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We apply the functional path-integral approach to analyze how the presence of a spin-orbit coupling (SOC)
affects the basic properties of a BCS-type paired state in a two-component Bose gas. In addition to a mean-field
theory that is based on the saddle-point approximation for the intercomponent pairing, we derive a Ginzburg-
Landau theory by including the Gaussian fluctuations on top, and use them to reveal the crucial roles played by
the momentum-space structure of an arbitrary SOC field in the stability of the paired state at finite temperatures.
For this purpose, we calculate the critical transition temperature for the formation of paired bosons, and that of
the gapless quasiparticle excitations for a broad range of interaction and SOC strengths. In support of our results
for the many-body problem, we also benchmark our numerical calculations against the analytically tractable
limits, and provide a full account of the two-body limit including its nonvanishing binding energy for arbitrarily
weak interactions and the anisotropic effective mass tensor.
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I. INTRODUCTION

When atomic fermions transform into molecular bosons
by way of many-body pairing, the mechanical stability of
the paired state is inherently enforced by the Pauli exclusion
principle, i.e., through a Hartree shift of the chemical potential
by inducing a pairwise interaction that is effectively weak and
repulsive. This intrinsic stability is what lies behind the long-
sought realization of the so-called BCS-BEC crossover, when
a two-component Fermi gas is magnetically swept across a
Feshbach resonance [1]. Having witnessed more than a decade
of tremendous successes since their creation, the ultracold
Fermi gases has become a thriving field in modern quantum
physics as it keeps enriching its toolbox with a wide range of
applications for the strongly correlated phenomena in a much
broader context [2,3].

In comparison, the analogous evolution from the BCS-type
many-body paired state of atomic bosons to the BEC of
molecular bosons is to a great extent an uncharted territory
in a Bose gas. Despite many theoretical attempts dating back
more than half a century [4–11], the crossover studies have
been hindered by the natural tendency of paired state to a
mechanical collapse in the lack of a bosonic counterpart for
the exclusion principle. When a spinless Bose gas of atoms is
magnetically swept across a Feshbach resonance, the lifetime
of the resultant molecules turned out to be too short for
reaching an equilibrium state with a molecular BEC [12–15].
To overcome this difficulty, it is quite clear that one needs
to search for exotic Bose systems that may exhibit enhanced
stability for the many-body pairing. For instance, bosonic
particles with an internal spin structure was introduced by
Noziéres and Saint James as an alternate [7], and thoroughly
analyzed for the spin-1 case.

Motivated by the recent creations of two-component quan-
tum gases with two-dimensional SOCs [16–19], here we re-
visit this old-standing problem in a so-called spin- 1

2 Bose gas.
Having a dilute Bose gas with short-ranged density-density

interactions in mind, we consider an intercomponent attrac-
tion U↑↓ = U↓↑ = −g < 0, and analyze how the presence
of a SOC affects the resultant pairing correlations [20,21].
The mechanical collapse is counteracted by the Hartree terms
arising from the intracomponent repulsions [7,21–23]. Then,
assuming that the instability towards a BCS-like paired state is
favored against the competing states, e.g., collapse, fragmen-
tation, phase separation, etc. [4–11,20,21], one may treat the
intercomponent attraction through a close analogy with the
theory of paired fermions [2,3]. For this purpose, we apply
the functional path-integral approach, and derive a mean-field
theory that is based on the saddle-point approximation for
pairing, and then a Ginzburg-Landau theory by including
the Gaussian fluctuations on top. Our analysis suggests that,
while the SOC has a minor role in the strong-interaction
limit where the ground state at zero temperature is a BEC of
paired bosons, increasing its strength in the weak-interaction
limit may allow for the creation of a paired state at much
lower temperatures. We also provide a full account of the
two-body problem including its nonvanishing binding energy
for arbitrarily weak interactions and the anisotropic effective
mass tensor.

II. THREE-DIMENSIONAL SPIN- 1
2 BOSE GAS

WITH AN ARBITRARY SOC

We are interested in a two-component Bose gas that is
described by the many-body Hamiltonian

H =
∑
abk

c†
ak(ξkσ0 + Sk · σ )abcbk

+ 1

2

∑
abkk′q

Uabc†
a,k+q/2c†

b,−k+q/2cb,−k′+q/2ca,k′+q/2, (1)

where the wave vector k = (kx, ky, kz ) labels the momentum
eigenstates, and the spin a ∈ {↑,↓} labels the atomic com-
ponents in such a way that c†

ak creates a spin-a boson with
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momentum k (in units of h̄ → 1). Assuming the components
are population balanced, ξk = εk − μ includes the parabolic
dispersion εk = k2/(2m) of the particles in free space and
their chemical potential μ < 0 [22,23]. In addition, σ0 is a
2 × 2 unit matrix, Sk = (Sx

k, Sy
k, Sz

k ) is a SOC field whose
components Si

k = αiki are controlled independently by the
strengths αi � 0, and σ = (σx, σy, σz ) is a vector of Pauli
spin matrices. Below it is called an XYZ or a Weyl SOC if
αx = αy = αz = α is isotropic in the entire k space, an XY
or a Rashba SOC if αx = αy = α is isotropic in kxky plane
with αz = 0, and a YZ SOC if αy = αz = α is isotropic in kykz

plane with αx = 0.

III. MEAN-FIELD THEORY FOR THE
INTERCOMPONENT PAIRING

After a straightforward algebra, the saddle-point con-
tribution �0 to the thermodynamic potential can be writ-
ten as �0 = A0 + (T/2)Tr

∑
k ln[G−1

0 (k)/T ]. Here, A0 =
|�0|2/g − ∑

k ξk with the complex number �0 correspond-
ing to the mean-field order parameter for the station-
ary pairs, and determined by the thermal average �q =
−g

∑
k〈c↓,−k+q/2c↑,k+q/2〉 in the q → 0 limit. In addition,

T is the temperature with kB → 1 the Boltzmann constant,
Tr is the trace, and k denotes a combined summation index
for (k, iω	) where ω	 = 2πT 	 is the bosonic Matsubara fre-
quency for the particles with 	 an integer. Furthermore,

G−1
0 =

[
(iω	 + ξk )σ0 + Sk · σ �0σx

�∗
0σx (−iω	 + ξk )σ0 − Sk · σ∗

]

corresponds to the inverse Green’s function associated
with the Nambu spinor ψ

†
k = (c†

↑k, c†
↓k, c↑,−k, c↓,−k ). A

compact way to express �0 = A0 + (T/2)
∑

ss′k ln[(iω	 +
s′Esk )/T ] is through the quasiparticle energies Esk =√

ξ 2
k − |�0|2 + S2

k + 2sBk, where s ∈ {+,−}, Sk = [(S⊥
k )2 +

(Sz
k )2]1/2 is the strength of the SOC field with S⊥

k = [(Sx
k )2 +

(Sy
k )2]1/2, and Bk = [ξ 2

k S2
k − |�0|2(S⊥

k )2]1/2. We note that the

quasiparticle energies reduce to Esk =
√

ξ 2
k − |�0|2 + sS⊥

k
when αz = 0, Esk = √

(ξk + sSz
k )2 − |�0|2 when αx = αy =

0, and Esk = ξsk = ξk + sSk when �0 → 0.
The mean-field self-consistency equations for �0 and μ

are determined, respectively, by setting ∂�0/∂|�0| = 0 and
N0 = −∂�0/∂μ, leading to either �0 = 0 or

1

g
= −1

2

∑
sk

∂Esk

∂|�0|2 Xsk, (2)

N0 = −1

2

∑
sk

(
1 + ∂Esk

∂μ
Xsk

)
. (3)

Here, N0 is the thermal average number of particles at
the mean-field level, ∂Esk/∂|�0| = −|�0|[1 + s(S⊥

k )2/

Bk]/Esk, ∂Esk/∂μ = −ξk(1 + sS2
k/Bk )/Esk, and Xsk =

coth[Esk/(2T )] is a thermal factor. Equations (2) and
(3) follow from a Matsubara summation of the form
T

∑
	 1/(iω	 − x) = −nB(x), where nB(x) = 1/(ex/T − 1)

is the Bose-Einstein distribution with nB(x) + nB(−x) = −1
and coth[x/(2T )] = 1 + 2nB(x). It can be readily verified that
all of these expressions recover the known counterparts in the
absence of a SOC when Sk → 0 [8,10,11]. In addition, since

a unidirectional SOC field in k space (e.g., Sk = |Si
k| for any

i ∈ {x, y, z}) can be trivially gauged or integrated away from
the self-consistency equations, it is identical to the Sk → 0
case up to an energy offset in μ.

Following the standard prescription for the BCS-BEC
crossover problem [3], we substitute the bare interaction
strength g between the ↑ and ↓ bosons with the associated
s-wave scattering length as in vacuum through the relation
1/g = −mV/(4πas) + ∑

k 1/(2εk ), where V is the volume.
In addition, we define a length scale k0 through an analogy
with the number equation N0 = k3

0V/(3π2) of a free Fermi
gas at T = 0, along with the corresponding energy scale
ε0 = k2

0/(2m). Then, we solve Eqs. (2) and (3) for the saddle-
point parameters |�0|/ε0 and μ/ε0, and analyze their stability
as functions of 1/(k0as), T/ε0, and mα/k0. The resultant
phase diagrams are presented in Figs. 1 and 2, and they are
constructed as follows.

A. Critical pairing transition temperature

Recalling that the thermodynamic stability of the paired
state that is described by this mean-field theory requires a
nonzero order parameter, we introduce an upper bound on T
that is based on the critical pairing transition temperature Tp,
below which �0 > 0. Thus, by setting �0 → 0+ in Eqs. (2)
and (3), we find 1/g = ∑

sk X
p

sk[1 − s(Sz
k )2/(ξskSk )]/(4ξk )

for the Tp equation, and N0 = ∑
sk np

B(ξsk ) for the number
equation, where X p

sk = coth[ξsk/(2Tp)]. In addition, by requir-
ing ξsk > 0 in the entire k space for the normal state, we find
that |μ| > mα2

m/2 with αm = max{αx, αy, αx} corresponds to
a lower bound on the stability of the mean-field Tp equation.
�0 = 0 below this bound, opening a window for the BEC of
unpaired bosons.

In Fig. 1, our numerical calculations show that Tp/ε0 sat-
urates to 0.5 in the absence of a SOC in the weak-interaction
limit when g → 0+ or 1/(k0as) → −∞. This is in perfect
agreement with our analytical derivations. In addition, the
mere effect of having a finite Weyl or YZ SOC on Tp/ε0

is seen to be the lowering of the saturation value in the
strong-interaction limit when 1/(k0as) → +∞. It is pleasing
to see that this α-dependent effect gradually fades away with
increasing 1/(k0as), and Tp/ε0 eventually conforms to a SOC-
independent growth in the opposite 1/(k0as) → +∞ limit.
In sharp contrast, Fig. 1 shows that having a finite Rashba
SOC has a rather dramatic effect on Tp/ε0, and that the
self-consistency equations do not yield a convergent solution
once 1/(k0as) is below an α-dependent value. Thus the pairing
transition is discontinuous, and the precise location of the
jumps in Tg/ε0 are determined by |μ| → mα2/2, signaling
the violation of the ξsk > 0 condition for the stability of the
normal state.

B. Critical gapless transition temperature

In addition, for the dynamical stability of the fully paired
state, it is necessary to restrict the self-consistent solutions to
the parameter regime where the quasiparticle energies are real
and positive in the entire k space. Note that Esk � 0 may indi-
cate a competition between a paired state and an unpaired one
[10,11]. Thus, by imposing the condition E+,kE−,k = 0, we
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FIG. 1. Finite temperature phase diagrams are constructed for the
Weyl (upper panel), YZ (middle), and Rashba (lower) SOC fields. In
each of these panels, we choose a set of SOC strengths α, and vary
the scattering length as. For a given α, the BCS-type paired state is
bounded by an upper and a lower curve, corresponding, respectively,
to the critical transition temperature for the formation of pairs (Tp),
and that of the gapless quasiparticle excitations (Tg).

find that the excitations are gapless in those k-space regions
satisfying (ξk + |�0| + Sz

k )(ξk − |�0| − Sz
k ) = (S⊥

k )2. Then,
by analyzing the gradient of |μ| in k space, we conclude that
the gapless region is bounded by a minimum value of |μ| de-
termined by |μ| = mα2

z /2 + |�0| when |�0| > m|α2
m − α2

z |,
and by |μ| = mα2

m/2 + |�0|2/(2m|α2
m − α2

z |) when |�0| �
m|α2

m − α2
z |.

In order to identify this instability [10,11], here we in-
troduce a lower bound on T that is based on the critical
gapless transition temperature Tg, above which Esk > 0. For
instance, noting that the gapless transition condition reduces
to μ = −|�0| in the absence of a SOC, one can analytically
determine the precise location of Tg → 0+. We find |μ| =
π2/(16ma2

s ) from the order parameter equation, and |μ| =

FIG. 2. Finite temperature phase diagrams are constructed for the
Weyl (upper panel), YZ (middle), and Rashba (lower) SOC fields. In
each of these panels, we choose a set of scattering lengths as and
vary the SOC strength α. For a given as, the BCS-type paired state is
bounded by an upper and a lower curve, corresponding, respectively,
to the critical transition temperature for the formation of pairs (Tp)
and that of the gapless quasiparticle excitations (Tg).

21/3ε0 from the number equation, leading to a critical point
1/(k0as) = 25/3/π ≈ 1.0106 that is in perfect agreement with
our numerical calculations. Independent of the k-space struc-
ture, Fig. 1 shows that the precise location of the critical
point is quite immune to the presence of a weak SOC, and
that the ground (T = 0) state is stable for 1/(k0as) > 1.0106
only. However, Fig. 2 shows that stronger SOCs eventually
increase the stability of the ground state towards the lower
1/(k0as) regions as well. Going away from the critical point,
one expects to find Tg → Tp from below as �0 → 0+ in
the 1/(k0as) → −∞ limit, and this turns out to be the case
for a Weyl or a YZ SOC. In sharp contrast, Figs. 1 and 2
again show peculiar jumps for the Rashba SOC, suggesting
a discontinuous transition. We emphasize that these jumps are
not numerical artifacts, and their origin can be traced back to
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the observation that self-consistency equations do not yield a
convergent solution with 0 < |�0| < mα2 and, therefore, with
mα2/2 < |μ| < mα2.

So far the mean-field analysis reveals that the k-space
structure of a SOC plays a crucial role in the boosted stability
of the paired state at low T , but what makes a Rashba SOC
distinct from a Weyl or a YZ SOC is yet to be uncovered. To
address this question, next we analyze the Gaussian fluctua-
tions of the order parameter around its mean field, and gain
more physical insight into the pairing problem.

IV. GAUSSIAN FLUCTUATIONS NEAR Tp

Going beyond the saddle-point approximation for pairing
in the �0 → 0 limit [10,24], the Gaussian-fluctuation contri-
bution �G to the thermodynamic potential can be written as
�G = ∑

q|
q|2/g−(T/4)Tr
∑

kqG0(k)�(q)G0(k+q)�(−q).
Here, q = (q, iν	) is a combined summation index with ν	 =
2πT 	 the bosonic Matsubara frequency for the pairs, 
q is
the spatial and temporal fluctuations of the order parameter
around its saddle-point value, and �(q) = [ 0 
qσx


∗
−qσx 0 ]. A

compact way to express �G = ∑
q L−1

q |
q|2 is through

L−1
q = 1

g
− 1

8

∑
ss′k

Xs,k+q/2 + Xs′,−k+q/2

ξs,k+q/2 + ξs′,−k+q/2 + iν	

Css′
kq, (4)

corresponding to the inverse of the fluctuation propaga-
tor associated with the pairs, where Xsk = coth[ξsk/(2T )]
is a thermal factor, and Css′

kq = 1 + ss′(Sk+q/2 · S−k+q/2 −
2Sz

k+q/2Sz
−k+q/2)/(Sk+q/2S−k+q/2).

By expanding the inverse propagator up to second or-
der in the momentum and first order in the frequency
of the pairs, we find L−1

q = a(T ) + 1
2

∑
i j ci jqiq j − dω +

· · · . This is our Ginzburg-Landau theory in disguise [24],
whose zeroth-order term a(T ) = L−1

0 determines the transi-
tion temperature, the second-order kinetic coefficient ci j =
limq→(0,0) ∂

2L−1
q /(∂qi∂q j ) is related to the effective mass

tensor mp of the pairs, and the first-order coefficient dω
ω→0=

L−1
0 − limq→(0,−ω+i0+ ) L−1

q characterizes the dynamical sta-
bility or lifetime of the pairs. Note that the zeroth-order
term can also be written as a(T ) = lim�0→0 ∂�0/∂|�0|2,
showing that the Thouless condition a(Tp) = 0 repro-
duces the equation for Tp. Similarly, going beyond the
Gaussian fluctuations, the zeroth-order coefficient of the
fourth-order fluctuations in 
(q) can be approximated
as b = lim�0→0 ∂2�0/∂ (|�0|2)2. This higher-order coeffi-
cient controls the interaction strength gp = b/d2 between
pairs, where b = lim�0→0

∑
sk{[∂2Esk/∂ (|�0|2)2]Xsk/2 −

(∂Esk/∂|�0|2)2Ysk/(4T )} with Ysk = csch2[ξsk/(2T )] an ad-
ditional thermal factor.

The presence of thermal factors makes the coefficients
of the Ginzburg-Landau theory rather cumbersome for the
many-body problem, and this holds true even in the absence
of a SOC. However, it is possible to circumvent around
this complication in the two-body limit and make further
analytical progress. For instance, for the two-body binding
problem in vacuum where μ < 0 with |μ| = εb/2 � Tp →
0, by setting the thermal factors to unity (i.e., Xsk → 1
for every sk assuming ξsk > 0) and introducing εb = iν	 −

2μ as the binding energy at T = 0, we find L−1
tb = 1/g −

(1/4)
∑

ss′k Css′
kq/(εs,k+q/2 + εs′,−k+q/2 + εb). This is the in-

verse propagator for the two-body bound states, and it can be
used to extract both the binding energy εb and the effective
mass tensor mp of the pairs as follows.

A. Binding energy of the two-body bound state

By applying the Thouless condition for the two-body prob-
lem atb(0) = 0, we find

1

g
=

∑
k

(2εk + εb)2 − 4(S⊥
k )2

(2εk + εb)
[
(2εk + εb)2 − 4S2

k

] , (5)

which is analytically tractable in various limits. For instance,
when S⊥

k = 0, Eq. (5) suggests that a bound state with
εb = 1/(ma2

s ) exists only for as > 0. This result is not
surprising given that a unidirectional SOC field in k space
(e.g., the remaining SOC component Sz

k) can simply be
gauged away even from our many-body mean field. More
intriguingly, for a Rashba SOC, Eq. (5) again suggests that
a bound state with εb = 1/(ma2

s ) exists only for as > 0, and
that the presence of a Rashba SOC does not have any effect on
the binding energy. This null result is quite surprising given
its nontrivial fermionic counterpart, where a bound state with
εb �= 0 is known to exist for any as no matter how weak g is as
long as g �= 0 [25]. However, we note that the intracomponent
pairing of bosons with Rashba SOC is similar to the fermion
problem [20].

On the contrary, for a Weyl SOC, Eq. (5) sug-
gests that a bound state with εb �= 0 exists for any as,
according to 3/(mαas) = 2

√
εb/(mα2) +

√
εb/(mα2) − 1 −

1/
√

εb/(mα2) − 1. This leads to εb = mα2[1 + (mαas/3)2]
in the weak-binding limit when εb → mα2 or 1/(mαas) →
−∞, εb = 2mα2/

√
3 = 1.1547mα2 at unitarity when |as| →

∞, and εb = mα2 + 1/(ma2
s ) in the strong-binding limit

when εb � mα2 or 1/(mαas) → +∞. Thus our formal-
ism recovers the exact solution of the two-body problem
known for a Weyl SOC [21]. Similarly, for a YZ SOC,
Eq. (5) again suggests that a bound state with εb �= 0 ex-
ists for any as, according to 2/(mαas) = 2

√
εb/(mα2) −

arcsinh[1/
√

εb/(mα2) − 1]. This leads to εb = mα2[1 +
4e4/(mαas )−4] in the 1/(mαas) → −∞ limit, εb = 1.06640mα2

at unitarity, and εb = mα2 + 1/(ma2
s ) in the 1/(mαas) →

+∞ limit.
Given these analytical results for the two-body problem,

we conclude that it is the coupling between Sz
k and the other

components (Sx
k and/or Sy

k) that gives rise to a two-body
bound state with εb �= 0 for any as < 0 as long as g �= 0. This
conclusion clearly sheds some light on the boosted stability of
the many-body problem in general, and particularly on Figs. 1
and 2.

B. Effective mass of the two-body bound state

It turns out that the elements (m−1
p )i j = ci j/d of the

inverse-effective-mass tensor are also analytically tractable
for the two-body problem. For instance, in the weak-
binding limit when 1/(mαas) → −∞, we note that Sz

k �=
0 for the existence of a two-body bound state to be-
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gin with, and find ci j → ∑
sk[∂2ξsk/(∂ki∂k j )](Sz

k )2/(16ξ 2
skS2

k )
and d → ∑

sk(Sz
k )2/(8ξ 2

skS2
k ). For a Weyl SOC, setting

εb → mα2 in the 1/(mαas) → −∞ limit, we find d =
mV

√
m|μ|/[12π (2|μ| − mα2)3/2], leading to a diagonal mass

tensor with anisotropic elements mxx
p = myy

p = 10m and mzz
p =

10m/3. This result is in sharp contrast with its fermionic
counterpart, where mxx

p = myy
p = mzz

p = 6m is known to be
isotropic in the entire space [25]. Similarly, for a YZ SOC,
setting again εb → mα2 in the 1/(mαas) → −∞ limit, we
find d = mV

√
2m|μ|/[16π (2|μ| − mα2)], leading again to a

diagonal mass tensor with anisotropic elements mxx
p = 2m,

myy
p = 8m, and mzz

p = 8m/3. This result is again in sharp
contrast with its fermionic counterpart, where mxx

p = 2m but
myy

p = mzz
p = 4m is known to be isotropic in yz plane [25].

We note that a Rashba SOC gives rise to an anisotropic
mass tensor for the pairs, when the pairing is due to the
intracomponent attraction [20].

As a result of this two-body analysis, we conclude that the
coupling between Sz

k and the other components (Sx
k and/or

Sy
k) gives rise to an anisotropic mp in general for the many-

body bound states [26]. One can show that the SOC-induced
anisotropy gradually disappears with increasing εb, in such
a way that mxx

p = myy
p = mzz

p = 2m is eventually isotropic in
space in the strong-binding limit when 1/(mαas) → +∞.
Note that the effective mass tensor of pairs plays a direct
role in their finite T phase diagrams. For instance, the critical
BEC temperature Tc of noninteracting pairs is determined by
their number equation Np = ∑

k nc
B(εpk ), and plugging the

anisotropic dispersion εpk for the free pairs, we approximate

Tc = 0.218ε0 × 2m/(mxx
p myy

p mzz
p )1/3 in the gp → 0 limit [25].

Thus, while Tc/ε0 saturates to 0.0629 for a Weyl SOC and
to 0.1248 for a YZ SOC in the 1/(mαas) → −∞ limit, it
reduces to the usual result 0.218 in the 1/(mαas) → +∞
limit.

V. SUMMARY

Here we analyzed the properties of BCS-type paired state
in a spin- 1

2 Bose gas with arbitrary SOC. Relying on the mean-
field and Ginzburg-Landau theories for the paired state, we
showed how the k-space structure of a SOC field manifests in
the many-body and two-body problems, boosting the stability
of the paired state as a function of its strength. For this
purpose, we calculated the critical transition temperature for
the formation of pairs, and that of the gapless quasiparticle
excitations for a broad range of interaction and SOC strengths.
It turns out that while the SOC has a minor role in the
strong-interaction limit where the ground state at T = 0 is a
paired BEC, increasing its strength in the weak-interaction
limit may allow for the creation of a paired state at much
lower temperatures. We also provided a full account of the
two-body problem including its nonvanishing binding energy
for arbitrarily weak interactions and the anisotropic effective
mass tensor.
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