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Spin-dipole mode in a trapped Fermi gas near unitarity
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We theoretically investigate the spin-dipole oscillation of a strongly interacting Fermi gas confined by a
harmonic trapping potential. By using a diagrammatic strong-coupling theory combined with a local density
approximation and a sum rule approach, we study the temperature dependence of the spin-dipole frequency near
unitarity. The connection of the spin-dipole frequency with the spin susceptibility and the pairing correlations is
exploited. While the spin-dipole frequency exactly coincides with the trap frequency in a noninteracting Fermi
gas, it is shown to be strongly enhanced in the superfluid state, because of the suppression of the spin degree of
freedom due to the spin-singlet Cooper-pair formation. In strongly interacting Fermi gases, such enhancement
occurs even above the superfluid phase transition temperature, due to the strong pairing correlations.
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I. INTRODUCTION

Ultracold atomic gases have emerged as an ideal testing
ground for the study of strongly correlated systems [1–4]. The
most remarkable feature of this system is the possibility of
modifying the interatomic interaction using Feshbach reso-
nances [5], that has allowed one to examine various strong-
coupling phenomena in Fermi gases.

In particular, unitary Fermi gases, where the scattering
length as is adjusted to be divergent (as = ±∞) [6–9], have
attracted much attention because of its universal property.
Whereas the unitary Fermi gas does not depend on any
scales associated with the interaction, the presence of strong
pairing fluctuations is anticipated. Indeed, the photoemission
spectrum measurements near the superfluid critical temper-
ature Tc indicate the existence of the pseudogap in single-
particle excitations [10–13], originating from strong pairing
fluctuations in the Bardeen-Cooper-Schrieffer (BCS) -Bose-
Einstein condensation (BEC) crossover regime (for a review,
see Refs. [14,15]). On the other hand, it has also been shown
that the observed equation of state in a unitary Fermi gas can
be well reproduced by the Fermi liquid theory, without includ-
ing strong pairing fluctuations [16]. Therefore it is desirable to
consider other quantities that are sensitive to pairing fluctua-
tions in order to understand the strongly interacting regime.

Since the formation of singlet pairs suppresses the spin
degrees of freedom, the spin susceptibility is a promising
candidate for this purpose, and, e.g., the so-called spin-gap
phenomenon, where the spin susceptibility is suppressed in
the pseudogap regime, has been predicted [17–21]. While
the spin susceptibility has been recently experimentally ac-
cessed in cold Fermi gas physics [22,23], this many-body
phenomenon has not been observed yet. Furthermore, the
spin-dipole frequency [24,25], which is also deeply related
to the inverse of the spin susceptibility, has been experimen-
tally observed and been successfully employed to observe

the ferromagnetic behavior in the upper energy branch of
a repulsive Fermi gas [26]. In Ref. [26] the measurement
of the spin-dipole frequency in the (attractive) lower energy
branch is also reported. While the spin-dipole frequency in a
noninteracting Fermi gas is equal to the trap frequency due to
Kohn’s theorem with respect to the dipole mode even at finite
temperatures [27,28], a large enhancement of this frequency
has been observed in the unitary regime due to the reduction
of spin susceptibility.

Another interesting aspect of the spin-dipole mode is its
analogy with the giant dipole resonance (GDR) in nuclei [29].
In such nuclear systems, the strong neutron-proton interaction
plays an important role. The excitation-energy dependence of
GDR has been investigated to see the effects of collective
motions, as well as thermodynamic properties of excited
nuclei [30].

In this work, we discuss the spin-dipole frequency in
an attractively interacting Fermi gas in a harmonic trap, by
using a combined extended T -matrix approximation (ETMA)
[31] with a local density approximation (LDA) and a sum-
rule approach. Such a diagrammatic approach can not only
reproduce the observed spin susceptibility, but also connect
the spin susceptibility with pairing-fluctuation corrections in
a homogeneous two-component Fermi gas [20,21]. In particu-
lar, the single-particle density of states obtained from ETMA
exhibits the pseudogap phenomenon near Tc, where the spin
susceptibility is suppressed due to the formation of spin-
singlet preformed Cooper pairs. We also note that ETMA can
successfully describe the recently observed ground-state ther-
modynamic quantities [32–34], as well as the spin polariza-
tion [35], in the unitary regime. The ETMA gives the Bertsch
parameter ξ = 0.38, superfluid gap � = 0.44εF, and Tan’s
contact C = 0.098k4

F in a unitary Fermi gas at T = 0 [32]
(where εF and kF are the Fermi energy and momenta, respec-
tively). It also gives the superfluid critical temperature Tc =
0.20TF (where TF is the Fermi temperature). These ETMA
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results agree with the recent experiments [9,13,36–38],
as well as quantum Monte Carlo simulations [19,39–42].
Using this strong-coupling theory, we clarify the effects of
strong pairing interactions on the spin-dipole frequency in a
strongly interacting trapped Fermi gas. We also compare our
numerical results with the recent experiment done near the
unitarity limit.

This paper is organized as follows. In Sec. II, we explain
our theoretical framework for the spin-dipole mode in a
trapped Fermi gas. In Sec. III, we discuss strong-coupling
corrections on the spin-dipole frequency. In what follows, we
take h̄ = kB = 1.

II. FORMALISM

We start by considering a homogeneous three-dimensional
two-component Fermi gas with a contact-type interaction. The
Hamiltonian is given by

H =
∑

σ=↑,↓

∑
p

(ξp − σh)c†
p,σ cp,σ

−U
∑
p,k,q

c†
p+q/2,↑c†

−p+q/2,↓c−k+q/2,↓ck+q/2,↑, (1)

where cp,σ (c†
p,σ ) is the annihilation (creation) operator of

a Fermi atom with momentum p and pseudospin σ , ξp =
p2/(2m) − μ the kinetic energy (m being the atomic mass)
measured from the chemical potential μ, and h an effective
magnetic field, i.e., (twice) the difference of the chemical po-
tentials between the σ =↑ and ↓ components. The interaction
strength −U is related to the s-wave scattering length as as

U =
[|p|�pc∑

p

m

p2
− m

4πas

]−1

, (2)

where pc is the cut-off momentum. In order to study the
superfluid phase we introduce the superfluid order parameter
�, to rewrite the model Hamiltonian in Eq. (1) as [43]

H =
∑

p

ψ†
p[ξpτ3 − h − �τ1]ψp − U

∑
q

ρq,+ρq,−, (3)

where ψp = (cp,↑, c†
−p,↓)t is the two-component Nambu

field [43], τi=0,1,2,3 the Pauli matrice,s and ρq,± =∑
p ψ

†
p+q/2τ±ψ−p+q/2 are the generalized density operators

with τ± = (τ1 ± iτ2)/2.
As mentioned in the Introduction, we include the effects

of a harmonic trap within LDA. In the present case of
spin-independent trap potential V (r) = 1

2 mω2
trr

2, in LDA the
chemical potential is simply given by [1]

μ(r) = μ − 1
2 mω2

trr
2, (4)

where ωtr is the trap frequency. Note that h is position inde-
pendent in this case. All the other quantities acquire spatial
dependence via local solutions using Eq. (3). Introducing
ξp(r) = ξp + mω2

trr
2/2, as well as the spatial-dependent or-

der parameter, � → �(r), we define the 2 × 2 matrix LDA
Green’s function in the Nambu space as

Ĝp(iωn, r)−1 = iωn − ξp(r)τ3 + h + �(r)τ1 − �̂p(iωn, r),

(5)

=         + 

 = 
G

G0

Γ -U

Σ^

^

^

Γ^

^

(a)

(b)

FIG. 1. Feynman diagram for the self-energy �̂, as well as the
many-body T matrix �̂ (double solid lines). The box represents a
contact-type attractive interaction −U . The solid and dashed lines
show the dressed and bare Green’s functions Ĝ and Ĝ0, respectively.

where ωn = (2n + 1)πT (n ∈ Z) is the fermion Matsubara
frequency. In ETMA, the LDA self-energy �̂p(iωn, r) is di-
agrammatically described as Fig. 1(a), which gives

�̂p(iωn, r) = −T
∑
q,iζn′

∑
j, j′=±

� j, j′
q (iζn′, r)

× τ j Ĝp+q(iωn + iζn′ , r)τ j′ (6)

where ζn′ = 2n′πT (n′ ∈ Z) is the boson Matsubara fre-
quency. The LDA many-body T matrix �̂q(iζn′, r), diagram-
matically shown in Fig. 1(b), has the form

�̂q(iζn′ , r) = −[1 + U�̂q(iζn′, r)]−1U . (7)

Here,

[�̂q(iζn′, r)] j, j′ = T
∑
p,iωn

tr
[
Ĝ0

p+q(iωn + iζn′ , r)

× τ j′Ĝ
0
p(iωn, r)τ j

]
(8)

is the LDA pair-correlation matrix, where Ĝ0
p(iωn, r) =

[iωn − ξp(r)τ3 + �(r)τ1]−1 is the bare BCS Green’s function
[3].

The local density nσ (r, T ) is obtained from Ĝp(iωn) as

n↑(r, T ) = T
∑
p,iωn

[Ĝp(iωn, r)]11eiωnδ, (9)

n↓(r, T ) = T
∑
p,iωn

[Ĝp(iωn, r)]22e−iωnδ,

where δ is an infinitesimally small positive number. The Fermi
chemical potential μ is determined by solving numerically the
particle-number equation N = N↑ + N↓ where

Nσ =
∫

d3r nσ (r, T ). (10)

In the superfluid phase, we also determine the LDA super-
fluid order parameter �(r) from the gapless condition of the
Nambu-Goldstone mode [44],

det[1 + U�̂q=0(iζn′ = 0, r)] = 0. (11)

We define the LDA superfluid critical temperature Tc as the
temperature below which �(r = 0) becomes nonzero.

In the present work, we use the ETMA + LDA to estimate
the spin-dipole mode frequency, i.e., the frequency of the out-
of-phase in-trap dipole motion of the two spin components.

013610-2



SPIN-DIPOLE MODE IN A TRAPPED FERMI GAS NEAR … PHYSICAL REVIEW A 101, 013610 (2020)

A rigorous upper bound [25] is given by the ratio between the
energy weighted m1 and the inverse energy weighted m−1 sum
rules for the spin-dipole operator

∑
i zi,↑ − ∑

i zi,↓, where the
sums run over all the ↑ and ↓ atoms, respectively.

While m1 ∝ N/m, the sum rule m−1 directly depends on
the magnetic susceptibility of the gas χ (r, T ), which can be
calculated as, in LDA,

χ (r, T ) = lim
h→0

n↑(r, T ) − n↓(r, T )

h
. (12)

Eventually, the spin-dipole frequency ωSD is evaluated as [25]

ω2
SD � m1

m−1
= N

m
∫

d3r z2χ (r, T )
. (13)

In this work, we numerically evaluate Eq. (12) with a small
magnetic field h = 10−2εF. As mentioned previously, h is
actually not a real magnetic field, but the chemical potential
difference between two components. While Eq. (13) gen-
erally represents an upper bound, it is expected to give a
very accurate estimation for the spin-dipole frequency, since
the spin-dipole operator excites mainly a single mode. We
briefly note that, at low frequency, a better estimation can
be obtained by including the mass normalization [25] in the
f -sum rule as m1 ∝ N/m∗, which is, however, outside the
scope of the present work, and which is a higher-order effect
on the spin susceptibility along the temperature evolution. In
the absence of interaction effects, since each spin component
exhibits a dipole oscillation independently, the spin-dipole
frequency coincides with the dipole frequency, i.e., due to
Kohn’s theorem [27,28], to the trap frequency. As we will
also show in the following, the latter result is recovered in the
presence of interaction at high enough temperature to make
spin correlation negligible.

III. RESULTS

Figure 2 shows the temperature dependence of the spin-
dipole frequency ωSD for a unitary Fermi gas in a harmonic
trap. The solid and short-dashed lines represent the results of
ETMA and the BCS mean-field approximation (hereinafter,
referred to as BCS), respectively. The BCS result is ob-
tained by solving Eq. (10) without the self-energy correction,
namely, �̂p(iωn, r) = 0. Our result shows excellent agree-
ment with the recent experiment at T = 0.151TF [26], with
TF = (3N )1/3ωtr being the Fermi temperature in an ideal two-
component Fermi gas. Although the experimental result was
obtained in the condition that the two gas clouds of up and
down spins are initially not fully overlapping, ETMA can
quantitatively explain the magnetic properties of a unitary
Fermi gas. A similar agreement about the strong-coupling
corrections to the spin susceptibility have also been pointed
out in Refs. [20,21].

As shown in Eq. (13), ω2
SD is inversely proportional to

the second moment of the local spin susceptibility χ (r, T ).
Thus, ωSD becomes larger, for smaller χ (r, T ). We obtain
better insight into the large enhancement of ωSD, from the
spatial and temperature dependence of the local spin suscep-
tibility χ (r, T ). Figure 3 shows χ (r, T ) as a function of r
for different temperatures. We introduce the ideal Thomas-
Fermi radius RF =

√
2εF/(mω2

tr ) with εF the Fermi energy

0

0.5

1

1.5

2

2.5

0 0.2 0.4 0.6 0.8 1

ω
SD

/ω
tr

T/TF

Tc = 0.29TF(ETMA)

ideal Fermi gas

Tc = 0.37TF(BCS)

ETMA
BCS

6Li (expt.) 

FIG. 2. Calculated spin-dipole frequency in a trapped unitary
Fermi gas at finite temperature. The solid, dotted, and dashed lines
represent the results of ETMA, BCS, and an ideal Fermi gas. The
LDA critical temperatures of ETMA (Tc = 0.29TF) and BCS (Tc =
0.37TF) are shown, where TF = (3N )1/3ωtr and ωtr are the Fermi
temperature in a two-component ideal gas and the trap frequency,
respectively. The black circle shows the recent experimental result
on a 6Li unitary Fermi gas [26].

of an ideal two-component Fermi gas at T = 0, as well as
the local Pauli susceptibility, χ0(r, T ) = (3m/2)[n↑(r, T ) +
n↓(r, T )]1/3/(3π2)2/3 [46]. In the superfluid phase at T =
0.1TF shown in Fig. 3(a1), both the ETMA and the BCS
results exhibit peak structures. In our LDA formalism, the
system forms a shell structure with a superfluid inner core
[�(r) 
= 0], surrounded by an outer normal region. The ver-
tical dotted lines in Figs. 3(a1) and 3(a2) shows the boundary
between the two phases.

In the superfluid region, the local spin susceptibility is
largely suppressed due to the formation of singlet Cooper
pairs, characterized by the LDA superfluid order parameter
�(r) shown in the inset of Fig. 3(a2). While the ETMA
result shows a larger χ (r, T ) than that of BCS in the su-
perfluid region, the opposite occurs in the normal region.
This behavior reflects pairing fluctuations in each region. In
particular, in the normal phase at T = 0.4TF and T = 0.8TF

shown in Figs. 3(b1) and 3(c1), the ETMA result is always
smaller than the BCS one. This difference originates from
the formation of preformed Cooper pairs near Tc and the
interaction effect becomes smaller at high temperature regime.
For reference, we plot n↑(r) + n↓(r) in Figs. 3(b2) and 3(c2)
at each temperature in the normal phase.

We note that the calculation of BCS above Tc (= 0.37TF)
is equivalent to the noninteracting case. Regarding this, ωSD

is always equal to ωtr above Tc in the mean-field approxima-
tion. It is consistent with the Bogoliubov-de Gennes calcula-
tion with the random-phase approximation [45] which shows
ωSD � ωtr in the normal phase. This fact supports the validity
of LDA. However, as shown in Figs. 3(b1) and 3(c1), χ (r, T )
in the normal phase clearly has a temperature dependence
even in the mean-field calculation. Although the effects of
pairing fluctuations on the trap-averaged spin susceptibility
is unclear due to the fact that it involves not only pairing
correlations, but also temperature-dependent density profile
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FIG. 3. Local spin susceptibility χ (r, T ) at (a1) T = 0.1TF (su-
perfluid phase), (b1) T = 0.4TF, and (c1) T = 0.8TF in a trapped
unitary Fermi gas. (a2), (b2), and (c2) show the corresponding local
densities n↑(r) + n↓(r). The inset in (a2) shows the LDA superfluid
order parameter �(r). The solid and dashed lines represent the
results of the ETMA and of the mean-field BCS theory, respectively.
χ0(r, T ) is the Pauli susceptibility in a homogeneous gas with the
number density nσ (r, T ) (see text). The vertical dotted lines indicate
the boundary between the normal state and the superfluid state in
each calculation.

[46], the spin-dipole frequency is not affected by the latter
effect.

In Fig. 4, we report the temperature dependence of
the spin-dipole frequency away from unitarity. In the
high-temperature limit, the expected result ωSD = ωtr is re-

0

0.5

1

1.5

2

2.5

0 0.2 0.4 0.6 0.8 1

(kFas)-1 = -0.6
= 0
= 0.6

ω
SD

/ω
tr

T/TF

FIG. 4. Comparison of the spin-dipole frequencies at (kFas )−1 =
−0.6 (dashed line), 0 (solid line), and 0.6 (dot-dashed line). kF =√

2mωtr (3N )1/3 is the LDA Fermi momentum.

covered, irrespective of the interaction strength. On the
other hand, ωSD diverges in the low-temperature limit for
nonzero pairing interaction, where the spin susceptibility van-
ishes because of the singlet Cooper pairing. Since the spin
susceptibility decreases for a larger pairing interaction, ωSD

increases with increasing (kFas)−1. In particular, ωSD becomes
very large in the strong-coupling regime [(kFas)−1 � 0.5]
where atoms form tightly bound molecules. Again, even in
such a regime, we obtain ωSD = ωtr for T � Eb, with Eb =
1/(ma2

s ) the two-body binding energy at r = 0.
In the strong-coupling high-temperature regime, the sys-

tem can simply be described by a classical atom-molecule
mixture [46], so that the local spin susceptibility χcl(r, T ) is
analytically given by

χcl(r, T ) = 2λ

T

(
mT

2π

)3/2

exp

(
−mω2

trr
2

2T

)
, (14)

where λ = eμ/T is the fugacity. Such a classical mixture
model is equivalent to the so-called Saha-Langmuir equation
[47,48]. Recently, the pair fraction predicted by the Saha-
Langmuir equation shows good agreement with the cold-atom
experiment in the BEC side [49]. Substituting Eq. (14) into
Eq. (13), one obtains

ωcl
SD = ωtr

√
1

6λ

(
TF

T

)3

. (15)

Since λ = (TF/T )3/6 in trapped ideal two-component gases,
Eq. (15) is consistent with Kohn’s theorem (ωcl

SD = ωtr). In the
presence of the molecular bound state, λ is given by

λ =
√

1 + 2
3

( TF
T

)3
exp(Eb/T ) − 1

2 exp(Eb/T )
. (16)

Using this, one can analytically obtain the spin-dipole fre-
quency in the strong-coupling high-temperature limit,

ωcl
SD = ωtr

√√√√√
( TF

T

)3
exp(Eb/T )

3
√

1 + 2
3

( TF
T

)3
exp(Eb/T ) − 3

. (17)

In this way, one can understand that the enhancement of
ωSD in the strong-coupling regime is due to the appearance
of tightly bound molecules. Indeed, Eq. (17) coincides with
Eq. (15) when T � Eb because molecules are thermally dis-
sociated. This result is in sharp contrast to the dipole mode
which does not depend on the temperature and the interaction
strength due to Kohn’s theorem.

We summarize the phase diagram of an attractively inter-
acting trapped Fermi gas from the viewpoint of the spin-dipole
mode in Fig. 5. In this figure, we plot the temperatures where
ωSD/ωtr = 1.05, 1.10, and 1.20. These three characteristic
temperatures monotonically increase with increasing the pair-
ing interaction strength. One can find the smooth crossover
from the high-temperature region (“KM”), where the spin-
dipole oscillation can be explained by the two independent
Kohn (dipole) modes of the spin σ =↑ and ↓ gas clouds, to
the fast-oscillation region (“FO”) where ωSD largely deviates
from ωtr due to the strong attractive interaction. Although
there is no clear phase boundary between KM and FO, this
result indicates that ωSD is sensitive to the pairing interaction,
as well as resulting singlet-pair formations. For reference,
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FIG. 5. Phase diagram of an attractively interacting trapped
Fermi gas. The solid line shows the LDA superfluid critical tem-
perature Tc, below which the system undergoes the superfluid phase
(“SF”). While the spin-dipole frequency can be explained by the
Kohn (dipole) mode in the high-temperature region (“KM”), it
is strongly enhanced at low temperatures (fast oscillation region,
“FO”). Although there are no clear boundaries between “KM” and
“FO,” the crossover between these two regimes can be character-
ized by the temperatures where ωSD/ωtr = 1.05 (dotted line), 1.10
(dashed line), and 1.20 (long-dashed line). For comparison, we also
plot the peak temperature Tp of the trap-averaged spin susceptibility
shown in [46].

we also show in Fig. 5 the peak temperature Tp of the trap-
averaged spin susceptibility in an attractive Fermi gas in a
harmonic trap [46]. Tp is close to the temperature where
ωSD/ωtr = 1.20, in the entire crossover region.

Figure 6 shows ωcl
SD at T = Tp in the strong-coupling

regime. Tp as a function of (kFas)−1 is also shown in the
inset of Fig. 6. While Tp increases and ωcl

SD at T = Tp slightly
decreases with increasing the binding energy, this indicates
that the spin-dipole frequency starts to be enhanced when the
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FIG. 6. Calculated spin-dipole frequency ωcl
SD in the classical

atom-molecule mixture at T = Tp. The inset shows the peak temper-
ature Tp of the trap-averaged spin susceptibility [46], as a function of
(kFas )−1, in the strong-coupling limit.
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FIG. 7. (a) Calculated frequency shift δωSD = (ωETMA
SD −

ωBCS
SD )/ωETMA

SD due to the pairing correlations beyond the mean-field
approximation near Tc. (b) LDA superfluid order parameter
�(r = 0) in the trap center.

trap-averaged spin susceptibility is suppressed by the singlet-
pair formation.

To see how the emergent superfluid order and pairing
fluctuations affect the spin-dipole mode below Tc, we plot in
Fig. 7(a) the frequency shift δωSD = (ωETMA

SD − ωBCS
SD )/ωETMA

SD

near Tc, where ω
ETMA(BCS)
SD is the spin-dipole frequency ob-

tained by ETMA (BCS). For reference, we also plot the
LDA superfluid order parameter �(r = 0) in the trap center
in Fig. 7(b). By definition, this frequency shift δωSD purely
originates from the pairing correlations beyond the mean-field
level. δωSD gradually increases with decreasing temperature
in the high-temperature region, and starts to decrease around
T = 0.77Tc = 0.23TF, where �(r = 0) largely evolves. The
pairing effect on ωSD is most visible near this temperature.
Indeed, pairing fluctuations become strong near Tc in single-
particle excitations [50–53]. Finally, in the low-temperature
regime, δωSD becomes smaller, indicating that the spin-dipole
oscillation can qualitatively be explained by the mean-field
theory and pairing fluctuations are suppressed by the appear-
ance of the superfluid order in this regime.

IV. SUMMARY

To summarize, we have studied the spin-dipole frequency
in a trapped Fermi gas near the unitarity by using the extended
T -matrix approximation combined with the local density
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approximation and a sum-rule approach. We have shown
that our numerical result is in excellent agreement with re-
cent experimental results at unitarity. In the classical (high-
temperature, strong-coupling) regime, the analytical expres-
sion for the spin-dipole frequency has been derived.

The spin-dipole frequency exhibits a large enhancement
in the low-temperature regime, due to the formation of the
spin-singlet pairs in the center of the trap, i.e., due to the
formation of a sizable region of zero magnetic susceptibility.
The spin-dipole frequency coincides with the trap frequency
in the high-temperature regime, in agreement with Kohn’s
theorem. However, in the strong-coupling regime, where a
molecular bound state is present, the spin-dipole frequency
deviates from the trap frequency as long as T � Eb.

We have discussed the effect of strong pairing correlations
on the spin-dipole mode and compare our ETMA + LDA
results with the BCS + LDA calculation. As a future topic,
it would be interesting to compare our results with a recent
density functional theory within the asymmetric superfluid lo-
cal density approximation [54,55], which reproduces ground-
state properties of a unitary Fermi gas even in the presence of
the population imbalance.

While this work focused on the mass-balanced case, our re-
sults could be generalized to mass-imbalanced systems. This
is relevant for the new generation of Fermi-Fermi mixture
experiment where the overlap of the two Fermi clouds can be
large as in the case of disprosium-potassium mixtures [56,57].
Regarding this, we comment on the fact that the upper bound
Eq. (13) could even be improved by considering that the
low-energy quasiparticle excitations do not exhaust the f -sum
rule m1. While, for our equal mass case, the correction would
be rather small, it could be an interesting future problem in
mass-imbalanced mixtures.
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