase winding N , which quan-
tifies how many times the phase changes from 0 to 2π

when one circumvents a vortex core. It is given by the line
integral N = 1

2π

∮ ∇θ · dl . One of the state-defining proper-
ties of superfluids is that they form vortex lattices under rota-
tion [1,2]. Superconductors form vortex lattices in an external
magnetic field [3]. More recently, lattices of more compli-
cated topological defects, skyrmions, became of paramount
importance in magnetism [4]. The magnetic skyrmion is a
two-dimensional texture of a dimensionless magnetization
vector m(r) with a nonzero integer topological invariant given
by the integral q = 1

4π

∫
εabcma∂xmb∂ymcdx dy, where εabc is

the Levi-Cività symbol. In films, both vortex and skyrmion
lattices can be viewed as crystals of two-dimensional parti-
clelike objects, while in three dimensions they can be viewed
as lattices of stringlike objects. The consequences of spon-
taneous breakdown of translation symmetry dictate unique
macroscopic responses of these condensed-matter systems
such as transport, magnetic, and thermodynamic properties.

While two-dimensional lattices of topological defects are
ubiquitous, the situation is very different in three dimen-
sions. The most celebrated example where three-dimensional
crystals of topological solitons were sought is the Skyrme
model of nuclear matter [5–9]. This model was proposed to
describe atomic nuclei as continuous particlelike solutions of
the nonlinear field theory in three dimensions, in contrast to
two-dimensional magnetic skyrmions.

The nuclear Skyrme model was originally defined in
terms of an SU(2) valued chiral field. Hence solutions can
be characterized by a pair of complex fields �1 and �2

constrained by |�1|2 + |�2|2 = 1. Nuclear skyrmion solu-
tions of this model are isolated particlelike states character-
ized by an integer topological charge (or index) Q, which is
interpreted as a baryon number and is defined as the integral
over the topological density

ρQ = 1

12π2
εabcdϕaεi jk (∂iϕb∂ jϕc∂kϕd ), (1)

where ϕ1 = Re(�1), ϕ2 = Im(�1), ϕ3 = Re(�2), and ϕ4 =
Im(�2). If one associates vorticity with a complex field
component, then the internal structure of the skyrmion can be
interpreted as a bundle of linked closed vortex loops and the
linking number corresponds to the value of the topological
charge. Skyrmions with different topological charges belong
to different homotopy classes and therefore cannot mutually
transform into each other as a result of any perturbations.
Particles with charges of the opposite sign attract each other
and are annihilated, while those with the same sign form
highly charged skyrmions with a morphology resembling
Platonic solids [10]. As a consequence, it is expected that for
an unlimited number of particles with charges of the same
sign the ground state is a skyrmion crystal, that is, nuclear
Skyrme matter [6–9]. Such solutions, although not realized
in a terrestrial laboratory, give an important example of a
three-dimensional crystal of topological defects, which has
been hypothesized to share properties with nuclear matter in a
neutron star.

The problem of spontaneous breakdown of translation
symmetry in superfluid and superconducting states has been
of great interest even without formation of topological defects.
It takes place in Fulde-Ferrell-Larkin-Ovchinnikov (FFLO)
states [11–15], which can be viewed as one of the first dis-
cussed examples of a supersolid state. They form in fermionic
systems where there is a density imbalance of two species
of fermions. As a consequence, Cooper pairing involves two
fermions with momenta of different magnitude, ensuing from
a periodic modulation of the phase or modulus of the order pa-
rameter. In the most general cases considered, the modulation
of the order parameter is two or three dimensional [11–15]. In
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the context of color superconductivity in dense quark matter,
three-dimensional modulation is called a FFLO crystal [13].
Such crystalline order is associated with density modulation
and is not characterized by topological indices, i.e., is not a
lattice of topological defects. While in ultracold atoms the
realization of a FFLO state in a three-dimensional parabolic
trap was challenging, some of the challenges were removed by
the invention of the box trap potential [16–18]. Furthermore,
it was shown that FFLO-type solutions are much more robust
near the box potential wall [19,20]. Furthermore, since often
the phases which are fragile in single-component systems
occupy a much larger domain in the multicomponent case,
this raises the question of possible states in multicomponent
imbalanced mixtures.

II. THE MODEL

In this paper we consider mixtures of two species of
fermionic ultracold atoms. We consider the case where both
spin populations are imbalanced. We show that, by contrast,
in a two-component system, entirely different states arise.
The system forms textures in the form of a three-dimensional
lattice of nuclear skyrmions. This represents synthetic realiza-
tion of the putative Skyrme nuclear matter.

The Ginzburg-Landau functional for the free-energy den-
sity of a single-component FFLO superfluid in the BCS limit
of weak coupling was derived microscopically in [21]. Its two-
component generalization can be written in dimensionless
units as

F =
2∑

a=1

{ζa|��a|2 + Ka| �∇�a|2 + αa|�a|2 + βa|�a|4

+ ξa(Im[�∗
a
�∇�a])2} + γ |�1|2|�2|2, (2)

where �1 = f1 + i f2 and �2 = f3 + i f4 are a pair of complex
order parameters, �a = |�a|eiθa . All the microscopic param-
eters of the model are absorbed in dimensionless coefficients
ζ1,2, K1,2, α1,2, β1,2, and ξ1,2. Microscopic derivation of the
parameters in the single-component case [21] shows that all
of them are of order unity (see the Appendix). Hence we
performed the majority of the simulations for coefficients
ζ1,2 = 1, K1,2 = −1, α1,2 = −1, β1,2 = 1, and ξ1,2 = 1. In
cases where a different value was used, we give the corre-
sponding number. The dimensionless unit of length corre-
sponds to h̄vF

(δμ)c2
, where vF is the Fermi velocity and (δμ)c2

is the critical value for the chemical potential difference
δμ = |μ↑ − μ↓|. In the two-component case one necessarily
has to include an additional parameter γ that controls the
strength of biquadratic coupling. In what follows we set
γ = 0.5 so that the system is substantially far away from a
phase separation regime.

The key feature of systems with FFLO-type instability is
that for sufficiently large fermionic imbalance, the coefficient
K for the gradient terms becomes negative. Therefore, the
system forms gradients of the field in the ground state and
those should be balanced by retaining positive terms arising at
the next order with higher-order spatial derivatives. Note that
a regime is also possible where the coefficient in front of the
fourth-order potential term becomes negative and one should
retain the sixth-order potential term. While in the recent mi-
croscopic Ginzburg-Landau derivation [21] the fourth-order

potential term does not change sign simultaneously with the
second-order gradient term, we obtained stable solutions, of
the kind discussed below, also in the model with the negative
fourth- and positive sixth-order potential terms.

III. THE RESULTS

We investigate numerically stable states of the model (2)
(for details see the Appendix). We find that these are three-
dimensional crystals with the field configurations �1,2(r)
analogous to that for the pair �1,2(r) in nuclear skyrmion
crystals. Thus, the ultracold atomic multicomponent mixtures
can exhibit the physical realization of a crystal of synthetic
nuclear skyrmions. Remarkably, at the same time the state is
an example of behavior of vortex matter being a crystal of
linked closed vortex loops [see Fig. 1(a)].

In the solutions that we find the energy density is nonuni-
form and it breaks translation symmetry down to a three-
dimensional crystal-like lattice. A typical unit cell of size λx,y,z

for the solutions we found is shown in Fig. 1(a). Isosurfaces
corresponding to a constant value of the density of the first
condensate (|�1| = const) represent a set of horizontal sur-
faces with an array of holes. Since it resembles several layers
of the Swedish bread knäckebröd, for brevity we will call it the
knackebrod phase. While |�2| = const isosurfaces are vertical
cylinders passing through the knackebrod holes. The phase
winding of θ2 is equal to ±2π around each such cylinder and
the plus and minus signs alternate in a checkerboard pattern.
The phase θ1 has ±2π winding along the cross sections of the
knackebrod layer. Thereby, the second component forms a lat-
tice of vortex and antivortex lines. If one considers the struc-
ture of only the second component, its cross section is, in some
respects, similar to the spontaneous vortex-antivortex lattice in
a two-dimensional imbalanced chiral superconductor [22].

Now we establish the relationship between this solution
and the nuclear skyrmion crystal. The important fact about the
states that we find is that they do not contain points or domains
in which both order parameters are simultaneously zero. In
this regard, the topological density (1) can be calculated by

assuming ϕi = fi/

√∑4
j=1 f 2

j . Thereby, the integral over the
density (1) in both models gives the same index Q, also known
as the skyrmion number. Hence, we use the terms skyrmion,
antiskyrmion, half-skyrmion, and quarter-skyrmion to denote
cases when Q is 1, −1, 1/2, and 1/4, respectively. Obviously,
in contrast to the mathematically idealized nuclear Skyrme
model, in the model under consideration the total index Q is
not an absolute invariant. The remarkable fact about the states
of a multicomponent imbalanced mixture that we find is that Q
does not change, unless perturbations are sufficiently strong.
Hence it provides an important quantitative characteristic
revealing the relationship with the nuclear skyrmions.

The total skyrmion number Q for the unit cell presented
in Fig. 1(a) is 4. This total Q is composed of skyrmion
numbers of each individual node: positions with maxima of
topological density (1). When counting the nodes marked in
orange in Fig. 1(a), it is necessary to take into account that the
same node may have several images due to periodic boundary
conditions. Thus, we obtain that each node has Q = 1/2 and
hence is represented by a half-skyrmion.
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FIG. 1. Synthetic nuclear skyrmion crystal state in a mixture of imbalanced fermionic superfluids with two-component order parameter.
It can be viewed as a stable state of linked vortex loops in two complex fields. (a) Isosurfaces of the order parameter modulus for
|�1,2| = 0.5 max[|�1,2(r)|] in a unit cell of the crystal. The colors of the isosurfaces show the values of the corresponding phases θ1,2 in
accordance with colormaps in the inserted circles. Orange areas show the isosurfaces of topological density for ρQ = 0.95 max[ρQ(r)]. The
cyan vertical dashed curve denotes the position of one particular vortex core for the second condensate, �2 = 0. The violet dashed curve
denotes the position of one particular vortex core for the first condensate, �1 = 0, which forms stable vortex loops. Thick circles show several
separate closed loops, along which there is a 2π phase winding in the condensates: Cyan corresponds to |�2| = const and magenta corresponds
to |�1| = const. The equilibrium periods which were found are λx,y = 17.5 and λz = 12.5. Average energy density 〈F (r)〉 = −0.43. The
simulation was performed for K1,2 = −0.9. (b) Knackebrod state of uncoupled condensates. Isosurfaces and their coloring are the same as in
(a). The left vertical side of the triangular cutout shows the density distribution of the condensate in a black and white color code. The inset
shows the map of streamlines. The numerical calculation was performed for α1,2 = 0.

Note that the unit cell has an internal symmetry and in
fact consists of eight smaller rectangular cells which are
identical in their energy density F (r) and topological index
density ρQ(r) distributions, but have different order parameter
configurations. We will call these F cells.

Let us consider the distribution of order parameters in the
vicinity of one half-skyrmion highlighted by the rightmost
black arrow. The vertical dashed line passing through the
center of the half-skyrmion depicts the vortex core in the
second component. This means that �2 = 0 along this line.
The thick circle with an arrow denotes the path around which∮

dθ2 = 2π while |�2| and θ1 remain constant. Similarly
to that, two parallel thick circles show two loops around
which

∮
dθ1 = ±2π . Thus, closely spaced vortex loops are

linked.
One of the vortex cores in the first component (�1 = 0) is

depicted by dashed loop. Note that cores of the second and
first components (dashed curves) are also linked, since the
vertical line for the second component may be viewed as part
of a closed loop of infinite size. Hence the phase found can
be considered as a collection of linked loops. However, there
is a subtlety: Vertical vortex lines are passing through every
hole in the knackebrod, white and black. This reflects the fact
that in the vicinity of points of linking we do not find compact
skyrmions with Q = 1, but rather pairs of half-skyrmions. In
other words, two adjacent holes of different color constitute
one fractionalized Q = 1 skyrmion. This is an observation
common for all solutions in the two-component fermionic
model: The two complex fields form lattices consisting of
skyrmions fractionalized in half-skyrmions and even quarter-
skyrmions.

In the limit when the coupling between the components
is negligible, or in the single-component case, naturally there
are no linkings. To highlight the difference with the two-
component case, such a solution is presented in Fig. 1(b),
for γ = 0. The structure of the order parameter in the form
of parallel knackebrod layers is stable and qualitatively has a
structure similar to that in the two-component case.

Figure 1(a) presents a simple tetragonal (st) crystal. That
is not the only possible state. We found a variety of so-
lutions composed of half-skyrmions forming body-centered-
tetragonal (bct) crystals. The family of stable states is depicted
in Fig. 2. Let us classify these solutions according to their
lattice type and morphology.

Generalization of the st solution appears when the system
makes connections between vertical vortex lines of the second
component. The stable solutions have these connections in
the space between the knackebrod layers. Such solutions
include twice as many layers in the elementary cell. The bct
crystal shown in Fig. 2(a) remains stable over a much larger
range of parameters than the st crystal. By stability we mean
that the given crystal is protected by an energy barrier that
prevents a spontaneous transition to another crystal, expansion
or shrinking of the unit cell, and other transformations. For
this state the index Q = 8 per elementary cell. Hence, each
F cell has Q = 1, which reflects the fact that this cell contains
a pair of half-skyrmions.

A very different stable state that the system forms can be
viewed as a twisted st skyrmion lattice. This phase corre-
sponds to DNA-like configuration of vortices spanning the
system shown in Fig. 2(c). It consists of elongated half-
skyrmions and has an overall index Q = 8 per elementary cell.
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FIG. 2. Synthetic skyrmion crystals of different symmetries. The top row shows isosurfaces of the order parameter modulus for
|�1,2| = 0.5 max[|�1,2(r)|]; color encodes the values of corresponding phases θ1,2 as in Fig. 1(a). The middle row shows isosurfaces of
the topological density: Orange corresponds to ρQ = 0.95 max[ρQ(r)] and blue corresponds to (a)–(c) ρQ = 0.05 max[ρQ(r)] and (d) ρQ =
−0.95 max[ρQ(r)]. The bottom row shows isosurfaces of the energy density: blue corresponds to F (r) = 0.95 min[F (r)] and orange to F (r) =
0.95 max[F (r)]. (a) Unit cell of a bct lattice with equilibrium periods λx,y = 15.1 and λz = 19.3. The average energy density 〈F (r)〉 = −0.45.
(b) Different kind of stable bct lattice characterized by the fact that half-skyrmions are fractionalized into quarter-skyrmions, λx,z = 21.0,
λy = 19.5, and 〈F (r)〉 = −0.44. (c) DNA-like lattice characterized by the energy density 〈F (r)〉 = −0.46, λx,y = 15.7, and λz = 20.7. For
this solution the cores of half-skyrmions are noticeably elongated. (d) Skyrmion-antiskyrmion lattice with 〈F (r)〉 = −0.46, λx,y = 11.9,
and λz = 21.9.

The system can form a crystal with more complicated
fractionalization, composed of quarter-skyrmions. In such a
crystal there are reconnections that occur between layers of
the knackebrod phase in the bct lattice. This gives chains of
adjacent vortex loops [see Fig. 2(b)]. We term this crystal bct
(chains) since it has skyrmion number Q = 8.

The synthetic nuclear Skyrme crystals presented above can
be seen as a spontaneous formation of lattices of skyrmion
fractions with the same Q. However, we found solutions
for which the signs of the skyrmion number alternate. An
example of a stable state with total skyrmion number Q = 0 is
shown in Fig. 2(d). This state, which isosurface morphology
superficially resembles the structure of blue phases in liquid
crystals [23], has an equal number of skyrmions and anti-
skyrmions, i.e., it can be interpreted as a particle-antiparticle
crystal.

IV. CONCLUSIONS

The formation of a crystal of topological excitations, i.e.,
a vortex lattice, is considered a hallmark of superfluidity. A
different kind of lattice of topological solitons was explored
in the nuclear Skyrme model [5]. There, substantial effort
was devoted to searching for solutions for nuclear skyrmion
crystals that were hypothesized to describe matter in a neutron
star, which led to an active research direction in mathematical
physics [6–9]. An imbalanced Fermi superfluid is a seemingly
unrelated system which is known to form a well-studied FFLO
state. By performing a numerical energy minimization of the
Ginzburg-Landau model we demonstrated that a multicom-
ponent mixture of imbalanced superfluids has many stable
states which are principally different from the FFLO state as
well as from other known states such as Larkin-Ovchinnikov
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crystals [13], an interior gap [24], and the Sarma phase [25],
but is closely connected to the ostensibly unrelated Nuclear
skyrmion crystals solutions [6–9]. The states exist in a range
of parameters and do not require fine-tuning. In the states
that we find nonlinear effects are highly important and the
structure of the states cannot be captured by naive ansatz but
requires numerical solution of the full nonlinear problem. This
calls for investigation into whether these states are relevant
in the microscopically different physics arising in a dense
QCD context [13,26]. These states carry a nontrivial density
of topological index relating them to nuclear Skyrme crystals.
Hence the system has spontaneous superflow in the form of
a stable crystal of closed vortex loops. This means that in
the system with negative gradient terms, the vortex-antivortex
lattice is a very competitive solution. Note that such a configu-
ration inherently has gradients in both the phases and densities
of the fields.

Possible systems where nuclear Skyrme crystals may pos-
sibly be realized could be mixtures of 6Li and 161Dy, 171Yb
and 173Yb, 161Dy and 163Dy, 6Li and 40K, and 40K − 161Dy or
mixtures involving 87Sr, 53Cr, and 3He. Fermi-Fermi mixtures
were experimentally explored for 6Li and 40K [27,28]. Re-
cently, the realization of a 40K − 161Dy mixture was reported
[29]. The mixtures considered have multiple stable states
representing very different local minima. In order to make a
crystal a global energy minimum, one may utilize the fact that
their energy density is also a three-dimensional crystal, i.e.,
when one adds an external, periodic in all three directions,
potential U (r)|�|2 these state can become a global minimum.
Likewise, axion-type additional terms [30], which are propor-
tional to the topological density (1), can make some of these
states global minima, since skyrmion crystals with skyrmion
numbers of the same sign can get a significant energy gain.
Even when the skyrmion crystals represent local minima,
upon cooling the system would likely form coexistent states
or imperfect crystals, even in a box potential [16–18]. The
direct route to create these crystals in experiments is via
a relaxation from an imprinted similar configuration. There
has been recent progress in imprinting nontrivial topological
charges [31]. Because the skyrmion crystals can be viewed
as a spontaneous lattice of vortex loops or lines, their ex-
perimental observation can be done via the same protocol
as the observation of the ordinary vortex states. The other
experimental route is the spectroscopy approach [32,33]. The
nuclear Skyrme crystals that we find in the context of cold
atoms can form in unconventional superconductors where
multicomponent models are ubiquitous.
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APPENDIX

1. Parameters

In the simplest single-component FFLO Ginzburg-Landau
model [21], it is possible to rescale parameters so that all
dimensional parameters are absorbed into α, which is a func-
tion of an imbalance of fermionic populations and temper-
ature. To do so one should rescale F → εF

n�BCS
F , x → 1

q0
x,

and � → �BCS�. Where, according to [21], q0 = 1.81�BCS
h̄vF

,

�BCS = hc2
0.754 and hc2 is a critical value for the chemical

potential difference h = 1
2 (μ↑ − μ↓). Next εF and vF are the

Fermi energy and velocity, respectively, and n is the density
of particles. The rescaled energy density becomes

F = ζ |��|2 + K| �∇�|2 + α|�|2 + β|�|4

+ ξ (Im[�∗ �∇�])2, (A1)

with ζ = 0.61, K = −1.21, α = 0.75 ln( 9h
4hc2

), β = 0.375,
and ξ = 0.915. Note that α can be positive or negative,
depending on the ratio h/hc2.

The two-component model necessarily has more parame-
ters. We include the biquadratic coupling term γ |�1|2|�2|2.
Apart from that, when rescaling space x → λx and energy
density F → hF , we have to multiply by the same scaling
factor for both components. This means that the model will
depend on ratios of these factors for different components,
namely, the space scaling factor for the first component will be
proportional to ( hc2

vF
)1( vF

hc2
)2, where indices correspond to the

first and second components. Similarly for the energy scaling,

we obtain the factor ( nh2
c2

εF
)1( εF

nh2
c2

)2.
In the mixtures of two species of fermionic ultracold atoms

characteristics like densities will be different. This means that
in general we have ζ1 
= ζ2, K1 
= K2, etc. The disparity in
these parameters leads to a tendency to improve the stability of
the various crystal solutions. Hence we set all parameters to be
equal in our computations to assess the system in a regime that
is less favorable for crystal formation. We take all coefficients
to be of order unity and set K1 = K2 � −1, α1 = α2 = −1,
γ = 0.5, and other parameters equal to unity.

2. Numerical algorithm

We numerically minimized the averaged energy density
〈F〉 of the cuboidal unit cell of the full three-dimensional
model [see Eq. (2)] with periodic boundary conditions and
rescaling of all three spatial sizes λi of the cell independently.
As a minimization routine we implemented the nonlinear
conjugate gradient algorithm, parallelized on CUDA-enabled
GPU. The domain was discretized by a mesh with 1283 points.
Some solutions were verified on the mesh with 2563 points.
In addition, we checked that the solutions remain stable on a
relatively coarse grid with 643 points. The second-order finite-
difference discretization scheme was applied to a continuous
Hamiltonian [see Eq. (2)].

First of all, the solutions found provide a minimum of
the energy for a single unit cell of fixed size, i.e., E0 =∫ λx

0

∫ λy

0

∫ λz

0 F (r)dx dy dz → min. Next the periods λx,y,z are
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in equilibrium, i.e., they are variables in the problem and were
found such that simultaneously they provide a minimum for
the average energy density, 〈F (r)〉 = E0/λxλyλz → min.

A similar approach, based on minimization of the average
energy density, was used to study one-dimensional helicoidal
ordering in magnets without an inversion center [34]. Subse-
quent experiments confirmed the phenomenon and the equi-
librium periods on a quantitative level [35].

Because the system has many states representing local
minima, to obtain a regular crystal one needs a suitable
initial guess. As the initial guess for the numerical energy
minimization we used the first few terms of the Fourier series
subjected to the corresponding symmetry. Similar expressions
were used in the search for nuclear Skyrme crystals [8],

f2 =
∑
a,b,c

αabc sin

(
2πax

λx

)
cos

(
2πby

λy

)
cos

(
2πcz

λz

)
,

f1 =
∑
a,b,c

βabc cos

(
2πax

λx

)
cos

(
2πby

λy

)
cos

(
2πcz

λz

)
,

and f3 and f4 were found from f2 by symmetry transforma-
tions. For example, for the st crystal we used (for brevity we
assume λi = 2π )

f2 = sin x, f3 = sin y, f4 = sin z,

f1 = cos x cos y cos z

and for the bct crystal (chains)

f2 = sin x cos y, f3 = sin y cos z, f4 = sin z cos x,

f1 = c(cos 2x + cos 2y + cos 2z)

+ (1 − 3c) cos 2x cos 2y cos 2z,

with c � 0.3.
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