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Application of the renormalized random-phase approximation to polarized Fermi gases

David Durel * and Michael Urban †

Institut de Physique Nucléaire, CNRS/IN2P3, Université Paris-Sud 11, Université Paris-Saclay, F-91406 Orsay Cedex, France

(Received 2 August 2019; published 9 January 2020)

We consider a spin-imbalanced Fermi gas at zero temperature in the normal phase on the BCS side of the BCS-
BEC crossover and around unitarity. We compute the critical polarization for pairing, the correlated occupation
numbers, and the contact in an extension of particle-particle random-phase approximation (RPA) (also called
non-self-consistent T-matrix approach or ladder approximation). The so-called renormalized RPA consists in
computing the T matrix with self-consistently determined occupation numbers. The occupation numbers are
determined either by keeping the self-energy only to first order or by resumming the Dyson equation. In this
way, the result for the critical polarization, strongly overestimated in standard RPA, is clearly improved. We also
discuss some problems of this approach.
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I. INTRODUCTION

Cold atoms have allowed for the first realization of the
crossover from superfluidity of Cooper pairs as described
by the Bardeen-Cooper-Schrieffer (BCS) theory to Bose-
Einstein condensation (BEC) of dimers. This is possible be-
cause the scattering length a, i.e., the interaction strength,
can be changed thanks to the Feshbach resonance. At zero
temperature, a Fermi gas with two spin states σ =↑,↓ of
equal masses and populations is superfluid at any interaction
strength. This is not the case for a polarized gas, in which
pairing disappears beyond some critical polarization Pc whose
value depends on the interaction strength. In the polarized
case, other forms of pairing may exist such as the Fulde-
Ferrell-Larkin-Ovchinnikov (FFLO) phase [1,2] characterized
by an oscillating order parameter corresponding to pairs with a
nonzero total momentum. So far, in experiments on polarized
Fermi gases performed on resonance (a → ∞, the so-called
unitary limit) [3–5] and in the BCS-BEC crossover [6,7], the
FFLO phase was not seen, but a phase separation into a paired
and an unpaired state was found. In fact, the FFLO phase may
be difficult to see in a harmonic trap and the use of flat traps
may clarify this question in the future. The problem of pairing
in asymmetric systems has also been studied, e.g., in the case
of proton-neutron pairing in asymmetric nuclear matter [8]
and in the context of QCD with color superconductivity in the
case of quark matter which also involves particles of different
masses [9].

Many theoretical studies already addressed the prob-
lem of pairing in polarized Fermi gases, for reviews see
Refs. [10–12]. One problem of polarized systems is that the
standard Nozières and Schmitt-Rink (NSR) [13] approach,
which describes the BCS-BEC crossover at finite temperature,
fails in the polarized case [14,15]. Different variants of the
NSR approach were proposed to solve this problem [16–19].
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All these approaches have in common to be based on the
ladder approximation for the in-medium T matrix and to
include the self-energy in a somewhat more self-consistent
way than it is done in the NSR theory.

In this paper, we consider only the case of zero temperature
and the normal phase. This implies that the polarization of
the gas must exceed the critical polarization Pc below which
superfluidity sets in. The ladder approximation becomes then
equivalent to what is known in nuclear physics as the particle-
particle random-phase approximation (pp-RPA) which was
applied to polarized Fermi gases in Ref. [20]. The pp-RPA
gives satisfactory results on the BCS side for not too strong in-
teraction, but at unitarity it overestimates strongly the critical
polarization. Within this formalism, the onset of superfluidity
appears as an instability, but it is not possible to describe the
superfluid phase. Maybe one could generalize the formalism
to the superfluid phase using Gor’kov Green’s functions,
similarly to what was done in the unpolarized case at finite
temperature, e.g., in Ref. [21], but this is beyond the scope of
the present study.

From a general perspective, the RPA describes correlations
in the medium, e.g., the correlation energy or correlated occu-
pation numbers, starting from an uncorrelated ground state. In
this sense, the RPA is not fully consistent. Different extensions
of RPA were developed to take into account these correlations
in a more consistent way. One of them is the self-consistent
RPA (SCRPA) [22–24], which is based on the correlated RPA
ground state. In practice, however, the SCRPA is very difficult
to implement except in simple toy models. An approximation
to the SCRPA is the renormalized RPA (r-RPA) [25,26], which
instead of using the correlated ground state uses only the cor-
related occupation numbers in the calculation. The inclusion
of the correlated occupation numbers can be expected to solve,
at least partially, the problem of the critical polarization in the
polarized Fermi gas at zero temperature.

Our article is organized as follows. In Sec. II, we recall
briefly the pp-RPA formalism and describe the basic idea of
the self-consistent processing of the occupation numbers. We
use two different methods to obtain the occupation numbers,
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FIG. 1. Representation in terms of Feynman diagrams of (a) the
vertex function �, (b) the self-energy �, and the occupation numbers
nσ calculated with (c) the truncated Dyson equation [RPA(1st)] and
(d) the full Dyson equation [RPA(∞)]. Inserting self-consistent oc-
cupation numbers into the two-particle propagator J within the r-RPA
corresponds roughly to an approximate way of dressing the thick blue
lines in diagram (a), but there is no one-to-one correspondence in
terms of diagrams.

one based on the Dyson equation truncated at first order that
we call RPA(1st), and the other using the full Dyson equation
that we call RPA(∞). We will discuss the results obtained for
the occupation numbers and the contact. In Sec. III, we present
the calculation of the critical polarization, first in the case of
RPA and then in the case of the r-RPA. Finally, we conclude
in Sec. IV.

II. SELF-CONSISTENT OCCUPATION NUMBERS

A. Recapitulation of pp-RPA at zero temperature

Let us start by recalling the pp-RPA for a zero-temperature
polarized fermion gas. At zero temperature, it is common
to fix the densities of up and down populations, denoted ρ↑
and ρ↓, unlike at finite temperature where one usually fixes
the chemical potentials. The polarization P of the gas is then
defined as

P = ρ↑ − ρ↓
ρ↑ + ρ↓

, (1)

assuming ρ↑ > ρ↓ as convention. Since the formalism breaks
down at the superfluid phase transition (see Sec. III), we limit
ourselves to sufficiently strong polarizations where the system
remains normal fluid even at zero temperature.

The pp-RPA is based on the formalism of the in-medium T
matrix which is written as the sum of ladder diagrams that we
can see in Fig. 1(a).

In the case of cold atoms, it is appropriate to take a contact
interaction with coupling constant g. The vertex function � is
written as

�(k, ω) = 1

1/g − J (k, ω)
, (2)

with J (k, ω) = Jhh(k, ω) + Jpp(k, ω), including both
particle-particle (pp) and hole-hole (hh) propagation. The

function J needs to be regularized [27] which gives the
following expressions:

g = 4πa

m
, (3)

Jhh(k, ω) = −
∫

d3p
(2π )3

n↑(∣∣ k
2 + p

∣∣) n↓(∣∣ k
2 − p

∣∣)
ω − ε k

2 +p − ε k
2 −p − iη

, (4)

Jpp(k, ω) =
∫

d3p
(2π )3

(
n̄↑(∣∣ k

2 + p
∣∣) n̄↓(∣∣ k

2 − p
∣∣)

ω − ε k
2 +p − ε k

2 −p + iη
+ m

p2

)
,

(5)

where εk = k2/(2m), nσ are the occupation numbers of spin
σ , and n̄σ = 1 − nσ . In the case of standard RPA, the expres-
sion of nσ is nσ (k) = θ (kσ

F − k).
To calculate the correlated occupation numbers nσ in stan-

dard RPA, one uses the Dyson equation truncated at first order
[Fig. 1(c)], i.e.,

Gσ = Gσ
0 + Gσ

0 �σ Gσ
0 , (6)

where Gσ is the dressed Green’s function, Gσ
0 the bare Green’s

function, and �σ the self-energy represented in Fig. 1(b),
which has the form

�σ (k, ω) = −i
∫

d3p
(2π )3

∫
dω′

2π
Gσ̄

0 (p, ω′) �(k+ p, ω+ ω′),

(7)
where σ̄ denotes the spin opposite to σ . This is the same
approximation that is used at finite temperature in the NSR
theory [13]. The general expression for the occupation num-
bers reads [28]

nσ (k) = −i
∫

dω

2π
eiωηGσ (k, ω). (8)

The resulting expressions for the occupation numbers of the
holes and particles are, respectively, [20]

nσ
(
k < kσ

F

) = 1 +
∫

d3p
(2π )3

∫ +∞

�F

dω

π

θ
(
kσ̄

F − | p −k|)
(ω − εk − εp −k )2

× Im �(p, ω), (9)

nσ
(
k > kσ

F

) = −
∫

d3p
(2π )3

∫ �F

−∞

dω

π

θ
(| p −k| − kσ̄

F

)
(ω − εk − εp−k )2

× Im �(p, ω), (10)

where �F = (k↑ 2
F + k↓ 2

F )/(2m) is the energy separating the
two-particle and two-hole continua. The occupation numbers
that we obtain can be decomposed into a continuous part nc

and a step of height Zσ = limε→0 nσ (kσ
F − ε) − nσ (kσ

F + ε),
i.e.,

nσ (k) = Zσ θ
(
kσ

F − k
) + nσ

c (k) . (11)

On the one hand, the procedure of keeping in Eq. (6) only
the first order in the self-energy makes it possible to sat-
isfy the Luttinger theorem, i.e., that the correlations do not
modify the densities of the gas. On the other hand, it leads to a
pathology when the interaction becomes too strong, the height
of the step Z becoming negative (and also the occupation
numbers can become negative) [20].
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FIG. 2. Imaginary and real parts of J as function of ω for
k = 0.01 k↑

F and k↓
F = k↑

F /2. The blue solid lines represent J with
uncorrelated occupation numbers and the red dash-dotted lines are
obtained with self-consistent occupation numbers for a k↑

F = −2.

B. Renormalized pp-RPA

The idea of renormalized RPA (r-RPA) is to reuse the
pp-RPA formalism presented in the preceding subsection but
in which the occupation numbers in Eqs. (4) and (5) are
no longer Heaviside functions but the correlated occupation
numbers written in Eq. (11). This approximation can be justi-
fied using the equation-of-motion method for the two-particle
Green’s function, see, e.g., Ref. [22].

In some sense, this prescription can be viewed as an
approximation to the two-particle Green’s function J one
would obtain by dressing the single-particle propagators ap-
pearing in the ladder diagrams in Fig. 1(a). However, there
are important differences. For instance, in the limit P → 1,
the r-RPA reduces to the RPA because the up and down
occupation numbers tend to θ (k↑

F − k) and 0, respectively,
while the dressed propagator of the down particle (polaron)
would remain nontrivial even in this limit.

By including the correlations (Zσ < 1) in the calculation
of the two-particle propagator J , the logarithmic singularity of
Re J , responsible for the instability of the normal phase [28],
will be reduced. This can be seen in Fig. 2, where we show
J (k, ω) for small nonvanishing k for better visibility. This
softening of the singularity will allow the normal phase to
remain stable at lower polarization.

With this formalism, the results of the pp-RPA can be con-
sidered as the first iteration of the self-consistent calculation.
To carry out the iteration, the correlated occupation numbers
are calculated according to Eqs. (9) and (10) and are reinjected
into the functions J , Eqs. (4) and (5). This procedure is
repeated until convergence is reached. One important thing to
notice is that the converged result is independent of the initial
occupation numbers. The comparison between the RPA and
r-RPA occupation numbers is shown in Fig. 3 for different
values of the interaction strength. For weak interactions, i.e.,
|a k↑

F | < 1, the r-RPA provides virtually no correction to the
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FIG. 3. Up and down occupation numbers for the polarization
k↓

F = k↑
F /2 (P = 0.778) for the RPA (blue solid line) and the r-RPA

(at convergence, red dashed line). (a) a k↑
F = −2, (b) a k↑

F = −3. The
inset shows a zoom on the unphysical negative step (Z↓ < 0) of the
down occupation numbers.

RPA. In contrast, for stronger interactions, the r-RPA reduces
the value of Z more strongly than the RPA calculation. There-
fore the self-consistent treatment does not cure the pathology
of RPA that the value of Z becomes negative for interactions
that are too strong; on the contrary, the negative step appears
already for weaker interactions [for instance, in Fig. 3(b), the
step of n↓(k) is negative in r-RPA as can be seen in the zoom].

Let us note that it follows from the spectral representation
of the two-particle Green’s function J (see Chapter 15.2 of
Ref. [29]) that, in principle, the two-hole continuum of Im Jhh

should be restricted to energies below �F and the two-particle
continuum of Im Jpp to energies above �F, as it is the case
in standard pp-RPA. In the self-consistent treatment, i.e., by
including the correlations in the calculation of J , we see that
the two-particle continuum Im Jpp extends into the two-hole
continuum and vice versa as shown in Fig. 4. This is a general
problem of the r-RPA approach.

C. Contact

A very interesting property of the occupation numbers is
the asymptotic behavior of the momentum distribution tails. In
the case of a contact interaction, the asymptotic behavior (k �
kσ

F ) follows the power law nσ (k) ∼ C/k4. The coefficient

C = lim
k→∞

k4n↑(k) = lim
k→∞

k4n↓(k) (12)
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FIG. 4. Imaginary part of J as function of ω for k = 0 and k↓
F =

k↑
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dashed line for particles. As can be seen, each curve extends into the
energy zone of the other.

is independent of the spin and, in the notation of Tan [30,31],
it is called contact. This relationship has been restated in a
field theory context in Ref. [32].1 The value of the contact C
is related to different thermodynamic properties of the Fermi
gas [31,33]. For instance, it determines the dependence of the
energy density E/V on the interaction strength as [31]

d (E/V )

d (−1/a)
= C

4πm
. (13)

Figure 5 shows the dependence of the contact C on the
interaction and polarization parameters for the RPA and the
r-RPA. Note that the value of the contact is almost identical
within the RPA and the r-RPA, we do not know if the small
difference between these curves is only due to the numeri-
cal precision or not. In the limit of weak interaction [large
−1/(a k↑

F )], the contact approaches the perturbative result
C = 16π2 a2 ρ↑ρ↓ [34], as can be seen in Fig. 5.

D. Occupation numbers calculated with the full Dyson equation

The problem of the negative step that appears in the
occupation numbers calculated with the standard RPA when
the interaction becomes too strong is not improved by the
self-consistent treatment. One way to cure this pathology is
to use the complete Dyson equation instead of the truncated
version (6) presented in Sec. II A, i.e., to dress the Green’s
function as

G = 1

1/G0 − �
. (14)

In terms of diagrams, the occupation numbers calculated with
the complete Dyson equation are represented in Fig. 1(d).

When we consider the complete equation (14) to calculate
the occupation numbers, the self-energy �, Eq. (7), must
be explicitly calculated, which is not the case when using

1In Ref. [32] a different notation is used where C denotes Tan’s
contact integrated over the volume. Here we adopt Tan’s notation,
which is more convenient for uniform systems.
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FIG. 5. Contact C (a) as a function of the interaction for an
asymmetry of k↓

F = k↑
F /2; (b) as a function of the polarization for

interactions of a k↑
F = −1 and a k↑

F = −2. The blue solid lines are
the RPA results and the red dashed lines are for the r-RPA. The
black dashed-dotted line represents the perturbative expression for
the contact in the weakly interacting limit.

the first-order truncated Dyson equation (6) as done before.
The expressions for the imaginary part of the self-energy
� = �hh + �pp are given by [20]

Im �σ
hh(k, ω) = −

∫
p>kσ̄

F

d3p
(2π )3

θ (�F − ω − εp)

× Im �(k + p, ω + εp), (15)

Im �σ
pp(k, ω) =

∫
p<kσ̄

F

d3p
(2π )3

θ (ω + εp − �F)

× Im �(k + p, ω + εp) (16)

and the corresponding real parts are calculated with a disper-
sion relation. Then we calculate the spectral function

Aσ (k, ω) = − Im
1

ω − εk − �σ (k, ω − U σ )
. (17)

We introduced the quantity U σ = Re �σ (kF, εF) to take into
account the shift of the Fermi energy caused by the real part
of �. A useful property of the spectral function is∫ +∞

εF+U σ

dω

π
Aσ (k, ω) −

∫ εF+U σ

−∞

dω

π
Aσ (k, ω) = 1. (18)
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FIG. 6. The solid blue lines represent the occupation numbers
calculated with RPA(1st), i.e., the truncated Dyson equation (6)
and the dashed red lines represent the occupation numbers calcu-
lated with RPA(∞), i.e., the complete Dyson equation (14). The
polarization is fixed at k↓
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F /2, interaction strength is a k↑

F = −4.
The Z↓ calculated with RPA(∞) decreases much less than with the
RPA(1st).

The occupation numbers are obtained from

nσ (k) = ±
∫ εF+U σ

−∞

dω

π
Aσ (k, ω), (19)

with + for holes and − for particles. To avoid having to
integrate the peak present in the spectral function when cal-
culating the occupation numbers of the holes, we use Eq. (18)
that normalizes the spectral function and integrate over the
complementary interval where there is no peak. Finally this
leads to the formulas

nσ
(
k < kσ

F

) = 1 −
∫ +∞

εF+U σ

dω

π
Aσ (k, ω), (20)

nσ
(
k > kσ

F

) = −
∫ εF+U σ

−∞

dω

π
Aσ (k, ω). (21)

By comparing the results of this method, denoted RPA(∞),
and those of the standard RPA [RPA(1st)], we see in Fig. 6 that
the occupation numbers within the RPA(∞) are less modified
than those within RPA(1st). In particular, the negative step dis-
appears even at the strongest interactions. Roughly speaking,
since Z1st 	 1 + d�/dω and Z∞ 	 1/(1 − d�/dω) the step
heights of the two methods are related by Z1st 	 2 − 1/Z∞.
For weak interactions, both methods give similar results.

To set up self-consistency, we adopt the same approach
as in Sec. II B. Figure 7 shows the difference of the occupa-
tion numbers calculated with the r-RPA(1st) and r-RPA(∞).
Again, in the occupation numbers calculated with the full
Dyson equation, the problem of the negative step (and even
negative occupation numbers) present in the r-RPA(1st) has
disappeared.

However there is a price to pay. If we define ρL
σ =

kσ 3
F /(6π2), the Luttinger theorem [35] states that the density

ρσ calculated as the integral of the correlated occupation
numbers satisfies the relation ρσ = ρL

σ . As shown in Ref. [20]
this is exactly fulfilled within RPA(1st), but it is no longer
true if the occupation numbers are calculated with the full
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FIG. 7. Same as Fig. 6 but using self-consistent occupation num-
bers (r-RPA). Z↓ calculated with r-RPA(∞) is positive whereas the
one calculated with r-RPA(1st) is negative.

Dyson equation [RPA(∞)]. More quantitatively, we define
the relative error σ

rel = |ρL
σ − ρσ |/ρσ . Table I shows the

violation of the Luttinger theorem for one specific example
(a k↑

F = −2.5, k↓
F = k↑

F /2). We see that only the RPA(1st) sat-
isfies the Luttinger theorem exactly. However, the r-RPA(1st)
violates the Luttinger theorem only very slightly and the error
observed can be due to the accumulation of numerical errors.
The RPA(∞), on the contrary, clearly violates the Luttinger
theorem and therefore the r-RPA(∞) as well. At stronger
interactions, the violation within RPA(∞) and r-RPA(∞)
can be much worse, e.g., near the critical polarization at the
unitary limit (see Sec. III C).

III. CRITICAL POLARIZATION

A. FFLO transition

The Thouless criterion [36] states that the superfluid tran-
sition occurs when a pole appears in the T matrix at ω =
�F, i.e., 1/g − J (k, ω = �F) = 0. As long as the condition
1/g − J (k,�F) < 0 is fulfilled for all k, we are in the normal
phase as shown in Fig. 8 as the blue dashed curve.

In the case of a nonpolarized gas at finite temperature,
approaching Tc from above, the instability of the normal phase
sets in first at k = 0. However, in the case of a polarized gas,
the difference between the Fermi levels favors the creation
of pairs with nonzero total momentum, resulting in the emer-
gence of a new type of superfluidity called FFLO phase [1,2].
Now we look for the appearance of the pole when approaching
Pc from above. Considering 1/g − J (k,�F) as a function of k
for different values of P, as shown in Fig. 8, we notice that the
pole at k 
= 0 appears at a higher polarization than the one at
k = 0. The value of k at which the pole appears first, coming

TABLE I. Relative error σ
rel (violation of the Luttinger theorem)

for different calculations with a k↑
F = −2.5 and k↓

F = k↑
F /2.

RPA(1st) r-RPA(1st) RPA(∞) r-RPA(∞)


↑
rel 0 0.053 % 0.073 % 0.013 %


↓
rel 0 0.45 % 2.9 % 2.1 %
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FIG. 8. Typical behavior of 1/g − J (k, �F) (computed within
RPA for a k↑

F = −1.913) as function of k for five polarizations P.
At the three highest polarizations associated with lower three (blue,
black, and purple) curves, the system is in the normal phase. The
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vanishes for a value of k which corresponds to kFFLO. The red dash-
dotted line is obtained for the value of the polarization which gives
the pole at k = 0 (BCS superfluidity), but it lies already in the FFLO
superfluid region. For the definitions of PL and aM, see text.

from strong polarization, is denoted kFFLO:

1/g − Re J (kFFLO,�F) = max
k

[1/g − Re J (k,�F)]. (22)

To determine the critical polarization, we must therefore
determine the value of P such that

1/g − Re J (kFFLO,�F) = 0. (23)

At the critical polarization, there is an instability of the
system towards a formation of pairs with momentum kFFLO.
Therefore kFFLO corresponds more or less to the wave vector
of the order-parameter oscillations in the FFLO phase. How-
ever, our theory does not tell us whether the paired phase that
will be formed corresponds to a Fulde-Ferrel (FF) state with
just one wave vector [2], a Larkin-Ovchinnikov (LO) state
with spatial modulations of the order parameter but without
a varying phase [1], or even more complicated states with a
crystal-like structure.

The qualitative picture described above and illustrated
in Fig. 8 remains the same in a large range of interaction
strengths 1/(akF). Increasing 1/(akF), i.e., 1/g, simply shifts
the curves upwards and thereby increases the critical polar-
ization, which in turn leads to a higher value of kFFLO. The
dependence of kFFLO computed within RPA as a function of
the ratio k↓

F /k↑
F (which is directly related to P, small values of

k↓
F /k↑

F corresponding to large P and vice versa) is displayed in
Fig. 9 as the solid blue line.

At some positive value of 1/g, corresponding to a strong
critical polarization, the picture changes. As it can be seen
from the double-dashed black curve in Fig. 8, at some strong
polarization denoted PL, the local maximum at k = kFFLO has
become so flat that its value coincides with another local
maximum that has built up at k = 0. Hence, at P = PL, the
global maximum of 1/g − J changes from the one at k 
= 0 to

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

kFFLO

k↑
F

0 0.25 0.5 0.75 1

k↓
F/k

↑
F

RPA

r-RPA(∞)

0.224 0.435

FIG. 9. Value of kFFLO as a function of k↓
F /k↑

F within RPA (solid
blue line) and within r-RPA(∞) (dashed red line). In RPA, it is
independent of the strength of the interaction. For the r-RPA(∞),
we used a k↑

F for each k↓
F /k↑

F such that P = Pc. The FFLO phase
disappears for k↓

F /k↑
F < 0.224 in the RPA, and for k↓

F /k↑
F < 0.435 in

the r-RPA(∞).

the one at k = 0, and as a consequence, kFFLO jumps from a
finite value to zero, as can be seen in Fig. 9. This corresponds
to the Lifshitz point L in the schematic phase diagram of
Ref. [37].

B. Implementation of self-consistency

As explained in the preceding subsection, for fixed values
of k↑

F and a, the method to find the critical polarization is to
determine the zero of 1/g − J (kFFLO,�F) as a function of P,
i.e., in practice as a function of k↓

F . This curve is shown in
Fig. 10. The value of k↓

F corresponding to Pc will be denoted
k↓

F,c. For values of k↓
F lower than k↓

F,c, we are in the normal
phase, otherwise we are in the superfluid phase which cannot
be described with our theory.

k↓
F

1/g −Re J(kFFLO, ΩF)

RPA
superfluid

area

0
k↑

F

k↓
F,c r-RPA 

RPA
r-RPA 

k↓
F,c RPA

FIG. 10. Schematic behavior of the maximum value of the func-
tion 1/g − Re J (k, �F) depending on k↓

F for fixed k↑
F . The blue solid

line is obtained from the RPA and the red dashed line from the r-RPA.
As can be seen, the critical polarization obtained from r-RPA is in the
superfluid phase of the RPA.
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0.8

0.9

1

n
σ
(k

)

0 0.25 0.5 0.75 1 1.25 1.5

k/k↑
F

initial
r-RPA 

a k↑
F = −2n↑

n↓

FIG. 11. Up and down occupation numbers for the polarization
k↓

F = k↑
F /2 (P = 0.778) and a k↑

F = −2. Solid blue lines represent the
occupation numbers used for the initialization of the self-consistent
iteration. Dashed red lines represent the converged occupation num-
bers within the r-RPA(1st) calculation.

However, it is impossible to compute this curve for the
r-RPA up to the corresponding k↓

F,c (for given a and k↑
F ) if one

initializes the self-consistent iteration with the uncorrelated
occupation numbers (step functions). The reason becomes
clear from Fig. 10: with increasing correlations, Pc becomes
smaller, i.e., k↓

F,c becomes larger. Therefore, k↓
F,c for r-RPA lies

in the superfluid area of RPA and already the first iteration step
cannot be performed. To avoid going through the superfluid
zone, we need to find initial conditions that maximize the
correlations and at the same time k↓

F,c so that it decreases
with each iteration. Fortunately the result is independent
of the initial occupation numbers. The occupation numbers
for the initialization are constructed from those calculated
with the RPA by artificially increasing as much as possible the
correlated part δnσ (k) = nσ (k) − θ (kσ

F − k) such that Z↓ = 0
(cf. Fig. 11).

We then use the procedure described in the preceding
section to find the kFFLO. In the r-RPA(∞), we observe a
more and more important deviation from the RPA as the
polarization increases as can be seen by comparing the solid
blue and the dashed red lines in Fig. 9. Also the critical value
of k↓

F changes (where kFFLO disappears). In RPA, we find
this point at (k↓

F /k↑
F )L = 0.224 and slightly on the BEC side

close to unitarity at 1/(aLk↑
F ) 	 0.210, in agreement with the

disappearance of the FFLO phase in mean-field theory, see
Fig. 6(a) of Ref. [34]. In r-RPA(∞), we find (k↓

F /k↑
F )L = 0.435

at 1/(aLk↑
F ) 	 0.131 which is closer to the unitarity compared

to the RPA result. It is due to the fact that the maximum
that gives the kFFLO becomes flatter with the self-consistency.
Therefore, it drops more quickly below the global maximum
at k = 0 and the FFLO phase is lost.

C. Phase diagram

Following the procedure discussed in the preceding subsec-
tions, we are only able to detect the instability of the normal
phase corresponding to a second-order phase transition to
the superfluid phase. However, if there is a first-order phase

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Pc

0 0.5 1 1.5 2 2.5 3

−1/(a k↑
F)

M

Pc RPA(1st)

Pc RPA(∞)

Pc r-RPA(1st)

Pc r-RPA(1st)

Pc r-RPA(∞)

Pc r-RPA(∞)

Bulgac et al.

Shin et al.

Olsen et al.

L

L

L

L

FIG. 12. Critical polarization from the Thouless criterion as
function of −1/(a k↑

F ). Thick lines correspond to Pc calculated with
the occupation numbers and thin lines to PL

c that one would obtain if
the Luttinger theorem was satisfied. The blue solid lines represent the
RPA calculation. The red lines are for r-RPA(1st), in the range where
they are dotted it gives a negative step (Z < 0). The green dashed
lines are for r-RPA(∞). The black cross is the theoretical prediction
extracted from Fig. 1 of Ref. [38]. We also show experimental results
for the limit of the coexistence region corresponding to a first-order
phase transition towards an unpolarized superfluid phase; the data are
from Refs. [5,6] (Shin et al.) and [7] (Olsen et al.).

transition from the normal to the superfluid phase with a
coexistence region extending to a higher polarization than our
critical polarization Pc, we are not able to see it because this
would require to compute the energy of the superfluid phase.
Keeping this word of caution in mind, we show in Fig. 12 the
phase diagram giving the critical polarization as a function of
the interaction strength.

Notice that on the BEC side of the crossover, beyond
some interaction −1/(aMk↑

F ) < 0, the polarized normal phase
(except at P = 1 where the system is noninteracting) does
not exist any more. This point, denoted M, corresponds to
the polaron-to-molecule transition discussed in Refs. [39,40]
where few down particles added to a fully polarized system of
up particles do not form a normal fluid Fermi sea of polarons
any more, but a BEC of molecules with total momentum
k = 0. In the present framework, this transition happens when
the lowest curve shown in Fig. 8, corresponding to P = 1, is
shifted upwards to the horizontal axis, i.e., at

1

aMk↑
F

= 4π

mk↑
F

J (0, εF; k↓
F = 0)

= 2

π
− 1√

2π
ln

√
2 + 1√
2 − 1

	 0.24. (24)

This value has to be compared to the exact one, 1/(aMk↑
F ) 	

0.9 [39]. The origin of this discrepancy is that the ladder
approximation includes only 2-particle (2p) but no 3-particle-
1-hole (3p1h) and more complicated states [40]. Since at Pc =
1 no down particles are present any more, the self-consistency
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does not have any effect and all our curves, whether they are
calculated with RPA or r-RPA, end in the same point M.

Next to the point M, we have the transition towards the
k = 0 superfluid phase. Only to the right of the Lifshitz point
L mentioned in Sec. III A, visible as kink in the curves pointed
by the black arrows in Fig. 12, the transition is of the FFLO
type.

We see that, as expected, the critical polarization in r-RPA
is always lower than in RPA. Notice that the r-RPA(1st) (red
lines) breaks down at interactions stronger than 1/(a k↑

F ) 	
−0.675 where a negative step appears in the occupation
numbers. Nevertheless, it is still possible to reach convergence
in some range and these results are shown as red dotted lines
in Fig. 12. In contrast to the r-RPA(1st), the r-RPA(∞), shown
as the green dashed lines, allows us to describe the whole
range of interactions up to the point M, since a negative step
does not appear. At weak interaction, the computation with
r-RPA(∞) gives the same result as r-RPA(1st) which is obvi-
ous since the occupation numbers are practically the same in
this case.

The critical polarization within RPA is actually the same as
within mean field including the possibility of the FFLO phase
but no phase separation [41] (see also Fig. 6(a) of [34]).2 In
particular, in the unitary limit, the RPA predicts Pc = 0.834.
This is clearly higher than the critical polarization Pc = 0.562
obtained from an energy-density functional (ASLDA) fitted
to quantum Monte Carlo (QMC) results [38], marked by the
cross in Fig. 12. Thus the r-RPA(∞) result of Pc = 0.543
(thick dashed line) would be a significant improvement com-
pared to the RPA. However this low Pc is to some extent a
consequence of the violation of the Luttinger theorem. In fact,
if one computes Pc under the assumption that the Luttinger
theorem is satisfied, i.e., PL

c = (k↑3
F − k↓3

F )/(k↑3
F + k↓3

F ), one
obtains only a weaker reduction from 0.834 to 0.709 (thin
dashed line).

Since in RPA(1st) the Luttinger theorem is exactly ful-
filled, we have PL

c [RPA(1st)] = Pc[RPA(1st)] (thin blue line).
Since the RPA(∞) uses the same uncorrelated occupation
numbers as the RPA(1st), it is clear that also PL

c [RPA(∞)] =
Pc[RPA(1st)]. The reduction of Pc[RPA(∞)] (thick blue line)
near unitarity is therefore only due to the violation of the
Luttinger theorem. The violation of the Luttinger theorem
in RPA(∞) and r-RPA(∞) gets stronger and stronger as we
approach the unitary limit. It becomes visible in the region of
interaction and polarization parameters where the RPA(1st)
and r-RPA(1st) give a negative step. On the contrary, for the
r-RPA(1st), we have Pc[r-RPA(1st)] 	 PL

c [r-RPA(1st)] for all
values of interaction, therefore we tend to suspect that the
Luttinger theorem is fulfilled for the r-RPA(1st) and that the
small discrepancy comes from the accumulation of numerical
errors. So, treating the RPA with the Dyson equation avoids
occupation numbers with negative steps but there are still
unphysical features.

Finally, let us say a few words about the phase separation
observed in Refs. [5–7]. These experiments indicate that at

2In Ref. [41] and in Fig. 6(a) of Ref. [34], Pc is shown as a function
of 1/(a kF) = (1 + P)1/3/(a k↑

F ).

the polarizations shown by the circles in Fig. 12, there is a
first-order phase transition towards an unpolarized superfluid,
in good agreement with QMC results which did not include
the possibility of FFLO-type phases [42]. The experimental
critical polarization for phase separation is much lower than
the one obtained in the mean field [41] and leaves some room
for a possible continuous (second order) transition towards the
FFLO phase before phase separation happens, which corre-
sponds qualitatively to the scenario suggested in Ref. [38] for
the case of unitarity.

IV. CONCLUSION

We implemented a self-consistent calculation of the oc-
cupation numbers in the formalism of the r-RPA. This is
an approximation to the so-called self-consistent RPA (by
RPA we mean the RPA in the particle-particle channel, pp-
RPA). On the one hand, in the context of polarized Fermi
gases, the r-RPA is interesting because it reduces the critical
polarization at T = 0 that is strongly overestimated with RPA.
The r-RPA is therefore an improvement in the description of
this system. On the other hand, the formalism does not cure
certain pathologies specific to the RPA. One of the problems
of standard RPA [RPA(1st)] is that in the strongly coupled
regime the quasiparticle Z factor at the Fermi surface (i.e.,
the height of the step in the occupation numbers) becomes
negative. A way to cure this pathology is to consider the
complete Dyson equation [RPA(∞)] instead of the truncated
one which is used in RPA(1st) (and also in the NSR ap-
proach at finite temperature). This method does not conserve
the number of particles (Luttinger theorem) but it gives at
least physical occupation numbers for arbitrary strength of
interaction.

Other self-consistent calculations exist to treat in-medium
correlations in cold atoms. These numerically demanding
methods are based on the self-consistent Green’s functions
also called Luttinger-Ward formalism at finite temperature.
These methods were applied to study the finite temperature
BCS-BEC crossover, in particular the phase diagram of un-
polarized [43,44] and polarized [45] gases. In Ref. [46], it
was shown that within the Luttinger-Ward formalism, the
Luttinger theorem is exactly fulfilled with the full Dyson
equation.

The r-RPA method allows us to see the evolution of
occupation numbers by including correlations in the ground
state. An interesting aspect is that the tails of the occupa-
tion numbers, whose information is contained in the contact
term, remains almost unchanged with the inclusion of self-
consistency.

We discussed the transition to the superfluid phase as an
instability in the T matrix (Thouless criterion). Except at very
strong polarizations (beyond the Lifshitz point), the transition
is predicted to be of the FFLO type and our r-RPA result for
the corresponding critical polarization in the unitary limit is
close to the one of Ref. [38].

Although the FFLO phase has attracted a lot of attention
(also in the context of imbalanced gases with two components
of different masses [47]), its existence is still an open question.
In particular, there is a competition between phase separation
(as seen in experiments) and the formation of the FFLO
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phase [37,38,48,49]. With the present theory, which is limited
to the normal phase, we cannot address the question of phase
separation because it requires the calculation of the energy in
the superfluid phase. The FFLO phase and phase separation
can perhaps be reconciled by interpreting the FFLO phase
(to be precise, the LO phase) as a periodic “microphase
separation” [10]. Furthermore, as it was pointed out, e.g., in
Ref. [10], the harmonic potential of the trap makes it difficult

to see the FFLO phase in experiments. Hopefully, future
experiments with flat traps as they are being built will clarify
this question.
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