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We study the propagation of a density perturbation in a weakly interacting boson gas confined on a lattice and
in the presence of square dimerized impurities. Such a two-dimensional dual random dimer model (2D DRDM),
previously introduced [Capuzzi, Gattobigio, and Vignolo, Phys. Rev. A 92, 053622 (2015)], is the disorder
transition from a single square lattice, where impurities are absent, to a bipartite square lattice, where the number
of impurities is maximum and coincides with half the number of lattice sites. We show that disorder correlations
can play a crucial role in the dynamics for a broad range of parameters by allowing density fluctuations to
propagate in the 2D DRDM lattice, even in the limit of strong disorder. In such a regime, the propagation speed
depends on the percentage of impurities, interpolating between the speed in a single monoperiodic lattice and

that in a bipartite one.
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I. INTRODUCTION

Disordered two-dimensional (2D) systems in the absence
of interactions and disorder correlations are insulating, as
demonstrated in the seminal work on the scaling theory
of localization by Abrahams, Anderson, Licciardello, and
Ramakrishnan [1]. The concept of correlations for a random
potential V (r) is related to the behavior of the correlation
function V (r)V (¥') = f(r — r’) averaged over all the disorder
configurations, where the absence of correlations corresponds
to f(r—r") =8 —r'"). However, like disorder, potential
correlations and interactions are almost unavoidable in
physics, breaking the validity of the scaling theory [1-3]. In
particular, it is well established that short-range correlations,
i.e., those with f(r —r’) — O for |r — /| greater than few
lattice spacings, can induce delocalized states [4-7] or states
that are extended over large distances [8,9], while long-range
correlations may cause the absence of localization [10-13].
Interactions can induce a glass-superfluid transition [14] or
induce many-body localization at finite temperature [15-17].
Moreover, for weakly interacting systems, correlated disorder
can shift the onset of superfluidity [18-21] or enhance super-
fluidity itself, even in the presence of strong disorder [6]. This
has been shown for the two-dimensional dual random dimer
model (2D DRDM) [6] that, analogously to the well-known
one-dimensional (1D) model [22-24], is a tight-binding
model characterized by correlated impurities that become
“transparent”at a given resonance energy, like identical
Fabry-Pérot cavities. If the Hamiltonian parameters are tuned
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so that the resonance energy matches the ground-state energy,
the ground state is not affected by the disorder, even in the
presence of weak interactions. The density homogenization
induced by the resonance drives the superfluid fraction [6].
This happens at the ground-state energy, but as soon as the
system is perturbed, higher energy states are involved, and it
is not straightforward to derive the response of the system.
Indeed, strictly speaking, the resonant energy in the absence
of interactions is only one (or few [24]), so that all the other
states with different energy should be localized, even if a part
of them (A'/? in one dimension, A" being the number of states
[22]) is expected to be localized on the entire system length.
In this work we study the transport of an initial ring-
shaped density perturbation in a weakly interacting boson gas
confined on a 2D DRDM lattice, and we compare it with the
case of a fully uncorrelated random (UN-RAND) lattice. We
analyze both the shape of the perturbation and its propagation
speed as a function of the disorder properties. Far from
the resonance condition, the density fluctuation distorts as it
travels through the lattice irrespective of the model disorder.
However, close to the resonance condition, in the 2D DRDM,
the density perturbation travels through the system without
broadening and with a well-defined speed. The propagation
speed depends on the percentage of impurities and its value is
between the speed of a density perturbation in a single square
monoperiodic (MP) lattice and that in a bipartite (BP) one
composed by two interlacing square sublattices. This shows
that the main role of “resonant” random dimer impurities in a
MP lattice or vacancies in a BP one is to drive the value of the
propagation speed during the transport of a density excitation.
The paper is organized as follows. In Sec. II we review
the features of the 2D DRDM, including the location of the
single-particle energy resonance and its effect on the spectral
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FIG. 1. Schematic representation of the 2D DRDM (middle) as the disordered interpolation between the monoperiodic 2D lattice (left) and

the bipartite one (right).

function for noninteracting particles. The results for the den-
sity wave propagation in a weakly interacting many-particle
system are presented in Sec. III. In this section, we compare
the numerical results obtained via the dynamical equations
using a Gutzwiller approach, with the speed for a density
perturbation in a MP lattice and a BP one, obtained within
a Bogoliubov approach strictly valid for a pure Bose-Einstein
condensate. We show that when the resonance condition is
fulfilled, there is a well-defined speed for the density propa-
gation and that the density wave packet is not broadened by
the disorder during its propagation. Concluding remarks and
perspectives are given in Sec. V.

II. THE SYSTEM

The 2D DRDM is a single-particle tight-binding model,
characterized by “isolated” on-site impurities that locally
modify the hopping probability (middle panel of Fig. 1).
The sites are arranged in a two-dimensional square lattice
of size L x L and spacing a. The system is described by the
Hamiltonian in the site basis {|i)},

== 1)1+ 1) z|>+Ze|z ()

(if)

where N = L? is the number of sites and (ij) denotes the
sum over first-neighbor sites. Here, ¢; are the on-site energies
that can be zero or A in the absence or presence of an
impurity, respectively, and ¢#;; are the first-neighbor hopping
terms that can take two values: ¢ between two empty sites and
t' between an empty site and a site hosting an impurity. The
fact that the impurities cannot be next neighbors introduces
short-range correlations in the disorder. Such a potential could
be realized by dipolar impurities pinned at the minima of
a lattice potential [24]. If the percentage p of impurities is
zero, the lattice is MP with site energies equal to zero and
all hopping parameters equal to ¢ (left-hand panel of Fig. 1),
while if p = 0.5, the lattice is BP with the site energies zero
and A distributed in a checkerboard configuration and all
hopping parameters equal to ¢ (right-hand panel of Fig. 1).
More impurities cannot be accommodated in the 2D DRDM
lattice so p = 0.5 is the maximum value that can be attained.
Furthermore, since impurities and vacancies have the same
role, the most disordered configuration corresponds to the
middle region, at p = 0.25. Therefore, by varying p the 2D

DRDM lattice can be seen as a disorder-mediated crossover
between a MP and a BP lattice.

With the aim to understand the role of the impurity struc-
ture, one can focus on the case of a single impurity in the
lattice. Let us call B the subspace defined by the impurity and
A the remaining lattice subspace, composed by the remaining
N — 1 lattice sites. We previously showed in Ref. [6] that
there exists an energy E.., where the Green’s function in the
A subspace, G4(E) = (A|(E — H)"!|A), is the same in the
presence and in the absence of an impurity. This implies that
the impurity becomes “transparent” at this resonance energy
E., fulfilling

t2 _ (t/)Z
Eres Eres - A ’

2

Therefore, at the energy E.s = —2A / [(t)? = £%], the system
is not perturbed by the presence of the impurities so states
remain delocalized over the whole system. In the case of the
1D DRDM, it was shown in Ref. [22] that the number of
states that are unperturbed and extended over the entire system
scales as +/N. Such a behavior can also be expected to occur
for states around E,.s in the 2D DRDM as confirmed in Fig. 2,
where we plot the disorder-averaged spectral function A(k, )
defined by

Ak, e) = (k|6(H — e)|k), 3)

where ~+- denotes the average over different disorder re-
alizations and |k) is a momentum eigenstate. Hereafter, in
our numerical calculations we consider a square lattice with
side L = 50, totaling N = 2500 sites, and open boundary
conditions. The results depicted in Fig. 2 correspond to 100—
500 realizations of the disorder with a percentage p = 0.25.
The spectral function A(k, ¢) is essentially nonzero along the
average dispersion relation

[ Ak, e)ede
[ Ak, e)de’

but its spread in energy strongly depends on the reso-
nance condition. As shown in Fig. 2, the spectral density
is well represented by a single energy peak at (e)(k) only
around Ey: Es = —0.55¢ for A = 0.44¢ (first panel of
Fig. 2), Es = —1.25¢t for A = 10z (second panel), E.s =
—2.5t for A = 20¢ (third panel), and E,.; = —4¢ for A = 32¢
(fourth panel). By choosing the resonance energy at the

(e)(k) = (4)
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FIG. 2. Disorder-averaged spectral function A(k, e) for a 2D DRDM square lattice with ¢ = 3¢, p = 0.25, and k, = 0 as a function of k,
for several values of A. The horizontal dashed lines mark the resonance energies E,.;. Continuous red lines correspond to (e)(k) [Eq. (4)] and
the dashed red lines correspond to a quadratic fitting. The different panels correspond to A/t = 0.44, 10, 20, and 32.

ground-state energy Exy , namely, at the bottom of the energy
band (k = 0), the energy excitations become largely unaf-
fected by the disorder and therefore one could expect that the
long-wavelength density perturbations, i.e., the sound waves,
in a weakly interacting system will be well defined. The
condition E,.s = EMY, EYY = —4t being the MP ground-state
energy, sets the value of A as a function of ¢’ and ¢:

Ares = 41[(t'/t)* — 11. )

It is worth noticing that if A = Ay, the MP ground-
state energy, ENY = —4t, and the BP one, ESL = %[A —

A? + 64(t')?], coincide. Indeed, one could start from the
BP lattice and introduce the disorder as vacancies, the 2D
DRDM being a disordered BP lattice. By calculating the
Green’s function in the presence and in the absence of a
single vacancy, and by imposing that £ = Egg , one obtains
exactly the same resonance condition (5). In the presence of
weak interactions, we previously showed that the resonance is
shifted to lower values of A [6] and it is accompanied by a
minimization of the density fluctuations and enhancement of
the superfluid fraction.

III. DENSITY WAVE PROPAGATION

In order to describe the propagation of a density fluctuation
we include interactions into the system. An interacting boson
gas confined in an optical lattice can be described by the Bose-
Hubbard Hamiltonian, which in the grand canonical ensemble

reads

ij i
U
+ Bl Zfli(ﬁi - 1), (6)

where &f is the creation operator defined at the lattice site i
and 7; = &jf&,-. As in the case of the single-particle model,
the hopping parameters ¢;; are chosen to describe either the
2D DRDM or the UN-RAND lattice. The parameter U is
the interparticle on-site interaction strength, and x denotes the
chemical potential fixing the average number of bosons. We
study the dynamics governed by the Hamiltonian [Eq. (6)]
using the time-dependent Gutzwiller ansatz for the wave
function [25-27],

LxL

[o(0) =[] D fitw, )lm), (7)

where f;(n, ) is the probability amplitude of finding n par-
ticles on site i at time t. The Gutzwiller approach has been
previously used to describe the superfluid-insulator transition
and the stability of bosons in an optical lattice with and
without random local impurities [28-30]. It allows interpo-
lating between the deep superfluid and the Mott-insulating
regimes. The dynamical equations obeyed by the amplitudes
fi(n, t) can be obtained variationally by extremizing the
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action S{f;(n, ), f(n, 1)} = ftflz dt L, with

L= %((CD(T)I@(T)) —(@(0)|®(1))) — (®(7)|Hpu|P(7)).
®)

Such a procedure allows us to study the time evolution of the
system at an affordable computational cost. However, being
a grand canonical description, there is no guarantee that the
expectation value of the number operator will remain constant
in time. In our calculations, we have verified that particle con-
servation occurs typically with a relative accuracy of 1074, so
that more demanding number-conserving approaches [31-33]
are not needed.

To probe the effect of the disorder correlations on the
transport properties we excite a density wave at the center of
the lattice and study its propagation. Such a density wave is
constructed by solving the stationary problem of the disor-
dered system subject to an additional Gaussian potential that
shifts the on-site energies ¢; by

V; = Ae 72, )

where r; is the position of site i, A is the amplitude, and o
is the width of the perturbing potential. We consider neg-
ative A values that create a dip in the confinement which
in turn induces a density bump at the lattice center of the
form én = (Snoe_’i2 /3* The amplitude dny and the width &
depend not only on V;, but also on the disorder configuration.
Once the density bump is created, the additional Gaussian
potential is turned off and the system is let to evolve subject
to the disordered potential. In a circularly symmetric setup
without any disorder, the initial density bump would lead
to the propagation of a ring-shaped fluctuation characterized
by its mean radius and transverse section. The evolution of
the mean radius measures the propagation speed and the
size of the transverse section, its broadening. However, since
the different momenta components scatter with the disorder
at different speeds and interfere with each other, the evo-
Iution of the density perturbation becomes more complex,
and the shape of the initial ring may be lost. Therefore,
the evolution will be mainly characterized by the propaga-
tion speed and broadening of the angularly averaged density
fluctuation.

In Fig. 3 we compare the time evolution of a density
perturbation in an UN-RAND lattice and in a 2D DRDM one
for ¢’ = 3¢, different values of A, and p = 0.25. We consider
a system with a weak interaction U/t = 1072 and average
number of particles per site (n;) =5 [6]. For any value of
A in the UN-RAND model, the density perturbation distorts
as it moves through the system, whereas in the 2D DRDM,
if A is close to the resonant value A, = 32¢, the density
perturbation propagates for a long time without a pronounced
dispersion. This well-defined long-time density propagation
indicates that the density packet is not strongly deformed by
the disorder during its motion.

The deformation can be quantified by calculating the
root mean square (rms) and the angular variance of the
propagating density fluctuations. The rms is calculated as
rms = /(r?) — (r)2, where the spatial averages are taken
over the disorder-averaged fluctuations én as (F(r)) =

25 —‘ 25
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FIG. 3. Time evolution of the angularly averaged density n(r, 1)
for an initial perturbation with o /a = 1 and A/t = —5 for different
values of A for the case of a 2D DRDM lattice (left column) and of a
UN-RAND system (right column). Each depicted density is obtained
by averaging the density over 30 disorder realizations with p = 0.25
for each model.

[F(r)sn"/ [5n°. On the other hand, the angular variance

is computed as var(n) =\/f d¢ dn(p)* — ([d¢ sn(¢))* for
the density perturbation dn(¢) evaluated at the radius cor-
responding to the location of the density peak. These mag-
nitudes are measured at a fixed final time of v = 97/t and
shown in Figs. 4 and 5, respectively, as functions of A for two
values of the interaction strength: U/t = 10! (solid symbols)
and U/t = 1072 (open symbols). The results in a 2D DRDM
and UN-RAND lattice at p = 0.25 are depicted with circles

013601-4



DENSITY WAVE PROPAGATION IN A TWO-DIMENSIONAL ...

PHYSICAL REVIEW A 101, 013601 (2020)

o
~H—T
[ ]

10 20 30
AJt

FIG. 4. The rms of average density perturbation for different
values of A at time t = 9/i/t, for the cases U/t = 1072 (open
symbols) and U/t = 107! (solid symbols). Circles correspond to the
2D DRDM and squares to an UN-RAND model, both at p = 0.25.
The vertical dashed line indicates Ae.

and squares, respectively. For the case of the UN-RAND
disorder, both these quantities are weakly dependent on A,
while for the case of the 2D DRDM disorder they display
a sharp minimum when the density perturbation remains
well defined and does not spread out. The position of the
minimum depends on the interaction strength: it corresponds
to A >~ A for the very weakly interacting gas and moves
to lower values by increasing the interactions [6]. It is worth
noticing that, given the finite size of the system representing
experimental setups, it is not possible to perform a detailed
study of the long-time evolution of the rms and, thus, to un-
ambiguously distinguish between a wave-type and a diffusive
dispersion.

t
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FIG. 5. Average angular variance of a density perturbation for

different values of A at time v = 97/¢, for the cases U/t =

(open symbols) and U/t = 10~! (solid symbols). Circles correspond

1072

to the 2D DRDM and squares to an UN-RAND model, both at p =
0.25. The vertical dashed line indicates A .

A. Propagation in MP and BP lattices

Aiming to understand the density perturbation propagation
in the disordered 2D DRDM lattice, we study the dynamics
in the MP and BP lattices. The 2D DRDM can be seen as a
MP lattice with dimerized impurities or as a BP lattice with
vacancies. Analytical expressions for the sound speed can be
obtained if the gas is a pure Bose-Einstein condensate (BEC).
The BEC limit corresponds to on-site coherent states with
Poissonian probability distribution in the Gutzwiller ansatz,

LxL LxL ¢
| Pprc) = ]‘[Zf,(nm ]‘[Ze*”" =),

(10)
where n; = |¢;|? is the on-site density, and ¢; is the condensate
wave function at site i. In this case, the total energy of the BEC
reads

Z(u—e)hﬁ, =) Lt} +

(ij)

Z il — —.

(11)
which gives rise to the equation of motion,
. 0¢;  OE
lhg e Z(M —&)¢i — (lzj;tij¢j
+20 ) il (12)

The low-amplitude dynamics of the gas is governed by the
collective excitations of the system. These are calculated
through linearization of the equation of motion (12) around
a stationary solution ¢ by setting ¢;(t) = e 7/ (¢? +
u;e" + vie ), where u; and v; are the amplitudes of the
perturbation at site i and w the corresponding frequency.
The density fluctuation can thus be written in terms of
the collective mode (u;, v;) as dm;(t) = |¢;(t)|* — [¢0]> =~
2Re[e® (¢pPu; + v} ¢?)]. The solution of the linearized dy-
namics leads to the so-called Bogoliubov—de Gennes eigen-
value equations [34,35].

1. Bogoliubov spectrum in a MP lattice

For the case of a MP lattice, where #;; = ¢ for first neigh-
bors, we obtain the usual Bogoliubov—de Gennes equations
for the collective modes in a lattice:

—hou; = —pu; —t Z u; + 2Unu; + Uiiv;,
(i)
(13)
hov, = —pv; —t Z vj + 2Unv; + Uiy,
(ij)
where 7 = |¢0|2 ((;50)2 [(¢O) 1% is the density per site,
and we have taken ¢ real. Solving the above eigenvalue prob-
lem is straightforward and one obtains the energy spectrum
of the collective excitations hw,IQ/IP == Ek2 + 2E,Un, with
Ey = —2t[cos(k.a) + cos(kya)] + 4t the usual single-particle
dispersion relation in a square lattice of spacing a. The low-
k slope of the collective spectrum defines the sound speed

MP = limy_o 0wy /(0k) = a~/2U7t /1 [36-38].
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2. Bogoliubov spectrum in a BP lattice

For the case of a BP lattice, we can divide the system into
two sublattices of indices i,, for sites hosting an impurity, and
ip, for sites without impurities. In this case, the Bogoliubov—de
Gennes equations read

—hou;, = (A — pu;, —t' Z uj, + 2Unqu;, + Unyv;,,
(i)

hov;, = (A — wv;, — 1 Z v, +2Unqv;, + Ungu;,,
i |

2
_ +
FiwB? = j:|:Ek2 + 8y
ngnp

where E; = —21'[cos(kya) + cos(kya)] and 8n = nj, — n,. We
thus find that the sound speed for the bipartite lattice reads

Sn2t’ (16)
2t 4+ (ngnp)32U |

cBP = %\/ZI’(nanb)l/zU [1 +3

Due to the fixed average density 7, the sound speed in the
bipartite lattice varies with A through the variation of n, and
np. For vanishing A (6n = 0), the expression of C?P reduces to
that of ¢MP with + = ¢/, while for very large A it goes to zero
as n, vanishes and thus no perturbation can be transported.

B. Density perturbation size effects

When we excite the density wave as described above, the
density fluctuation propagates through the lattice with a speed
that depends on its spatial extent. For very large widths (small
k), the propagation speed v coincides with the sound speed,
while for tight wave packets, larger-k contributions have to be
taken into account. The group velocity at any k contributes
with a weight determined by §n(k), the density fluctuation in
momentum space. The actual propagation speed can thus be
written as

5oMP-BP

v MR = / dk —— sn(k). (17)

ok

Therefore, finite-k corrections are more sizable for smaller
U, where the dispersion curves w,E/IP’BP bend more rapidly.
For the disordered lattices, the propagation speed has been
extracted from the position of the largest density peak during
the evolution when the dynamics is started by the Gaussian
perturbation with amplitude A/t = —0.1, and o /a = 1. The
choice of o /a = 1 is determined by the experimental request
that the density perturbation has to be observable during the
propagation along a finite-size lattice. The calculation of the
finite-size velocities cMPBP in Eq. (17) have been performed
for a Gaussian wave packet of width 6. Due to the disorder, &
is usually larger than o and depends on the system parameter
A and the interaction strength U. In Fig. 6, we compare the
propagation speed v of a density perturbation in a disordered
2D DRDM lattice with ¢MP, ¢BF, ¢MP and ¢BP for U/t = 1072
(top panel) and U/t = 10~ (bottom panel). Given that for
both interaction strengths & /a 2 2, in the weaker interacting
case U/t = 1072, the size effects of the density perturbation

—ha)uih = —uu;, — t Z uj, + 2Un;,u,-b + Unpv;,,
(ij)
hov, = —pv;, — 1 Z vj, +2Unpv;, + Unpu;,.  (14)
(ij)
Here n, and n,, are respectively the densities in each sublattice,
verifying the condition n, + n, = 27. The lowest-energy band

of the excitation spectrum is straightforwardly calculated and
reads

2
% + 8t'U /ngny + 2\/

a'sny? [ 8 12
Gy ,3( - [2(r’>2+./—nanbr/U]+U2)] .y
nanh ngnyp

(

are quite important and the sound velocities ¢™M* and BF

largely underestimate v. The values of 6 used to calculate
cMP and PP were fixed to those observed in the simulations
in MP (p =0) and BP (p = 0.5) lattices, respectively, for

o
ot

(N

speed v (units of at/h)
e

1,
0.5
v p=005 o p=1025 p=0.37
% 10 20 30 10
AJt
3,
£ 95
kS
Z 15
=1
g Ll e p=005 o p=025 p =037
0 10 20 30 40
A/t

FIG. 6. Speed v of the density perturbation in the 2D DRDM
lattice as a function of A for U/t = 1072 (top) and U/t = 107"
(bottom). The different symbols correspond to different values of p.
The solid black curves correspond to the BP propagation speed for
& /a = 2.2 (see text), while solid brown curves correspond to the MP
propagation speed for & /a = 2.4 (top) and & /a = 4.0 (bottom). The
dashed black (brown) curve corresponds to the sound speed for the
BP (MP) lattice (6 /a — 00).
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FIG. 7. Speed v of the density perturbation in the 2D DRDM
lattice as a function of p for A/t =25, 32, and 40. The black
dotted line corresponds to ¢MP for & /a = 2.4, while the dashed lines
correspond to cB? for the same values of A and & /a = 2.2, 2.3, and
2.5 for A/t = 25, 32, and 40, respectively.

each value of U. In the case of the BP lattice we have further
chosen the corresponding value of & at A/t = 25. For U/t =
1072, the density fluctuations do not propagate for A/t < 10,
consistently with the behavior of the noninteracting spectral
function A shown in Fig. 2. For stronger interactions, the
effect of the finite size of the density wave packet diminishes
as the linear range of the dispersion curves wjy extends to
higher k. In this case ¢MP and ¢BP correctly set the scale
of the data for v (bottom panel of Fig. 6). As a result of
the interactions, the effect of the disorder is attenuated as
demonstrated by the reduction of the error bars for A/t < 10,
indicating a well-defined propagation also at low A. This can
be understood from the shift and broadening of the single-
particle energy resonance discussed in Sec. II. The effects of
the resonance broadening on the properties of the ground state
are also discussed in Ref. [6].

The variation of the propagation speed with the percentage
of impurities p is enlightened in more detail in Fig. 7, where
we plot v as a function of p for A/t = 25, 32, and 40. The
data interpolate from ¢M? at p = 0 to ¢B® at p = 0.5. From

the density perturbation point of view, the 2D DRDM lattice
is like an ordered lattice in between the MP and BP lattices.
The dimerized impurities are not strictly speaking “transpar-
ent” around the resonance energy as it happens exactly at
resonance. Their presence alters the propagation of density
perturbations, but in the same manner as if the impurities were
orderly distributed. The effect of tuning the resonance energy
to the ground-state energy is that, at low energies, the 2D
DRDM behaves like an ordered lattice interpolating the MP
and the BP lattices.

IV. CONCLUSIONS

In this paper we have studied the propagation of an initial
ring-shaped density perturbation in a weakly interacting bo-
son gas confined on lattice and in the presence of localized dis-
ordered impurities. If the impurities are dimerized, and their
resonance energy corresponds to the ground-state energy, the
density perturbation propagates essentially without spreading
out. We found that the speed of the density propagation is
well defined even for a tight density wave packet (large wave
vectors) and that its value depends on the percentage of the
impurities p, ranging from the MP speed (p = 0) to the BP
one (p = 0.5). This means that the dimerized impurities that
are “transparent” at the ground-state energy are not strictly
speaking transparent at energies around the resonance energy,
and thus the density propagation depends on the presence
of impurities. The effect of the nearby resonance is that the
system behaves as if the dimerized impurities were orderly
distributed, for energies around the resonance energy. If the
resonance is far in the spectrum, disorder correlations do not
play any role, and the density wave spreads out and does not
propagate any more.

ACKNOWLEDGMENTS

The authors acknowledge M. Gattobigio for useful discus-
sions. This research has been carried out in the International
Associated Laboratory (LIA) LICOQ. P.C. acknowledges par-
tial support from CONICET and Universidad de Buenos Aires
through PIP Grant No. 11220150100442CO and UBACyT
Grant No. 20020150100157, respectively.

[1] E. Abrahams, P. W. Anderson, D. C. Licciardello, and T. V.
Ramakrishnan, Phys. Rev. Lett. 42, 673 (1979).

[2] P. W. Anderson, D. J. Thouless, E. Abrahams, and D. S. Fisher,
Phys. Rev. B 22, 3519 (1980).

[3] D. J. Thouless, Physica B+C 109-110, 1523 (1982).

[4] M. Hilke, J. Phys. A 27,4773 (1994).

[5]1 M. Hilke, Phys. Rev. Lett. 91, 226403 (2003).

[6] P. Capuzzi, M. Gattobigio, and P. Vignolo, Phys. Rev. A 92,
053622 (2015).

[7] U. Naether, C. Mejia-Cortés, and R. Vicencio, Phys. Lett. A
379, 988 (2015).

[8] R. C. Kuhn, O. Sigwarth, C. Miniatura, D. Delande, and C. A.
Miiller, New J. Phys. 9, 161 (2007).

[9] C. Miniatura, R. C. Kuhn, D. Delande, and C. A. Miiller, Eur.
Phys. J. B 68, 353 (2009).

[10] E. A. B. F. de Moura, M. D. Coutinho-Filho, M. L. Lyra, and
E. P. Raposo, Europhys. Lett. 66, 585 (2004).

[11] I. E dos Santos, F. A. B. F. de Moura, M. L. Lyra, and M. D.
Coutinho-Filho, J. Phys.: Cond. Matter 19, 476213 (2007).

[12] F. A. B. F. de Moura and F. Dominguez-Adame, European Phys.
J. B 66, 165 (2008).

[13] F. A. B. F. de Moura, European Phys. J. B 78, 335 (2010).

[14] M. P. A. Fisher, P. B. Weichman, G. Grinstein, and D. S. Fisher,
Phys. Rev. B 40, 546 (1989).

[15] D. Basko, I. Aleiner, and B. Altushuler, in Problem
of Condensed Matter Physics, edited by A. Ivanov and
S. Tikhodeev (Oxford University Press, Oxford, 2006),
Chap. 5.

[16] D. M. Basko, I. L. Aleiner, and B. L. Altshuler, Phys. Rev. B
76, 052203 (2007).

013601-7


https://doi.org/10.1103/PhysRevLett.42.673
https://doi.org/10.1103/PhysRevLett.42.673
https://doi.org/10.1103/PhysRevLett.42.673
https://doi.org/10.1103/PhysRevLett.42.673
https://doi.org/10.1103/PhysRevB.22.3519
https://doi.org/10.1103/PhysRevB.22.3519
https://doi.org/10.1103/PhysRevB.22.3519
https://doi.org/10.1103/PhysRevB.22.3519
https://doi.org/10.1016/0378-4363(82)90174-7
https://doi.org/10.1016/0378-4363(82)90174-7
https://doi.org/10.1016/0378-4363(82)90174-7
https://doi.org/10.1016/0378-4363(82)90174-7
https://doi.org/10.1088/0305-4470/27/14/008
https://doi.org/10.1088/0305-4470/27/14/008
https://doi.org/10.1088/0305-4470/27/14/008
https://doi.org/10.1088/0305-4470/27/14/008
https://doi.org/10.1103/PhysRevLett.91.226403
https://doi.org/10.1103/PhysRevLett.91.226403
https://doi.org/10.1103/PhysRevLett.91.226403
https://doi.org/10.1103/PhysRevLett.91.226403
https://doi.org/10.1103/PhysRevA.92.053622
https://doi.org/10.1103/PhysRevA.92.053622
https://doi.org/10.1103/PhysRevA.92.053622
https://doi.org/10.1103/PhysRevA.92.053622
https://doi.org/10.1016/j.physleta.2015.01.032
https://doi.org/10.1016/j.physleta.2015.01.032
https://doi.org/10.1016/j.physleta.2015.01.032
https://doi.org/10.1016/j.physleta.2015.01.032
https://doi.org/10.1088/1367-2630/9/6/161
https://doi.org/10.1088/1367-2630/9/6/161
https://doi.org/10.1088/1367-2630/9/6/161
https://doi.org/10.1088/1367-2630/9/6/161
https://doi.org/10.1140/epjb/e2008-00463-7
https://doi.org/10.1140/epjb/e2008-00463-7
https://doi.org/10.1140/epjb/e2008-00463-7
https://doi.org/10.1140/epjb/e2008-00463-7
https://doi.org/10.1209/epl/i2003-10238-4
https://doi.org/10.1209/epl/i2003-10238-4
https://doi.org/10.1209/epl/i2003-10238-4
https://doi.org/10.1209/epl/i2003-10238-4
https://doi.org/10.1088/0953-8984/19/47/476213
https://doi.org/10.1088/0953-8984/19/47/476213
https://doi.org/10.1088/0953-8984/19/47/476213
https://doi.org/10.1088/0953-8984/19/47/476213
https://doi.org/10.1140/epjb/e2008-00393-4
https://doi.org/10.1140/epjb/e2008-00393-4
https://doi.org/10.1140/epjb/e2008-00393-4
https://doi.org/10.1140/epjb/e2008-00393-4
https://doi.org/10.1140/epjb/e2010-10579-8
https://doi.org/10.1140/epjb/e2010-10579-8
https://doi.org/10.1140/epjb/e2010-10579-8
https://doi.org/10.1140/epjb/e2010-10579-8
https://doi.org/10.1103/PhysRevB.40.546
https://doi.org/10.1103/PhysRevB.40.546
https://doi.org/10.1103/PhysRevB.40.546
https://doi.org/10.1103/PhysRevB.40.546
https://doi.org/10.1103/PhysRevB.76.052203
https://doi.org/10.1103/PhysRevB.76.052203
https://doi.org/10.1103/PhysRevB.76.052203
https://doi.org/10.1103/PhysRevB.76.052203

P. CAPUZZI AND P. VIGNOLO

PHYSICAL REVIEW A 101, 013601 (2020)

[17] G. Fleury and X. Waintal, Phys. Rev. Lett. 101, 226803 (2008).

[18] S. Pilati, S. Giorgini, M. Modugno, and N. Prokof’ev, New J.
Phys. 12, 073003 (2010).

[19] T. Plisson, B. Allard, M. Holzmann, G. Salomon, A. Aspect, P.
Bouyer, and T. Bourdel, Phys. Rev. A 84, 061606(R) (2011).

[20] B. Allard, T. Plisson, M. Holzmann, G. Salomon, A. Aspect, P.
Bouyer, and T. Bourdel, Phys. Rev. A 85, 033602 (2012).

[21] G. Carleo, G. Boéris, M. Holzmann, and L. Sanchez-Palencia,
Phys. Rev. Lett. 111, 050406 (2013).

[22] D. H. Dunlap, H.-L. Wu, and P. W. Phillips, Phys. Rev. Lett. 65,
88 (1990).

[23] J.-F. Schaff, Z. Akdeniz, and P. Vignolo, Phys. Rev. A 81,
041604(R) (2010).

[24] M. Larcher, C. Menotti, B. Tanatar, and P. Vignolo, Phys. Rev.
A 88, 013632 (2013).

[25] D. S. Rokhsar and B. G. Kotliar, Phys. Rev. B 44, 10328 (1991).

[26] W. Krauth, M. Caffarel, and J.-P. P. Bouchaud, Phys. Rev. B 45,
3137 (1992).

[27] D. Jaksch, C. Bruder, J. I. Cirac, C. W. Gardiner, and P. Zoller,
Phys. Rev. Lett. 81, 3108 (1998).

[28] E. Altman, A. Polkovnikov, E. Demler, B. 1. Halperin, and
M. D. Lukin, Phys. Rev. Lett. 95, 020402 (2005).

[29] P. Buonsante, F. Massel, V. Penna, and A. Vezzani, Phys. Rev.
A 79,013623 (2009).

[30] S. Powell, R. Barnett, R. Sensarma, and S. Das Sarma, Phys.
Rev. A 83,013612 (2011).

[31] J. Schachenmayer, A. J. Daley, and P. Zoller, Phys. Rev. A 83,
043614 (2011).

[32] S. Peotta and M. Di Ventra, arXiv:1307.8416.

[33] K. Shimizu, T. Hirano, J. Park, Y. Kuno, and I. Ichinose, New J.
Phys. 20, 083006 (2018).

[34] P. G. De Gennes, Superconductivity of Metals and Alloys
(Perseus Books, New York, 1999).

[35] A. J. Leggett, Rev. Mod. Phys. 73, 307 (2001).

[36] M. Machholm, C. J. Pethick, and H. Smith, Phys. Rev. A 67,
053613 (2003).

[37] Z. X. Liang, X. Dong, Z. D. Zhang, and B. Wu, Phys. Rev. A
78, 023622 (2008).

[38] K. V. Krutitsky and P. Navez, Phys. Rev. A 84, 033602
(2011).

013601-8


https://doi.org/10.1103/PhysRevLett.101.226803
https://doi.org/10.1103/PhysRevLett.101.226803
https://doi.org/10.1103/PhysRevLett.101.226803
https://doi.org/10.1103/PhysRevLett.101.226803
https://doi.org/10.1088/1367-2630/12/7/073003
https://doi.org/10.1088/1367-2630/12/7/073003
https://doi.org/10.1088/1367-2630/12/7/073003
https://doi.org/10.1088/1367-2630/12/7/073003
https://doi.org/10.1103/PhysRevA.84.061606
https://doi.org/10.1103/PhysRevA.84.061606
https://doi.org/10.1103/PhysRevA.84.061606
https://doi.org/10.1103/PhysRevA.84.061606
https://doi.org/10.1103/PhysRevA.85.033602
https://doi.org/10.1103/PhysRevA.85.033602
https://doi.org/10.1103/PhysRevA.85.033602
https://doi.org/10.1103/PhysRevA.85.033602
https://doi.org/10.1103/PhysRevLett.111.050406
https://doi.org/10.1103/PhysRevLett.111.050406
https://doi.org/10.1103/PhysRevLett.111.050406
https://doi.org/10.1103/PhysRevLett.111.050406
https://doi.org/10.1103/PhysRevLett.65.88
https://doi.org/10.1103/PhysRevLett.65.88
https://doi.org/10.1103/PhysRevLett.65.88
https://doi.org/10.1103/PhysRevLett.65.88
https://doi.org/10.1103/PhysRevA.81.041604
https://doi.org/10.1103/PhysRevA.81.041604
https://doi.org/10.1103/PhysRevA.81.041604
https://doi.org/10.1103/PhysRevA.81.041604
https://doi.org/10.1103/PhysRevA.88.013632
https://doi.org/10.1103/PhysRevA.88.013632
https://doi.org/10.1103/PhysRevA.88.013632
https://doi.org/10.1103/PhysRevA.88.013632
https://doi.org/10.1103/PhysRevB.44.10328
https://doi.org/10.1103/PhysRevB.44.10328
https://doi.org/10.1103/PhysRevB.44.10328
https://doi.org/10.1103/PhysRevB.44.10328
https://doi.org/10.1103/PhysRevB.45.3137
https://doi.org/10.1103/PhysRevB.45.3137
https://doi.org/10.1103/PhysRevB.45.3137
https://doi.org/10.1103/PhysRevB.45.3137
https://doi.org/10.1103/PhysRevLett.81.3108
https://doi.org/10.1103/PhysRevLett.81.3108
https://doi.org/10.1103/PhysRevLett.81.3108
https://doi.org/10.1103/PhysRevLett.81.3108
https://doi.org/10.1103/PhysRevLett.95.020402
https://doi.org/10.1103/PhysRevLett.95.020402
https://doi.org/10.1103/PhysRevLett.95.020402
https://doi.org/10.1103/PhysRevLett.95.020402
https://doi.org/10.1103/PhysRevA.79.013623
https://doi.org/10.1103/PhysRevA.79.013623
https://doi.org/10.1103/PhysRevA.79.013623
https://doi.org/10.1103/PhysRevA.79.013623
https://doi.org/10.1103/PhysRevA.83.013612
https://doi.org/10.1103/PhysRevA.83.013612
https://doi.org/10.1103/PhysRevA.83.013612
https://doi.org/10.1103/PhysRevA.83.013612
https://doi.org/10.1103/PhysRevA.83.043614
https://doi.org/10.1103/PhysRevA.83.043614
https://doi.org/10.1103/PhysRevA.83.043614
https://doi.org/10.1103/PhysRevA.83.043614
http://arxiv.org/abs/arXiv:1307.8416
https://doi.org/10.1088/1367-2630/aad5f9
https://doi.org/10.1088/1367-2630/aad5f9
https://doi.org/10.1088/1367-2630/aad5f9
https://doi.org/10.1088/1367-2630/aad5f9
https://doi.org/10.1103/RevModPhys.73.307
https://doi.org/10.1103/RevModPhys.73.307
https://doi.org/10.1103/RevModPhys.73.307
https://doi.org/10.1103/RevModPhys.73.307
https://doi.org/10.1103/PhysRevA.67.053613
https://doi.org/10.1103/PhysRevA.67.053613
https://doi.org/10.1103/PhysRevA.67.053613
https://doi.org/10.1103/PhysRevA.67.053613
https://doi.org/10.1103/PhysRevA.78.023622
https://doi.org/10.1103/PhysRevA.78.023622
https://doi.org/10.1103/PhysRevA.78.023622
https://doi.org/10.1103/PhysRevA.78.023622
https://doi.org/10.1103/PhysRevA.84.033602
https://doi.org/10.1103/PhysRevA.84.033602
https://doi.org/10.1103/PhysRevA.84.033602
https://doi.org/10.1103/PhysRevA.84.033602

