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Role of the confinement-induced effective range in the thermodynamics
of a strongly correlated Fermi gas in two dimensions
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We theoretically investigate the thermodynamic properties of a strongly correlated two-dimensional Fermi gas
with a confinement-induced negative effective range of interactions, which is described by a two-channel model
Hamiltonian. By extending the many-body T -matrix approach by Nozières and Schmitt-Rink to the two-channel
model, we calculate the equation of state in the normal phase and present several thermodynamic quantities as
functions of temperature, interaction strength, and effective range. We find that there is a nontrivial dependence
of thermodynamics on the effective range. In the experiment, where the effective range is set by the tight axial
confinement, the contribution of the effective range becomes nonnegligible as the temperature decreases down
to the degenerate temperature. We compare our finite-range results with recent measurements on the density
equation of state, and show that the effective range has to be taken into account for the purpose of a quantitative
understanding of the experimental data.
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I. INTRODUCTION

Recent developments in creating ultracold atomic gases in
lower dimensions has opened up a new and exciting field to
explore strongly correlated many-body systems [1,2]. Two-
dimensional (2D) ultracold atomic Fermi gases are of interest
due to the increased role of thermal and quantum fluctuations,
which lead to, for example, suppressed superfluid long-range
order at nonzero temperature and a quasi-ordered transition
to superfluidity, the Berezinksii-Kosterlitz-Thouless (BKT)
transition [3,4]. In addition to presenting a range of novel
and intriguing quantum phenomena, such as scale invariance
and the breathing mode anomaly [5–9] and novel topological
phases [10–12], 2D Fermi gases provide an important tool
in understanding confined many-body systems from diverse
fields of physics, such as high-temperature superconduc-
tors [13], thin 3He films [14], neutron stars in a nuclear pasta
phase [15], and exciton-polariton condensates in a microcav-
ity [16].

The key advantage of 2D ultracold Fermi gases is their
unprecedented controllability: the interatomic interaction can
be tuned continuously with Feshbach resonances to realize the
crossover from a Bardeen-Cooper-Scrieffer (BCS) superfluid
of weakly interacting Cooper pairs to a Bose-Einstein conden-
sate (BEC) of tightly bound molecules [2,17], the population
of spin components can be changed [18], the confining poten-
tial can be made homogeneous with a box potential [19], and
nonabelian synthetic gauge field (i.e., spin-orbit coupling) can
be devised [20].

With these advancements, a set of seminal experiments
directly probed the universal thermodynamics of a 2D inter-
acting Fermi gas at given interaction strengths [17,21–23], by
measuring the in-trap density profile. This allows for a direct
comparison between theoretical predictions and experimental
data. To date, it has been found that, a single-channel model

with a single 2D s-wave scattering length works reasonably
well in describing the equation of state (EoS) experimen-
tal results, both in the normal state [24–28] and below the
BKT transition [29–33]. However, in the strongly correlated
regime it turns out that, the theoretical EoS determined
by accurate auxiliary-field quantum Monte Carlo (AFQMC)
simulations [31] slightly overestimates the thermodynamics
compared to the measured EoS [2,17,21], suggesting the
inefficiency of the single-channel model. The necessity of
using a more appropriate theoretical model was highlighted by
the most recent measurements on the breathing mode [34–36],
which present an interesting example of a quantum anomaly
(i.e., violation of the classical scale invariance [6]). It was
found that the measured breathing mode is notably lower
than the prediction from the single-channel model [8,9]. This
discrepancy cannot be fully understood by the nonzero but
small temperature found in the experiments [37]. Instead,
it is caused by a confinement-induced effective range of
interactions, which is negative and turns out to be significant
under the current experimental conditions [38]. By adopting
a two-channel model to account for the effective range, both
measurements on low-temperature EoS and breathing mode
anomaly can now be satisfactorily explained by calculations
at zero temperature [39].

In this work, we explore how the confinement-induced
effective range changes the finite-temperature thermodynamic
properties of a normal, strongly correlated 2D Fermi gas.
To date there have been no beyond-mean-field two-channel
calculations on the thermodynamics of 2D Fermi gases in the
normal state, where previous calculations focused on the de-
scription of the quasi-2D model [40,41] and the zero temper-
ature behavior [42,43]. Our purpose is two-fold. First, char-
acterizing the thermodynamics of the normal state of strongly
correlated Fermi gases may be relevant to understanding the
role of many-body pairing [44], which is a precursor to
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superfluidity [24]. The results presented here can be used to
better understand the existing two experimental measurements
of the EoS at finite temperature in the normal phase [22,23].
Through the simplest many-body T -matrix theory developed
by Noziéres and Schmidt-Rink (NSR) [45], we determine
the thermodynamic potential of the two-channel model, and
calculate how the pressure EoS, energy, and entropy change
with a negative effective range. Second, we then consider the
realistic effective range in two recent experiments [22,23] and
compare our finite-range results to the experimental data on
density EoS. We find that in the experiments the effect of
the effective range starts to show up when the temperature
is decreased down to Fermi degeneracy. To quantitatively
explain the experimental density EoS at finite temperature
near superfluid transition, therefore, the effective range has to
be taken into account in future refined theoretical works.

We note that, for a three-dimensional (3D) interacting
Fermi gas, the effect of a negative effective range has been
recently discussed by Tajima [46,47], following the seminal
work by Ohashi and Griffin [48], who extended the NSR
approach to the two-channel model. There, the effective range
is related to the width of Feshbach resonance and the 3D
interacting Fermi gas may experience severe atom loss in
the narrow resonance limit (i.e., at a large negative effective
range) [49,50]. In our case, the confinement-induced effective
range is intrinsically set by the tight axial confinement and the
2D interacting Fermi gas is always mechanically stable.

Our paper is set out as follows. In Sec. II, we introduce the
two-channel model Hamiltonian and renormalize the relevant
parameters by solving the two-body scattering problem. In
Sec. III, we briefly outline the many-body effective field
theory of the model Hamiltonian and show how to calculate
the thermodynamic observables. In Sec. IV, we discuss the
thermodynamic properties of the 2D interacting Fermi gas, as
functions of the effective range, temperature, and interaction
strength. Finally in Sec. V, we summarize our results. For
simplicity we set h̄ = 1 throughout.

II. HAMILTONIAN AND TWO-PARTICLE SCATTERING

We begin our calculation of the thermodynamic prop-
erties by considering a two-component Fermi gas in
the normal state, described by the two-channel Hamilto-
nian [46–48,51,52]

H =
∑
kσ

ξkc†
kσ ckσ

+
∑

q

(εq/2 + ν − 2μ)b†
qbq

+g
∑

kq

(bqc†
q/2+k↑c†

q/2−k↓ + H.c.), (1)

where H.c. is the Hermitian conjugate, ckσ are the annihilation
operators of fermionic atoms with spin σ =↑,↓ and mass
M in the open channel, and bq the annihilation operators of
bosonic molecules in the closed channel. The kinetic energy
of atoms measured from the chemical potential μ is ξk = εk −
μ, where εk = k2/(2M ). The threshold energy or detuning
of the diatomic molecules is ν and the Feshbach coupling
between atoms and molecules is given by g.

To find the many-body properties we require the bare
two-body scattering parameters to be rewritten in terms of

measurable or renormalizable scattering parameters. To relate
the detuning ν and the channel coupling g to physical ob-
servables, we consider the two-body T -matrix in a vacuum
(E+ ≡ k2/M + i0+) [38,51],

T −1
2B (E+) = U −1

eff +
∑

p

1

2εp − E+ , (2)

where the effective interaction in the presence of the channel
coupling is given by

Ueff(E
+) = g2

E+ − ν
. (3)

Taking a large momentum cutoff � → ∞, we write the two-
body T -matrix as

T −1
2B (E+) = k2/M − ν

g2
+ M

4π

(
ln

[
�2

k2
− 1

]
+ iπ

)
. (4)

Alternatively, we may rewrite it in the form

T2B(E+) = m

4π
(−2 ln[kas] − Rsk

2 + iπ ), (5)

where we wrote the detuning and Feshbach coupling in terms
of the 2D scattering length as and effective range Rs [52],

as = 1

�
e

2πν
gM , Rs = − 4π

M2

1

g2
. (6)

As can be seen from Eq. (6), we recover the single-channel
model in the broad resonance limit when g → ∞. We may
remove the cutoff � by considering the pole of the two-body
T -matrix T2B(E ), E = EB. We find that

ν = EB + g2
∑

k

1

2εk − EB
. (7)

The binding energy can be set by εB = −EB = κ2/M, where
k = iκ corresponds to the pole of the two-body T -matrix.

III. MANY-BODY T MATRIX

We consider the strong-coupling effects and pairing fluc-
tuations by applying the normal-state NSR approach [45],
which has been widely used in different context and has
also been extended to superfluid phase [30,53–55]. For com-
pleteness, here we briefly go through the derivation of the
thermodynamic potential using the functional path-integral
formalism. All the thermodynamic properties can be obtained
through the thermodynamic potential, 
 = −kBT lnZ , where
the partition function Z for the two-channel Hamiltonian is
given by

Z =
∫

D(c , c†)D(b , b†)e−S[c ,c†,b ,b†], (8)

for atomic fields (ckσ
, c†

kσ ) and molecular fields (bq, b†
q), and

the action at the inverse temperature β = 1/(kBT ) is given by

S =
∫ β

0
dτ

[∑
kσ

c†
kσ (τ )ckσ (τ )+

∑
q

b†
q(τ )∂τ bq(τ )+ H(τ )

]
.

(9)
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Using the Hubbard-Stratonovich transformation to decouple
the Feshbach coupling term and integrating out the atomic
fields, we obtain an effective action for Cooper pairs and
molecules. By further truncating the perturbative expansion
over bosonic fields (for both pairs and molecules) at the
Gaussian fluctuation level, we arrive at the NSR thermody-
namic potential [48]


 = 
F + 
B −
∑
q,iνn

ln[1 + g2D0(q, iνn)�(q, iνn)], (10)

where νn = 2nπ/β are the bosonic Matsubara frequencies,

F = 2

∑
k ln(1 + e−βξk ) and 
B = ∑

q ln(1 − e−βεB
q ) are

the free fermionic and bosonic thermodynamic potentials
for atoms and molecules, respectively. We defined the pair
correlation function

�(q, iνn) =
∑

k

1 − f (ξ q
2 −k ) − f (ξ q

2 +k )

2εk − 2μ + εq/2 − iνn
, (11)

and D0(q, iνm) = 1/(iνn − εB
q ) is the Green’s function of a

free molecular boson with dispersion εB
q = εq/2 − ν + 2μ.

The thermodynamic potential can be rewritten into the fol-
lowing form:


 = 
F −
∑
q,iνn

ln[−�−1(q, iνn)], (12)

where we introduced the vertex function

�−1(q, iνn) = U −1
eff (q, iνm) + �(q, iνm), (13)

and the in-medium effective interaction Ueff (q, iνm) ≡
g2D0(q, iνm), which can be explicitly written as

1

Ueff (q, iνm)
= −

∑
k

1

2εk + εB

−M2Rs

4π

(
iνn − εq

2
+ 2μ + εB

)
. (14)

Using Eq. (14) we cancel off the divergent parts in �(q, iνn).
Analytically continuing the vertex function, iνn → ω + i0+,
we calculate the thermodynamic potential


 = 
F − 1

π

∑
q

∫ ∞

−∞

dω

eβω − 1
δ(q, ω), (15)

where δ(q, ω) ≡ −Im ln[−�−1(q, ω + i0+)] is the phase
of the vertex function. The number equation nV = N =
−d
/dμ, where N is the total number of atoms and
molecules and V is the area (or the volume in 2D), is solved
to yield the chemical potential μ at a given set of reduced
temperature T/TF, binding energy εB/εF, and effective range
k2

FRs. Here, we define kF = (2πn)1/2, EF = k2
F/(2M ), and

TF = EF/kB.
We note that within the many-body T -matrix framework,

we cannot calculate the superfluid transition temperature, i.e.,
the BKT transition temperature. This is due to the fact that the
Thouless criterion in two dimensions becomes inapplicable
as a direct consequence of Hohenberg’s theorem and the
loss of long-range order due to quantum fluctuations [13,56].
The self-consistent calculation of the chemical potential and
Thouless criterion always leads to a zero critical temperature.

To consider the BKT transition the superfluid density needs
to be calculated for the two-channel model in the superfluid
phase, following the work in Ref. [33]. Such a scheme is
beyond the scope of this work.

To calculate the thermodynamic properties of the entropy
and energy, we define the dimensionless pressure equation of
state fp,

Pλ2
T

kBT
≡ fp

(
x = T

TF
, y = εB

εF
, z = k2

FRs

)
, (16)

where the thermal wavelength is λT = √
2π/(mkBT ). All the

other thermodynamic observables can then be calculated as
derivatives from the dimensionless pressure equation of state,
Eq. (16). The entropy is given by

S = −
(

∂


∂T

)
μ

≡ NkB fs, (17)

where the dimensionless entropy takes the form

fs = 2 fp − μ̃

x
fpx − kBy

x
fpy , (18)

and fpx ≡ ∂ fp/∂x, and μ̃ = μ/εF. The energy is found
through E = −T S + 
 + μN ≡ NεF fE , and we obtain

fE = x fs + x
fp

fpx

+ μ̃. (19)

To close this section, it is worth emphasizing that the
many-body T -matrix theory does not take into account the
interactions between the underlying characteristic particles.
It works well either in the tight-binding limit, where the
binding energy εB � εF and molecules are well-formed, or
in the noninteracting limit, where the binding energy is ex-
ponentially small. In the BEC-BCS crossover regime of most
interest, such as εB ∼ [0.01 − 1.0]εF, the interactions between
performed molecules are strong, and the many-body T -matrix
theory provides only a qualitative description.

IV. RESULTS AND DISCUSSIONS

A. Pressure equation of state

To begin our analysis of the thermodynamic properties of
the system, we plot the pressure equation of state (EoS) in
Fig. 1, which is normalized with the pressure of an ideal Fermi
gas at the same temperature, P0 = −2πλ−4

T Li2(−eβμ), where
Lis(z) is the polylogarithm function. We show the pressure
EoS at temperatures (a) T/TF = 0.5, (b) T/TF = 1, (c) and
T/TF = 2, for a range of interaction strengths, from εB/εF =
0.01 to εB/εF = 2. We find for decreasing temperature and
increasing binding energy the normalized pressure increases,
indicating that the system is becoming more strongly interact-
ing. As the effective range decreases, the normalized pressure
increases for all temperatures and interaction strengths. This
general trend is anticipated, as the system becomes less corre-
lated as the number of molecules increases. We can calculate
the bosonic thermodynamic potential in the infinite negative
effective range limit, Rs → −∞, where the thermodynamic
potential reduces to the mean-field theory of a mixture of
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FIG. 1. Pressure EoS, normalized by the ideal pressure P0 at the
same temperature, is plotted as a function of the effective range
for interaction strengths εB/εF = 0.01 (black-dotted), εB/εF = 0.1
(purple-dot dashed), εB/εF = 1 (blue-dashed), and εB/εF = 2 (red-
solid), at temperatures (a) T/TF = 0.5, (b) T/TF = 1, and (c) T/TF =
2. At high temperature in (c), the second-order virial expansion
results for each interaction strength are shown by circles. The results
of the infinite negative effective range are given by the symbols,
where the star is for εB/εF = 2, square for εB/εF = 1, circle for
εB/εF = 0.1, and diamond for εB/εF = 0.01.

atoms and molecules, 
 = 
F + 
B and


B = −2
∑

q

ln[1 − e−β(εq/2−2μ−εB )]. (20)

The symbols in Fig. 1 are the limiting values for each binding
energy calculated from solving the mean-field number equa-
tion, where the star is for εB/εF = 2, square for εB/εF = 1,
circle for εB/εF = 0.1, and diamond for εB/εF = 0.01. We
see that the pressure EoS is approaching the infinite negative
effective range limit values for large binding energies and all
temperatures, due to there being more molecule formation on
the tight-binding side. However, in the BEC-BCS crossover
regime (i.e., for εB/εF = 0.1 or 0.01), the system is approach-
ing the limit rather slowly.

As a comparison in the high-temperature regime, we con-
sider the virial expansion up to second order [26,57–60],

which is, in principle, exact for large-enough temperatures.
The dimensionless pressure equation of state is given by

fp =
∫ ∞

0
dt ln[1 + ze−t ] + �b2z2 + . . . , (21)

where �b2 is the second-order virial coefficient. By using the
elegant Beth-Uhlenbeck relation [57], we obtain

�b2 = eβεB −
∫ ∞

0

dk

k
e−2k2 2k2Rs + 2(

ln
[

2k2

εB

] + k2Rs
)2 + π2

,

(22)

which in the zero-range limit reduces to the known re-
sults [22,25]. As shown in Fig. 1(c) at high temperature
T = 2TF, we find that as the effective range decreases, the
virial expansion provides an excellent description of the
pressure EoS, even for the largest binding energy. This is
quite different from the zero-range limit. At k2

FRs = 0, where
the single-channel model is applicable, the virial expansion
systematically overestimates the pressure EoS. The improved
applicability of virial expansion is again due to the weaker
correlation at larger effective range which means a smaller g
and hence weaker interaction effect.

B. Entropy and energy

Having discussed the pressure EoS, we now consider the
entropy per particle S/(NkB), as shown in the upper panels
of Fig. 2 as a function of the negative effective range at
three different temperatures, (a) T/TF = 0.5, (b) T/TF = 1.0,
and (c) T/TF = 2.0, for a range of binding energies. We
also plot the infinite negative effective range limit for each
interaction and temperature, as shown by the symbols. We find
that the entropy has a consistent behavior for all interaction
strengths and temperatures: the entropy increases as the effec-
tive range decreases. In particular, at low temperature as the
negative effective range decreases, we see for large binding
energies (i.e., εB/εF = 1, 2) the entropy increases rapidly.
The entropy is quickly converging to the infinite-range limit
for low temperature. For high temperatures at the BEC-BCS
crossover regime, as shown in (c) the residual interaction at
large effective range seems still nonnegligible and the entropy
is not fully approaching the infinite limit.

In the lower panels of Fig. 2, we plot the energy per
particle, E/(NεF), with the two-body contribution from pairs
(where we assumed that there are N/2 pairs each with energy
−εB) subtracted. We see that the energy is decreasing with
decreasing temperature for all interaction strengths. For the
weakest binding energy, the energy decreases as the effective
range decreases, for all temperatures. However, for larger
binding energies (εB/εF = 1, 2), the energy increases at low
temperature with decreasing effective range; while at higher
temperatures the energy decreases. The different effective-
range dependence of the energy at low and high temperatures
may be understood from the many-body pairing. In the low-
temperature regime for large binding energy, the many-body
pairing is important and the system becomes rigid with respect
to the change of the effective range. Hence, the energy slightly
increases, similar to the pressure EoS. In contrast, at high
temperature the many-body pairing is less significant and
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FIG. 2. Upper panels: Entropy normalized in units of S0 = kBN as a function of the effective range at different interaction strengths
εB/εF = 0.01 (black-dotted), εB/εF = 0.1 (purple-dot dashed), εB/εF = 1 (blue-dashed), and εB/εF = 2 (red-solid). The columns (a), (b), and
(c) are for temperatures T/TF = 0.5, T/TF = 1, and T/TF = 2, respectively. Lower panels: The effective range dependence of the energy, in
units of E0 = NεF, with the same convention as in the upper panels. The results of the infinite negative effective range are given by the symbols,
where the star is for εB/εF = 2, square for εB/εF = 1, circle for εB/εF = 0.1, and diamond for εB/εF = 0.01.

the system experiences a character change from atoms to
molecules with increasing effective range. The energy then
decreases, roughly following the picture of a noninteracting
Bose and Fermi mixture.

To see the interaction effects on the thermodynamic prop-
erties, we show in Fig. 3 the dimensionless entropy (upper
panels) and energy (lower panels) as a function of the binding
energy εB/εF, for a range of negative effective ranges from
k2

FRs = 0 to −3 at temperatures (a) T/TF = 0.3, (b) T/TF =

0.5, and (c) T/TF = 1.0. For comparison, we show also the
ideal gas limits of Fermi and Bose gases for the entropy and
energy. For the ideal Fermi gas limit, we use the following
formulas:

SF

NkB
= 2Li2(−eμ/εF )

Li1(−eμ/εF )
− μ

εF
, (23)

EF

NεF
= −

(
T

TF

)2

Li2(−eμ/εF ), (24)
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FIG. 3. Upper panels: Entropy is plotted in units of S0 = NkB as a function of the interaction strength at different negative effective
ranges: k2

FRs = 0 (black dotted), k2
FRs = −0.5 (purple dot-dashed), k2

FRs = −1 (blue dashed), k2
FRs = −1.5 (red solid), and k2

FRs = −3 (green
dot-dot-dashed), for temperatures (a) T/TF = 0.3, (b) T/TF = 0.5, and (c) T/TF = 1.0. The square and circular symbols are the ideal Fermi
and Bose gas limits (see text), respectively. Lower panels: Energy is plotted in units of E0 = NεF. The same convention was taken as in the
upper panels.
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with a noninteracting chemical potential μ determined by
using the number equation. To find the entropy and energy
for noninteracting Bose gases SB and EB, we assume a gas
of N/2 noninteracting molecules with mass 2M and similarly
solve a molecular chemical potential.

The behavior of the entropy as a function of the binding en-
ergy is nontrivial. We find that for k2

FRs = 0, as the interaction
is increased from the weakly to strongly attractive regimes, the
entropy has a local minimum at εB/εF 
 0.6 for temperature
T/TF = 0.3, εB/εF 
 1.05 for temperature T/TF = 0.5, and
εB/εF 
 5 for temperature T/TF = 1.0. This minimum may
be understood as the position where pair formation is the
strongest, and at low temperature where there is a defined
Fermi surface, i.e., μ > 0 for εB/εF � 1, this pairing is dom-
inated by many-body pairing. As the negative effective range
decreases, we see this clear minimum in the crossover interac-
tion regime become shallower. This is due to the fact that the
system more readily forms bound molecules as the negative
effective range decreases. For T/TF = 0.3 the minimum shifts
to weaker binding energies with decreasing effective range,
and for higher temperatures the minimum shifts to larger
binding energies and disappears for k2

FRs < −1, consistent
with the naive picture that high temperature dampens the
formation of many-body pairs. In the weakly attractive regime
the entropy quickly approaches the noninteracting 2D Fermi
gas limit and in the strongly attractive regime the entropy
approaches the limit of N/2 noninteracting molecules with
mass 2M.

The behavior of the energy is qualitatively the same as
the entropy. We see that there exists a local minimum that
shifts to larger binding energy as the temperature increases.
We find also that the minimum in the crossover interaction
regime becomes much weaker as the negative effective range
decreases. Unlike the entropy, the energy is slowly approach-
ing the noninteracting 2D Fermi gas in the weakly attractive
regime. However, in the strongly attractive regime the energy
quickly approaches the limit of N/2 noninteracting molecules.

C. Comparison to experiment

We now compare our two-channel results to the experimen-
tal data on density EoS, with a realistic confinement-induced
effective range. For this purpose, we match the the low-energy
expansion of T2B(E+ ≡ k2/M + i0+) to the quasi-2D scatter-
ing amplitude fQ2D(k)/M, which describes the two-particle
scattering within the ground-state manifold under a tight axial
confinement with frequency ωz [61]:

fQ2D(k → 0) = 4π√
2πaz/a3D + �

(
k2a2

z

/
2
) , (25)

where az ≡ √
1/(Mωz ) is the harmonic oscillator length and

the function � (x) has the low-energy expansion, � (x →
0) 
 − ln(2πx/B) + 2x ln 2 + iπ , with B 
 0.9049.

By setting T2B(E+) = fQ2D(k)/M, we obtain the well-
known result [61]

as = az
π

B exp

(
−

√
π

2

az

a3D

)
, (26)

in the zero-energy limit k → 0. The determination of the
effective range Rs is also straightforward. We require that

the two-body T -matrix T2B(E+) and the quasi-2D scattering
amplitude share the same pole or the same binding energy
εB [39]. For the former, it is readily seen from Eq. (5) that
the binding energy εB = κ2/M is related to the effective range
Rs by

Rs = 2 ln(κas)

κ2
. (27)

The binding energy can also be obtained from the quasi-2D
scattering amplitude by solving the equation [61]

az

a3D
= F

(
εB

ωz

)
, (28)

where

F (x) =
∫ ∞

0

du√
4πu3

(
1 − e−xu√

(1 − e−2u)/(2u)

)
. (29)

For a given az/a3D, we can solve Eq. (28) for εB = κ2/M, and
then use Eq. (27) to calculate Rs. In this way, we can determine
the dimensionless ratio Rs/a2

s as a function of az/a3D [39].
Experimentally, the 2D density EoS is measured at a given

magnetic field (i.e., a3D) and temperature through the density
profile of a cloud of N interacting fermions. By applying the
local density approximation, the local density n is calibrated
as a function of the normalized local chemical potential
βμ [22,23]. This gives rise to the homogeneous density EoS
n(μ) at dimensionless interaction parameters βεB and Rs/a2

s ,
allowing for a direct comparison with the theoretical EoS.

Figure 4(a) plots the density EoS as a function of dimen-
sionless chemical potential at βεB = 1.2 and Rs/a2

s 
 −0.2,
normalized by the ideal gas density at the same chemical
potential, i.e., n0 = −λ−2

T Li1(−eβμ). Here, the interaction
parameters βεB = 1.2 and Rs/a2

s 
 −0.2 are taken according
to the recent density EoS measurement in Ref. [23]. We plot
the single-channel prediction (red-dotted line, by artificially
setting Rs = 0), the two-channel prediction (blue dot-dashed
line), and the experimental data (squares). We see that includ-
ing the realistic negative effective range quantitatively im-
proves the comparison to experiment in the high-temperature
regime, down to βμ = −0.25 (which corresponds to a tem-
perature T = 0.7TF), although as βμ approaches −∞, the
effective range has no significant contribution due to the
vanishingly small density and hence k2

FRs ∼ 0, as we would
expect. Typically, the normal-state NSR theory breaks down
at low temperature, as indicated by a divergent density EoS.
The NSR calculation of the two-channel model breaks down
at a higher temperature than the single-channel NSR, as a
result of the fact that the chemical potential is approaching
the two-body bound state of the closed-channel molecules.

In Fig. 4(b) we compare the theoretical predictions on
density EoS to the experimental results of Ref. [22] at βεB =
0.47 and Rs/a2

s 
 −0.03. In this case, we are on the BCS
side with a larger 2D scattering length as, so the effect of
the effective range may become relatively weaker. Although
the inclusion of the effective range does significantly shift
the density EoS towards the low-temperature regime (i.e.,
βεB ∼ 1), it does not approach the experimental results fully.
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FIG. 4. (a) Density EoS, normalized by n0 = −λ−2
T Li1(−eβμ), as

a function of the dimensionless chemical potential βμ and interac-
tion strength βεB = 1.2, for the single-channel model (red-dotted,
Rs = 0), the two-channel model (blue dot-dashed, Rs �= 0), and the
experimental results from Ref. [23]. (b) Density EoS at βεB = 0.47,
with the experimental results from Ref. [22].

This is anticipated, as the simple many-body T -matrix theory
such as NSR is known to underestimates the pair correlations
close to the BKT transition [28].

Although our NSR theory with realistic effective ranges
cannot provide a quantitative explanation of the experimental

data, the message obtained from the comparison of the two
cases (i.e., with and without the effective range) is clear: one
needs to take into account the confinement-induced effec-
tive range in future theoretical studies of an interacting 2D
Fermi gas at finite temperature. We expect the self-consistent
two-channel calculation, as done in 3D by Ref. [51], would
improve the numerical calculation and comparison to ex-
periment. Although there is no definite reason to choose
a diagrammatic scheme, the self-consistent calculation will
include interactions between dressed fermionic and bosonic
Green’s function that are important in reduced dimensions.
This calculation will be considered in future work.

V. CONCLUSION

In summary, we theoretically investigated the thermody-
namics of a strongly correlated Fermi gas confined to two
dimensions with a negative confinement-induced effective
range. Within a two-channel model, including pairing fluctu-
ations beyond the mean-field level we discussed the negative
effective range corrections to the thermodynamic properties.
Using the recent experimental data [22,23] as a benchmark,
we find that density equation of state improves in our two-
channel model, compared to the widely used single-channel
model.

We show that as the effective range decreases, the entropy
increases, and the system eventually approaches a molecular
Bose-Einstein condensate with finite bound state energy, thus
making it more difficult for free fermions to form pairs.
In future works the many-body pairing should be carefully
examined. The appearance of 2D many-body pairing at high
temperature in the crossover regime remains an interesting
and controversial topic to be explored [44,62–64].
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