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It was recently found that, under the action of the spin-orbit coupling (SOC) and Zeeman splitting (ZS),
binary BEC with intrinsic cubic nonlinearity supports families of gap solitons, provided that the kinetic energy is
negligible in comparison with the SOC and ZS terms. We demonstrate that, also under the action of SOC and ZS,
a similar setting may be introduced for BEC with two components representing different atomic states, resonantly
coupled by microwave radiation, while the Poisson’s equation accounts for the feedback of the two-component
atomic wave function onto the radiation. The microwave-mediated interaction induces an effective nonlinear
trapping potential, which strongly affects the purport of the linear spectrum in this system. As a result, families
of both gap and embedded solitons (those overlapping with the continuous spectrum) are found, being chiefly
stable. The shape of the solitons features exact or broken skew symmetry. In addition to fundamental solitons
(whose shape may or may not include a node), a family of dipole solitons is constructed too, which are even
more stable than their fundamental counterparts. A nontrivial stability area is identified for moving solitons in
the present system, which lacks Galilean invariance. Colliding solitons merge into a single one.
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I. INTRODUCTION

The realization of the spin-orbit coupling (SOC) in quan-
tum atomic gases [1–6] and exciton-polariton condensates in
semiconductor microcavities [7–13] has initiated a new direc-
tion in experimental and theoretical studies of atomic and pho-
tonic waves. While SOC is a linear effect, its interplay with
intrinsic nonlinearity of Bose-Einstein condensates (BECs)
makes it possible to predict the creation of topological modes
in these settings, such as vortices [14,15], monopoles [16], and
skyrmions [17,18], as well as stable one-dimensional [19–25],
two-dimensional [26–31], and three-dimensional [32] soli-
tons; see also Refs. [33–38].

A specific approach to the creation of stable one- and
two-dimensional solitons in two-component BEC subject to
the combined action of SOC and Zeeman splitting (ZS), which
is a generic ingredient of SOC systems [2], was recently
proposed in Refs. [30] and [39], under the condition that the
SOC and ZS terms in the system’s Hamiltonian are much
larger than the kinetic energy. Neglecting, accordingly, the
second derivatives in the respective system of coupled Gross-
Pitaevskii equations (GPEs), which include the combination
of the SOC and ZS terms, one obtains a linear spectrum
with a finite bandgap. The cubic nonlinearity induced by
atomic collisions in BEC may readily create families of
solitons populating the bandgap. In this connection, it is
relevant to mention that gap solitons were predicted [40–42]
and experimentally demonstrated [43,44] in fiber-optic Bragg
gratings, in polariton condensates under the action of photonic
lattices [45,46], and in the single-component BEC loaded in
an optical-lattice potential [47–49].

The consideration of such models (they may be loosely
defined as those for “heavy atoms,” whose kinetic energy may

be omitted) is relevant because, as it was shown in Ref. [30],
if a low-dimensional SOC system is derived from the three-
dimensional one, being subject to the action of tight confine-
ment in the transverse direction(s), then the kinetic energy in
the ensuing system of GPEs is indeed much smaller than the
energies corresponding to the SOC terms. The possibility to
omit the terms with the second derivatives also plays a crucial
role in the context of BEC systems with a flatband spectrum
[50].

Another relevant setting for the interplay of SOC and
nonlinearity is offered by the system composed of hyperfine
atomic states resonantly coupled by the magnetic component
of the microwave radiation, with the feedback of the atomic
states on the radiation governed by the corresponding Pois-
son’s equation [51]. This system gives rise to hybrid matter-
wave-microwave solitons (somewhat similar, in this respect,
to exciton-polariton solitons in semiconductor microcavities
[45,46,52]). The SOC was recently added to this model in
Ref. [35]. The aim of the present work is to transform the
system into one dominated by the first-order spatial deriva-
tives, accounting for the SOC, and produce families of sta-
ble solitons in the system. An essential peculiarity of the
setting is that the effectively nonlocal interaction between
the components, mediated by the microwave field, strongly
affects the concept of the linear spectrum, by adding an
effective nonlinear trapping potential to the linearized system,
see Eq. (9) below. In other words, the nonlocal nonlinearity
makes the system nonlinearizable, and alters the fundamental
significance of the bandgap. As a result, the system generates,
depending on the relative strength of contact and microwave-
induced nonlinear terms, families of gap solitons, as well
as families of embedded solitons [53–56], which exist in-
side the radiation band, while the bandgap remains empty.
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Another noteworthy findings is that, on the contrary to what
is commonly known about ground states in linear settings,
in the present nonlinear system fundamental solitons, which
realize the ground state, may feature a node (zero crossing)
in their profile. In addition to the fundamental modes, we
also find stable excited states in the form of dipole solitons.
Interestingly, their stability area is broader than the one for the
fundamental counterparts. A stability area is also identified
for moving fundamental solitons, which is a nontrivial finding
for the present system, which is not subject to the Galilean
invariance. Interaction between counterpropagating solitons
leads to multiple collisions and eventual merger.

The main part of the paper is organized as follows. The
model and some analytical results are formulated in Sec. II.
Numerical findings for fundamental and dipole solitons, as
well as for moving ones, are summarized in Sec. III. The paper
is concluded by Sec. IV.

II. THE MODEL

The binary BEC, with two components φ±(x, t ) of the
mean-field wave function coupled linearly by SOC and non-
linearly by the microwave radiation, is modeled by a system
of one-dimensional GPEs. In a scaled form, the system, in
which the kinetic-energy terms are neglected (as said above),
is written, following Ref. [35] (in which the kinetic energy
was kept), as

i∂tφ+ = ∂xφ− − �φ+ − Hφ− − g|φ+|2φ+

+ γ

2
φ−

∫ +∞

−∞
|x − x′|φ∗

−(x′)φ+(x′)dx′,

i∂tφ− = −∂xφ+ + �φ− − Hφ+ − g|φ−|2φ−

+ γ

2
φ+

∫ +∞

−∞
|x − x′|φ−(x′)φ∗

+(x′)dx′, (1)

where ∗ stands for the complex-conjugate expression. Here,
the coefficient of SOC, represented by the x derivatives, is
scaled to be 1, � is the ZS strength, which may be imposed by
dc magnetic field (alternatively, the same terms may represent
the Stark–Lo Surdo effect, imposed by dc electric field),
the amplitude of the magnetic component of the background
microwave field is H (in fact, it induces an effective Rabi
mixing in the system, cf. Refs. [31,36–38]), and the contact
self-interaction in each component (if any) is represented by
coefficient g (g > 0 and g < 0 correspond to self-attraction
and repulsion, respectively). Contact cross-interaction be-
tween the components can be readily added to the system, in
the form of terms ∼|φ∓|2φ± in each equation, but they do not
produce essential changes in the results reported below. The
integral terms represent the feedback of the microwave field,
generated by transitions between the φ± components, with
strength γ > 0, on these components. By means of rescaling
admitted by Eq. (1), we set γ = 0.5 and � = 1, unless � = 0
(in Ref. [35], different scaling was adopted, with γ = 0.02).
The integral terms are actually generated by the solution
of the respective one-dimensional Poisson equation, written
in terms of the corresponding Green’s function, G(x, x′) =
(1/2)|x − x′| [35]. A schematic of the system under the con-
sideration is displayed in Fig. 1.

FIG. 1. A sketch of the system composed of the binary Bose-
Einstein condensate, with components (φ+, φ−), trapped in the ef-
fective nonlinear potential (shown by the dashed curve) induced
by the microwave-mediated interaction, and linearly coupled by the
effective Rabi mixing ∼H , designated by the double arrow (↔). The
sketch shows the shape of a typical skew-symmetric soliton (the ZS
will break the mutual symmetry of the two components).

Stationary states with chemical potential μ are looked for
as solutions to Eq. (1) in the form of

φ± = exp(−iμt )u±(x), (2)

with real stationary wave functions u± obeying the following
integrodifferential equations:

μu+ = ∂xu− − �u+ − Hu− − gu3
+

+ γ

2
u−

∫ +∞

−∞
|x − x′|u−(x′)u+(x′)dx′,

μu− = −∂xu+ + �u− − Hu+ − gu3
−

+ γ

2
u+

∫ +∞

−∞
|x − x′|u−(x′)u+(x′)dx′. (3)

In the absence of the ZS, � = 0, Eq. (3) admits the skew-
symmetry reduction,

u+(x) = ±u−(−x), (4)

which is broken by the ZS terms.
Equations (1) conserve the total norm,

N ≡
∫ +∞

−∞
(|u+(x)|2 + |u−(x)|2)dx, (5)

and energy (Hamiltonian),

E =
∫ +∞

−∞
dx

[
φ∗

+∂xφ− − φ∗
−∂xφ+ + �(|φ−|2 − |φ+|2)

− H (φ∗
+φ− + φ∗

−φ+) − g

2
(|φ+|4 + |φ−|4)

]

+ γ

2

∫ +∞

−∞

∫ +∞

−∞

∣∣x − x′∣∣dxdx′

× [φ∗
+(x)φ−(x)φ∗

−(x′)φ+(x′)]. (6)

Note that, with regard to the possibility of the integration by
parts, Eq. (6) is real, even if the SOC terms in the integrand
seem complex.
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FIG. 2. Panels (a–c) and (d–f) display typical examples of ground-state soliton profiles which are, respectively, skew-symmetric (with
� = 0) and asymmetric (with � = 1). The other parameters are γ = 0.5 and (a) (N, H, g) = (5, 1, −1), belonging to the magenta line in
Fig. 3(a); (b) (N, H, g) = (10, 1, 0), belonging to the blue line in Fig. 3(a); (c) (N, H, g) = (5, 1, 1), belonging to the red line in Fig. 3(c);
(d) (N, H, g) = (5, 1, −1), belonging to the orange line in Fig. 3(d); (e) (N, H, g) = (10, 1, 0), belonging to the green line in Fig. 3(d); (f)
(N, H, g) = (3, 1, 1), belonging to the violet line in Fig. 3(f). A nontrivial feature, observed in the in-gap solitons in panels (c) and (f), is that a
sufficiently strong contact self-attraction, with g = 1, creates zero-crossings (nodes) in the ground-state profiles. The nodes are clearly shown
in insets to panels (c) and (f), which zoom the wave-function profiles in regions denoted by gray circles in the main plots. Other solitons [shown
in panels (a), (b), (d), and (e)] are embedded (in-band) ones, which are free of nodes. The soliton in (c) is unstable, all other ones being stable.

The linearization of Eq. (3) produces the dispersion rela-
tion in the free space (in the absence of an external trapping
potential),

μ2 = �2 + H2 + k2, (7)

which demonstrates that the background magnetic field and
ZS contribute to the formation of the spectral gap,

−
√

�2 + H2 < μ < +
√

�2 + H2, (8)

in which one may expect the creation of gap solitons under the
action of the system’s nonlinearities, cf. Refs. [30] and [39].
The gap is located between semi-infinite bands populated
by radiation modes. Nevertheless, it is shown below that,
in addition to the in-gap solitons, the system readily creates
families of embedded solitons in the bands, while the gap is
left empty. This finding can be readily understood, as Eq. (3)
takes the following asymptotic form at |x| → ∞:

μu+ = ∂xu− − �u+ − Hu− + γ

2
I|x|u−,

μu− = −∂xu+ + �u− − Hu+ + γ

2
I|x|u+, (9)

where

I ≡
∫ +∞

−∞
u−(x′)u+(x′)dx (10)

is a constant. The effective cross-potential in Eq. (9), growing
∼|x| at |x| → ∞, completely changes the definition of the
system’s spectrum, and may make the distinction between the
gap and bands, predicted by the linearization of the system,
irrelevant. Indeed, the asymptotic form of the solution to
Eq. (9) is

{u−(x), u+(x)} ≈ u(−)
0

{
1,

μ − �

γ I
x−1

}

× exp
(
−γ

4
|I|x2

)
at x → +∞,

{u+(x), u−(x)} ≈ u(+)
0

{
1,

μ + �

γ I
|x|−1

}

× exp
(
−γ

4
|I|x2

)
at x → −∞, (11)
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FIG. 3. Dependences N (μ) for six generic soliton families, at values of parameters indicated in panels. Solid and dashed lines represent
stable and unstable segments of the families, respectively. In panels (c) and (f), red and violet lines (in the lower right) represent solitons
with nodes, while blue and green ones (in the upper left) designate families of nodeless solitons. In each panel, white and gray areas
represent, respectively, the bandgap, predicted by Eq. (8) for the linearized system, and the bands above and beneath the gap. Coordinates
of points separating stable and unstable segments, as well as ones carrying nodeless and noded solitons, in different panels are: (a) (N, μ) =
(9, 3.54) and (45,3.09); (b) (N, μ) = (12, 1.32); (c) (N, μ) = (3.8, 0.24) and (N, μ) = (4.3, −0.045) (this point separates the blue and red
branches); (d) (N, μ) = (13, 4.95) and (N, μ) = (40, 3.08); (e) (N, μ) = (10, 1.52); (f) (N, μ) = (3.7, 0.33) and (N, μ) = (2.2, 1.04) (this
point separates the green and violet branches). In panels (b) and (e) points corresponding to the largest values of μ are (N, μ) = (7, 1.46) and
(N, μ) = (7, 1.62), respectively. In panels (a, c, d, f), examples of solitons shown in Fig. 2 are marked by cross-in-circle symbols.

where u(∓)
0 are constants. In the case of � = 0, this solution

has u(−)
0 = −u(+)

0 , satisfying the skew-symmetry condition,
given by Eq. (4) with the bottom sign [the particular sign
is selected by comparison with the full numerical solution
Eq. (3)].

The Gaussian asymptotic form produced by Eq. (11) is
drastically different from the exponential expressions for tails
of ordinary gap solitons, which explains the possibility of
finding soliton families in the band, rather than in the gap,
as shown below by numerically found solutions. In fact, the
asymptotic form Eq. (9) implies that the underlying GPE
system Eq. (1) is nonlinearizable, cf. Ref. [57]. Comparison
between numerical solutions and analytical prediction given
by Eq. (11) is also shown in Fig. 7.

III. NUMERICAL RESULTS

A. Fundamental solitons

Soliton solutions of Eq. (3) were produced by means of the
squared-operator iteration method [58]. Then, their stability
or instability was identified by means of direct simulations of
the perturbed evolution.

First, in Figs. 2(a)–2(c) and 2(d)–2(f) we display, sever-
ally, typical examples of stationary wave functions u±(x) for
skew-symmetric and asymmetric solitons. All these solutions
may be identified as ground states. In particular, the modes
shown in Figs. 2(a), 2(b) 2(d), and 2(e) comply with the
fundamental principle, borrowed from linear theories, which

states that ground-state profiles must not have zero-crossing
points (nodes). Nevertheless, the ground states presented
in Figs. 2(c) and 2(f) break this principle, each featuring
one node, which may be possible in nonlinear systems [in
the present case, the nodes emerge if the relatively strong
self-attraction terms, with g = 1, are present in Eq. 1)]. It
is relevant to note that, in the absence of the background
magnetic field (H = 0 ), the ground state of the SOC system
takes the form of the gap soliton, with one spatially even
nodeless component, and the other odd one, which has the
node at the center [39]. Accordingly, the nodes observed in
Figs. 2(c) and 2(f) may be considered as “remnants” of the
nodes in the above-mentioned odd component. The solitons
with nodes, displayed in Figs. 2(c) and 2(f), are identified as
ground states, as they belong to families which are produced
by continuation of ones representing nodeless ground-state
solitons—for instance, the blue and green lines in Figs. 3(c)
and 3(f) are obtained as continuous extensions of the red and
violet segments. No nodeless modes could be found for those
values of N at which the noded ground-state solitons have
been produced by the solution of Eq. (3).

A natural trend, demonstrated by the comparison of dif-
ferent profiles in Fig. 2, is that the transition from the self-
repulsion to attraction, i.e., from g < 0 to g > 0, leads to
compression of each component. Further, the two components
generate each other linearly via the SOC and Rabi coupling
(the latter one represented by H), and simultaneously they mu-
tually repel nonlinearly, through the effective cross-potentials
∼γ in Eq. (9). Accordingly, the self-compressed components
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with larger amplitudes stronger repel each other, featuring
effective separation in Figs. 2(c) and 2(f). Finally, the strong
separation makes coefficient |I|, given by Eq. (10) smaller,
which weakens the role of the effective confining potentials
in Eqs. (9) and (11) in comparison with the linear SOC and
Rabi terms in the asymptotic area, |x| → ∞, thus allowing the
solitons to populate the linearly-predicted gap, as seen below
in Figs. 3(c) and 3(f).

Systematic results, including the location of families of the
skew-symmetric and asymmetric solitons with respect to the
bandgap Eq. (8), and their stability, are summarized in Fig. 3,
by means of μ(N ) dependences for the soliton families in six
generic cases. Only in Figs. 3(c) and 3(f) these are families
of in-gap solitons. In other cases they exist, as embedded
solitons, in radiation bands, while the gap remains empty.
Embedded solitons were not found in Ref. [39], while families
of gap solitons obtained in the model with the dipole-dipole
interaction, considered in Ref. [30], extend into the bands
(however, gaps were never empty in that system).

It is worth noting that the Vakhitov-Kolokolov (VK)
[58–60] or anti-VK [61] criteria, which relate the sign of the
slope, dμ/dN < 0 or dμ/dN > 0, to the necessary stabil-
ity condition for solitons which are supported, severally, by
the self-attractive or repulsive nonlinearities, is valid in the
present system when both the nonlocal and local nonlinear-
ities are self-repulsive. Indeed, in Figs. 3(a) and 3(d), the
families satisfy the anti-VK criterion, dμ/dN > 0, and are
indeed completely stable. However, it is not surprising that, in
the case when the solitons are supported by the combination of
the nonlocal repulsion and contact attraction, the VK/anti-VK
criterion does not hold, as it is not possible to identify the
dominant nonlinear term: in Figs. 3(b) and 3(e), the change
of the sign from dμ/dN > 0 to dμ/dN < 0 does not lead
to destabilization of the solitons (noncompliance with the
VK criterion occurs in other models too [58]). As concerns
the evolution of unstable solitons and interaction between
stable ones, they are similar to examples displayed below in
Figs. 6(b) and 6(c).

In the case of � = 1, results for the shape of the asym-
metric fundamental solitons (nodeless or noded) and their
stability are reported in Figs. 4 and 5, in the parameter
plane of (H, N ), for different values of the contact-interaction
constant, g. Figures 4(a)–4(d) clearly demonstrate that the
node appears in the stable ground-state soliton at g ≈ 0.2, and
the corresponding parameter area expands with the increase
of g. Areas of stable and unstable solitons are also identified
in Fig. 4. Additionally, the stability boundaries are displayed,
for a set of positive and negative values of g, in Fig. 5. It
is seen that the increase of the background magnetic field,
i.e., Rabi coupling between the two components of the binary
wave function, helps to stabilize the solitons. Generally, the
increase of |g| leads to destabilization, although in the case
of the contact self-repulsion, g < 0, the situation is nearly
opposite at H < 0.3.

Note that the stability maps displayed in Figs. 4 and 5 are
plotted for H � 0.1. At smaller values of H , the solitons are
very broad, being distorted by boundaries of the integration
domain.

Next, we report systematic results produced for families
of skew-symmetric solitons by the system without the ZS,

FIG. 4. Stability regions for asymmetric solitons in the paramet-
ric plane of (H, N ) with (�, γ ) = (1, 0.5). The solitons are unstable
in the gray area (upper left), being stable as modes without and with
intrinsic zero (node) in the blue (lower right) and yellow (middle)
regions, respectively. In panel (a), unstable solitons in the stripe
between the black and dashed red lines feature a node. The cross-
in-circle symbol in panel (d) represents the stable soliton shown in
Fig. 2(f).

� = 0, in Fig. 6(a). In this case, H = 1 may be fixed by
scaling, hence the full stability regions are displayed in the
plane of (g, N ), including both positive and negative values
of g. The plot clearly demonstrates monotonous shrinkage of
the stability area with the increase of |g|, which generally
resembles the trend for asymmetric solitons, observed in
Figs. 4 and 5 in the case of � = 1.

Tails of the numerically found solitons indeed feature a
Gaussian shape, as predicted by Eq. (11). The analytical
prediction for the tails of a skew-symmetric soliton is com-
pared to its numerically generated counterparts in Fig. 7(a),
which demonstrates that the simple analytical approximation
provides reasonable accuracy.

FIG. 5. Asymmetric solitons are stable beneath boundaries in the
plane of (H, N ), displayed in this figure for (�, γ ) = (1, 0.5), and
a set of values of the self-interaction coefficient, corresponding to
attraction [g � 0 in (a)] and repulsion [g � 0 in (b)]. The cross-
in-circle symbols in panels (a) and (b) represent the stable solitons
shown in Figs. 2(e), 2(f) and 2(d), 2(e), respectively. On the section
H = 1, each line from the top to the bottom features the same order
shown in the inset chart.

013607-5



FAN, CHEN, LI, AND MALOMED PHYSICAL REVIEW A 101, 013607 (2020)

FIG. 6. In panel (a), skew-symmetric fundamental solitons are stable and unstable, respectively, in blue (bottom) and gray (top) areas in the
plane of (g, N ), for fixed parameters � = 0, H = 1, and γ = 0.5. (b) A typical example of the evolution of component φ+ in an unstable soliton,
with parameters (N,�, H, g, γ ) = (8, 0, 1, 0.5, 0.5) (the instability is similar in the other component). (c) The simulation of the interaction
between two identical stable solitons with phase shift �ϕ = 0 between them. The parameters are (N,�, H, g, γ ) = (10, 0, 1, 0, 0.5). The
interaction is similar for other values of the phase shift, including �ϕ = π/2 and π .

As concerns unstable solitons, direct simulations demon-
strate that they are quickly destroyed, being replaced by a
finite-amplitude turbulent state, as shown in Fig. 6(b) (the
unstable evolution is similar in the case of � = 1). Further,
creating a pair of spatially separated solitons, it is natu-
ral to expect that the nonlocal interaction, mediated by the
microwave field, will also induce a long-range interaction
between nonoverlapping solitons. This is indeed observed in
Fig. 6(c), which demonstrates that the long-range interaction
between the solitons destroys them, leading to creation of a
quasi-linear interference pattern (which may be affected by
reflections from edges of the integration domain, if the latter
is not broad enough). A detailed study of interactions between
solitons in the present system may be a subject for a separate
work.

B. Dipole solitons

The above consideration addressed solely fundamental
(ground-state) solitons. The fact that they are supported by the
effective trapping potential in Eq. (9) suggests a possibility to

FIG. 7. The comparison between the logarithmic form of the
analytically predicted Gaussian tails (red discontinuous lines)
of the fundamental skew-symmetric solitons and their numeri-
cally found counterparts (blue continuous lines). (a) The com-
parison for a typical stable quiescent soliton with parameters
(N,�, H, g, γ ) = (10, 0, 1, 0, 0.5), with the analytical prediction
given by Eq. (11). (b) The comparison for a typical moving soliton,
for (N,�, H, g, γ , v) = (10, 0, 1, 0, 0.5, 0.1), with the analytical
prediction provided by Eq. (16). The comparison is displayed only
for component u+, the pictures for u− being mirror images of the
present ones.

look for higher-order solitons, that may correspond to excited
bound states in the trapping potential (such stable states were
not reported in related works [30,35,39]; in the two latter pa-
pers, excited states were addressed, but they all were found to
be unstable). The present system readily creates stable excited
states in the form of dipole (spatially odd) modes, which, in
the case of � = 0, satisfy the skew-symmetry condition in the
form of Eq. (4) with the top sign (on the contrary to the bottom
sign corresponding to the fundamental states), as shown in
Figs. 8(b) and 9(a), 9(b) for the system without and with
the contact interaction, viz., g = 0 and g = ±0.5, respectively.
Further, Figs. 8(a) and 8(b) compare the fundamental soliton
and its dipole counterpart at identical values of the param-
eters, including the total norm (but, naturally, with different
chemical potentials, μfund = 1.47 and μdip = 1.91), in the
system with g = 0. The results are summarized in Fig. 8(c),
which displays the μ(N ) dependence for the family of stable
skew-symmetric dipole solitons. Note that the family satisfies
the anti-VK stability criterion, dμ/dN > 0, which is relevant
in this case, as the contact self-attraction is absent.

Next, Fig. 9(c) displays an example of a stable dipole mode
in which the skew symmetry is broken by the ZS, with � = 1.
It is worthy to mention that, for the same parameters as used
in the latter case, i.e., (N,�, H, g, γ ) = (10, 1, 1, 0.3, 0.5),
the fundamental soliton falls in the unstable (gray) area in
Fig. 4(b), even if its chemical potential, μfund = 0.73, is much
smaller than μdip = 2.14 of the stable dipole soliton with the
same norm. Thus, the dipole solitons may be more stable
than their fundamental counterparts, at the same parameters
and with the same norm. To the best of our knowledge, no
previous model produced a larger stability area for dipole
solitons than for fundamental ones (in a specific model with
spatially modulated nonlinearity, introduced in Ref. [57], the
fundamental and dipolar solitons are completely stable in their
entire existence area, while instability appears in higher-order
excited states).

C. Solitons’ mobility

Generation of moving solitons from the quiescent ones
considered above is a nontrivial problem, as Eq. (1), obvi-
ously, is not Galilean invariant. To this end, we rewrite the
equations in the reference frame moving with velocity v, cf.
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FIG. 8. (a, b) Examples of stable skew-symmetric fundamental and dipole solitons in the absence of the Zeeman splitting and contact
nonlinearity, i.e., with � = 0, H = 1, g = 0 and γ = 0.5, and equal norms, N = 3. The respective chemical potentials are μfund = 1.47 and
μdip = 1.91. (c) Dependence N (μ) for the family of stable skew-symmetric dipole solitons.

Ref. [26]:

i∂tφ+ − iv∂ξφ+ = ∂ξφ− − �φ+ − Hφ− − g|φ+|2φ+

+ γ

2
φ−

∫ +∞

−∞
|ξ − ξ ′|φ∗

−(ξ ′)φ+(ξ ′)dξ ′,

i∂tφ− − iv∂ξφ− = −∂ξφ+ + �φ− − Hφ+ − g|φ−|2φ−

+ γ

2
φ+

∫ +∞

−∞
|ξ − ξ ′|φ−(ξ ′)φ∗

+(ξ ′)dξ ′,

(12)

where ξ ≡ x − vt is the moving coordinate. In this refer-
ence frame, stationary solutions are looked for as φ± =
exp (−iμt )u±(ξ ), with complex stationary wave function u±
satisfying equations

μu+ − iv∂ξ u+ = ∂ξ u− − �u+ − Hu− − g|u+|2u+

+ γ

2
u−

∫ +∞

−∞
|ξ − ξ ′|u∗

−(ξ ′)u+(ξ ′)dξ ′,

μu− − iv∂ξ u− = −∂ξ u+ + �u− − Hu+ − g|u−|2u−

+ γ

2
u+

∫ +∞

−∞
|ξ − ξ ′|u−(ξ ′)u∗

+(ξ ′)dξ ′.

(13)

Note that, in the absence of the ZS (� = 0), solutions of
Eq. (13) satisfy the skew-symmetry condition generalized for
the complex wave functions: u+(ξ ) = ±u∗

−(−ξ ), cf. Eq. (4).
In the asymptotic area of |ξ | → ∞, Eq. (13) takes the form

of

μu+ − iv∂ξ u+ = ∂ξ u− − �u+ − Hu− + γ

2
Ĩ|ξ |u−,

μu− − iv∂ξ u− = −∂ξ u+ + �u− − Hu+ + γ

2
Ĩ∗|ξ |u+,

(14)

where

Ĩ ≡
∫ +∞

−∞
u∗

−(ξ )u+(ξ )dξ, (15)

cf. Eq. (9). The analysis of Eq. (14) yields, in the lowest
approximation, the Gaussian asymptotic profile of the moving
soliton,

{u−(x), u+(x)}

∼ exp

⎧⎨
⎩−

√[
Re(Ĩ )

]2 − v2
∣∣Ĩ∣∣2 − iIm(Ĩ )sgnξ

4
(
1 − v2

) γ ξ 2

⎫⎬
⎭, (16)

cf. Eq. (11). The Gaussian tails of a stable skew-symmetric
moving soliton are compared to their analytical counterparts,
predicted by Eq. (16), in Fig. 7(b). Similar to their quiescent

FIG. 9. (a, b) Typical examples of stable skew-symmetric dipole solitons in the system with (�, H, γ ) = (0, 1, 0.5), which includes the
contact self-attraction and repulsion, respectively, with g = ±0.5. Both solitons have equal norms, N = 3, the chemical potentials being
μa = 1.71 and μb = 2.08, respectively. (c) A stable skew-asymmetric dipole soliton with parameters (N,�, H, g, γ ) = (10, 1, 1, 0.3, 0.5).
Note that a fundamental soliton with the same parameters as in (a) is unstable, as per Fig. 4(b).
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FIG. 10. Stability areas for skew-symmetric solitons moving
with velocity v [blue in panel (a), and beneath the dashed boundaries
in (b)], in parameter planes (g, v) and (N, v). In panel (b), g =
−0.1 corresponds to the red dashed line (upper). Values of other
parameters are indicated in the panels.

counterparts (cf. Fig. 7), the moving solitons are approximated
reasonably well by the Gaussian ansatz for the tails.

As it follows from Eq. (16), the moving solitons may exist
for velocities falling below a certain critical value, which is
determined by an implicit condition,

v2 < v2
max = [Re(Ĩ )]2/|Ĩ|2 < 1. (17)

Obviously, Eq. (17), which is produced by the consideration of
the asymptotic form of the solitons’ tails, is an upper limit, but
not a sufficient condition, for the existence of moving solitons.
Indeed, numerical findings demonstrate that largest velocities,
up to which the solitons can be found, are smaller than the
value given by Eq. (17).

Numerical results for moving skew-symmetric solitons are
summarized in the form of stability regions in the planes of
(g, v) and (N, v) shown in Fig. 10 for (�, H ) = (0, 1). The
figure demonstrates that the stability regions shrink with the
increase of both |g| and N , the largest velocity admitting the
stability being attained in the absence of the contact nonlin-
earity, g = 0. Note that the maximum velocity in Fig. 10(a) is
≈0.5, being, indeed, smaller than the respective value vmax ≈
0.84, which is predicted by the upper limit given by Eq. (17).

A typical example of a skew-symmetric moving soliton
(with velocity v = 0.5) near the stability boundary is shown in
Fig. 11(a). Further, the motion of solitons with velocities v =
±0.1 is illustrated by the density plots displayed in Figs. 11(b)

and 11(c). Finally, the availability of the solitons moving in
opposite directions makes it possible to simulate collisions
between them. A typical outcome of collisions is displayed in
Fig. 11(d). Due to the effective nonlocality of the microwave-
mediated coupling, the solitons commence interacting before
coming in contact, similar to what is shown above in Fig. 6(c).
After several collisions, the two solitons merge into a single
one, at t > 220.

IV. CONCLUSION

This work demonstrates that the concept of gap solitons
in two-component BECs with the kinetic energy negligible
in comparison with the SOC (spin-orbit-coupling) and ZS
(Zeeman-splitting) terms in the Hamiltonian may be applied
to the system in which two atomic states are resonantly
coupled by the microwave radiation, the feedback of the
two-component atomic wave function on the microwave field
being represented by the Poisson’s equation (which is solved
by means of the Green’s function). The nonlocal interaction
between the components, mediated by the radiation, drasti-
cally changes the concept of the linear spectrum, adding to
it an effective nonlinear trapping potential ∼|x|, thus making
the system nonlinearizable. As a result, the system may create
families of both gap and embedded solitons, a considerable
part of which is stable (the gap tends to remain empty while
embedded solitons exist). In the case when the system in-
cludes repulsive (or zero) contact nonlinearity, the stability of
soliton families obeys the anti-Vakhitov-Kolokolov criterion.
The two-component solitons feature exact or approximate
(broken) skew-symmetric shapes. In addition to ground-state
fundamental solitons, which may feature a node in their shape,
the system supports dipole solitons, whose stability area is
broader than for their fundamental counterparts. The stability
area is identified too for moving solitons, being limited by a
largest values of the velocity, and collisions between moving
solitons lead to merger into a single one, via a complex
interaction.

A challenging problem for further analysis is the consider-
ation of the two-dimensional version of the present system.
In particular, the Green’s function for the one-dimensional
Poisson’s equation should be replaced by its two-dimensional
(logarithmic) counterpart [35].

FIG. 11. (a) A moving skew-symmetric soliton located near the stability boundary, for (N, H, �, γ , g, v) = (10, 1, 0, 0.5, 0, 0.5). (b,c)
Density plots for solitons moving with velocities v = ±0.1 are displayed in the quiescent reference frame, for parameters (N, H, �, γ , g) =
(10, 1, 0, 0.5, 0). (d) Collision between solitons moving with opposite velocities, v = ±0.1.
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