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Circularizing Rydberg atoms with time-dependent optical traps
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We discuss three proposed schemes of initializing circular-state Rydberg atoms via optical couplings provided
by the ponderomotive effect in contrast to the current circularization methods that utilize electric-dipole
interactions. In our first proposed method, a radial optical trap consisting of two Laguerre-Gaussian beams
of opposite winding numbers transfers orbital angular momentum to the Rydberg atom, providing a first-
order coherent coupling between an F state and a circular state. Additionally, we propose a one-dimensional
ponderomotive optical lattice modulated at rf frequencies, providing quadrupolelike couplings in the hydrogenic
manifold for rapid adiabatic passage through a series of intermediate Rydberg states into the circular state. For
the third proposed scheme, a two-dimensional ponderomotive optical lattice with a time-orbiting trap center
induces effectively the same coupling as a σ+- or σ−-polarized rf field of tunable purity for all-optical rapid
adiabatic passage into the circular state.
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I. INTRODUCTION

Circular-state (CS) Rydberg atoms have maximum orbital
angular momenta and reside in the extreme Zeeman sublevels.
Electric-dipole selection rules permit spontaneous emission
solely between adjacent CSs, extending lifetimes to the order
of ms. Because of this feature allowing sufficient time for
making spectroscopic measurements, CS Rydberg atoms are
desirable for cavity QED experiments [1] and high-precision
spectroscopy [2]. Examples of two ongoing experiments con-
sist of a linear chain of trapped CS Rydberg atoms experienc-
ing dipole-dipole and van der Waals interactions for quantum
simulation [3] and a precise measurement of the Rydberg
constant for solving the proton radius puzzle [2,4].

Because plane-wave electromagnetic fields change the in-
ternal angular momentum to an atom by only up to one h̄ (in
first order), one cannot use standard laser excitation to prepare
a sample of CS Rydberg atoms, which usually have � 20h̄
units of orbital angular momentum or more. Two popular
methods of circularization are the crossed-fields method [5–8]
and the rapid adiabatic passage (RAP) method [9–11]. In the
crossed-fields method, perpendicular electric and magnetic
fields with slowly varying amplitudes are applied to the sys-
tem to adiabatically switch atoms in a low-|ml | state into the
CS. The initial field magnitudes are chosen such that the Stark
splitting is much larger than that of the Zeeman interaction.
With this initial configuration, the outermost levels of the
hydrogenic manifold are Stark states with ml � 0 and are
accessible by laser excitation. As the electric field is adiabati-
cally switched off, while the transverse magnetic field remains
fixed or adiabatically increases, the fields transfer the atom
to the CS. While this is an effective method, it requires effi-
cient suppression of electric-field noise. In the RAP method
with linearly polarized radiation, rf waves couple states with
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low magnetic quantum numbers |ml | � 3 to the CS. In this
scheme, the electric and magnetic fields are parallel and lift
the degeneracy of the hydrogenic states. For rf waves of a
chosen frequency, the relevant dressed states nearly cross
at a specified electric field. Electric-dipole coupling induced
by an rf field turns this crossing into a multilevel avoided
crossing, which permits adiabatic switching of the atoms from
a low-angular-momentum state, accessible by lasers, to the CS
via scanning of the electric field. Applications which require
parallel electric and magnetic fields or a quantization axis
defined by the Stark interaction find the RAP method more
favorable than the crossed-fields method [2,11], for the latter
would require diabatic switching of the atoms into the Stark-
dominated regime by a sudden turn-on of an electric field
parallel to the magnetic field subsequent to the circularization
[11].

The aforementioned methods employ slowly varying per-
turbations to the atomic system for efficient circularization;
however, there has been recent interest in fast transitions
into the CS with purely σ+-polarized rf fields [12]. Sim-
ulations based on quantum optimal control theory can be
performed to choose rf fields with appropriate relative phases
and amplitudes to optimize the speed of circularization [13].
In such methods, multiple hydrogenic states are excited at
once, making the process analogous to a transition from one
coherent state to another.

The quantum dynamics of the methods discussed arise
from the term proportional to A · p in the minimal cou-
pling Hamiltonian for a charged particle. This term describes
electric-multipole transitions and the Stark effect. The term
proportional to A2 describes the diamagnetic and ponderomo-
tive shifts (e.g., the Kapitza-Dirac effect in electrons [14,15]).
In Rydberg atoms with weakly bound valence electrons, a
rapidly oscillating electric field pushes the Rydberg electron
to regions of intensity minima by means of the ponderomotive
interaction [16], thereby exerting a net force on the entire
atom. Therefore, this term becomes significant when dealing
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with Rydberg atoms. In this paper, we discuss methods of
circularization involving ponderomotive interactions of the
Rydberg electron, which are due to the A2 part of the minimal
coupling Hamiltonian.

Hermite-Gaussian (HG) modes of electromagnetic waves
contain single units of angular momentum, whereas a properly
prepared Laguerre-Gaussian (LG) mode of winding number m
has an angular momentum of mh̄ per photon that can be on the
order of a CS Rydberg atom’s angular momentum. In Sec. II
of this paper, we propose a method of coherent Rydberg atom
circularization with two copropagating LG beams of winding
numbers with the same magnitude |m| but opposite signs.
If the wavelengths of the beams are chosen appropriately,
inelastic, coherent scattering between the modes, effected by
the ponderomotive interaction, enables direct coupling of a
low-ml Rydberg level with the CS. Multipole interactions of
LG modes and Rydberg atoms have been discussed, where
matrix elements coupling low-angular momentum states to
high-angular momentum hydrogenic states were calculated
[17,18], but these methods differ from ours, as they involve
electric-multipole transitions due to the A · p term, not pon-
deromotive interactions.

In Sec. III, we discuss an optically based RAP scheme
that involves electric-quadrupole-equivalent coupling be-
tween Stark states of different ml by means of an rf-modulated
ponderomotive optical lattice (POL) [19,20]. This proposed
scheme also allows the atoms to remain trapped during the
circularization, does not require rf fields in the atom-field
interaction region, and enables circularization of atoms with
a spatial selectivity on the order of μm.

In Sec. IV, we discuss atoms in a two-dimensional POL
with its trap center modulated in a circular motion at rf
frequencies, analogous to the TOP trap used for Bose-Einstein
condensation [21]. The resulting ponderomotive interaction
has the same effect as electric-dipole couplings by a purely
σ+- or σ−-polarized rf field. Circularization schemes using
this time-orbiting ponderomotive optical lattice (TOPOL) are
more efficient than RAP schemes with linearly polarized rf
radiation by preventing “leakage” transitions [9–11].
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10µm

(a) (b)
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FIG. 1. For all figures above, m = 14. In (a), the longitudinal
intensity profile of the two superimposed beams with λ1 = 536 nm
and λ2 = 532 nm is shown as they overlap a cloud of ultracold 85Rb.
The diameter of a 21F Rydberg atom and n = 32 CS are at the
order of a hundredth of the beam’s diameter at z = 0. In (b), the
time-independent part of the ponderomotive potential Vp(r) is plotted
at z = 0; in (c), we show the magnitude of the time-dependent part
of the ponderomotive potential VC on the xy-plane for t = 0.

In Sec. V, we discuss the advantages and disadvantages
of our proposed all-optical schemes in comparison to the
previously proposed and demonstrated nonoptical methods.

II. CIRCULARIZATION BY LAGUERRE-GAUSSIAN
LASER MODES

A. Theoretical model

Consider a coherent superposition of two LG modes (1
and 2), with respective field amplitudes E1 and E2, respective
winding numbers −m and m, and respective angular frequen-
cies ωL1 and ωL2 . The longitudinal intensity profile of this
superposition is shown in Fig. 1(a) for the case of m = 14.
For a mode with a radial index p = 0, we see that the optical
field [22] can be described by

E(r, t ) = ε̂E1w01
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[ − i(k2z + mφ) + iωL2t

] + c.c., (1)

where

wi(z) = w0i

√
1 + (

z/zRi

)2
, (2)

Ri(z) = z + z2
Ri

z
, (3)

ψi(z) = (|m| + 1) arctan
(
z/zRi

)
, (4)

and r = (x, y, z) = (ρ, φ, z) is a position vector in the labora-
tory frame. The vector r is the vectorial sum of the atom’s
center-of-mass position R and the relative coordinate re of
the Rydberg electron. We assume that the beam has a linear
polarization described by the unit vector ε̂. The parameters
zRi and w0i are the Rayleigh ranges and waists of the beams,
respectively, for i = 1 and 2. Note that we use the convention

Ei =
√

2Ii
cε0

and Ii = 2P0i

πw2
0i

with a power P0i and a peak intensity
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Ii for mode i. As the energy splittings from a low-ml Rydberg
state to a CS Rydberg level range from the order of h × GHz
to h× THz, the wavelengths of the two modes need only
differ by a few nm or less. Thus, it is reasonable to focus the
copropagating beams with the same optics and assume similar
Rayleigh ranges.

Electromagnetic fields can be introduced in the minimal
coupling Hamiltonian by including the vector potential A(r, t )
and scalar potential 
(r). For 
 = 0, noting that E = −∂t A
and using the harmonic nature of the assumed fields, we can
include the vector potential A operator in the Hamiltonian H .

After including the harmonic vector potential, we see that
the minimal coupling Hamiltonian becomes

H = 1

2me
(p + eA)2. (5)

The term proportional to A2 consists of a time-dependent
potential VC (r, t ) coupling a low-angular momentum Rydberg
level to the CS and a time-independent electron trapping
potential Vp(r). Both of these potentials seen by a Rydberg
electron on the xy plane are shown in Figs. 1(b) and 1(c).
A scattering interaction between the two LG photons with
opposite m is responsible for the time-dependent part of the
ponderomotive potential. This is given by

VC (r, t ) = 4|m| (2|m|)!
|m|!

√
4π

(4|m| + 1)!

(
e2

√
I1I2w01w02

mecε0ωL1ωL2

)

× r2|m|[w1(r cos θ )w2(r cos θ )]−(|m|+1)

× exp(−r2 sin2 θ [w1(r cos θ )−2 + w2(r cos θ )−2])

× [
Y 2m

2|m|(θ, φ)S(r) exp(−iωbt )

+Y −2m
2|m| (θ, φ)S∗(r) exp(iωbt )

]
, (6)

with a phase term

S(r) = exp

[
ir2 sin2 θ

2

(
k2

R2(r cos θ )
− k1

R1(r cos θ )

)]
× exp{i[ψ1(r cos θ ) − ψ2(r cos θ )]}
× exp[i(k2 − k1)r cos θ ], (7)

where ωb = ωL2 − ωL1 . From Eq. (6), it is seen that the time-
dependent potential VC drives transitions between Rydberg-
state pairs with energy difference h̄ωb. The spatial structure
of VC , visualized in Fig. 1(c), determines the coupling matrix
element between them. For the conditions discussed in this
paper, S(r) is virtually identical to unity; therefore, we set
S(r) = 1.

The static electron trapping potential Vp is given by

Vp(r) = e2I1w
2
01

2|m|!mecε0ω
2
L1

[w1(r cos θ )]2

[
2r2 sin2 θ

w1(r cos θ )2

]|m|

× exp

[ −2r2 sin2 θ

w1(r cos θ )2

]
+ e2I2w

2
02

2|m|!mecε0ω
2
L2

[w2(r cos θ )]2

×
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2r2 sin2 θ

w2(r cos θ )2

]|m|
exp

[ −2r2 sin2 θ

w2(r cos θ )2

]
. (8)

The trapping potential Vp, visualized in Fig. 1(b), acts on the
quasifree Rydberg electron and radially traps the atoms within
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FIG. 2. Ponderomotive electron trapping potential included in
the Hamiltonian as seen along the x axis of the laboratory frame for
λ1 = 536 nm and λ2 = 532 nm, where the origin is placed at the
center of the LG modes of m = 14 with w01 = 3.41 μm and w02 =
3.39 μm. This potential is plotted for total powers P01 = P02 =
150.0 mW.

the center of the modes, for the intensity scales as ρ2m as ρ →
0. In Fig. 2, we plot a cut through Vp for laser modes with
wavelengths λ1 = 536 nm and λ2 = 532 nm.

When making the rotating-wave approximation, we ne-
glected several terms in the A2 part of the Hamiltonian that are
highly energy nonconserving on optical energy scales; these
terms correspond the absorption of photon pairs or emission
of photon pairs.

B. Rabi frequency

An S-state Rydberg atom’s radius scales as 2n2a0. How-
ever, as the angular momentum of a Rydberg atom increases,
its radius decreases. For a CS, the radius is n2a0. Therefore,
it is not feasible to circularize Rydberg atoms of the same
n in a single step due to small wave function overlap. For
optimal Rabi frequencies, one must choose a CS of a prin-
cipal quantum number n′ and a low-ml Rydberg atom of
principal quantum number n � n′/

√
2. For this calculation,

we choose to transfer |g〉 = |21F7/2, ml = 3〉 atoms to |e〉 =
|n = 32, l = 31, ml = 31〉. The overlap of the radial wave
functions Ug(re),Ue(re) of these two states is exhibited in
Fig. 3.

The energy splitting between |g〉 and |e〉 is h × 4.2 THz.
That means we must choose LG modes with frequencies such
that ωb = 2π × 4.2 THz. We choose to model an experiment
in which λ1, the wavelength of LG mode 1 is 536 nm,
and λ2 = 532 nm, which are both far off-resonant from any
transition in 85Rb, the alkali we use. These copropagating
LG modes give rise to a ponderomotive interaction term
VC (r, t ) in the Hamiltonian [see Eq. (6)]. To calculate the
Rabi frequency for this transition as a function of atomic
center-of-mass position R, we must obtain matrix element
〈e|VC (R + re)|g〉 by integrating over the relative Rydberg-
electron coordinate re. Thus, we calculate the Rabi frequency

(R) = 2

h̄

∫
ψ∗

e (re)VC (R + re)ψg(re)d3re, (9)
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FIG. 3. Radial wave function overlap of the states discussed in
the text: |g〉 (blue) and |e〉 (red).

where ψg(re) and ψe(re) are the electronic wave functions of
|g〉 and |e〉, respectively. Due to negligible quantum defects
for both states, the radial wave functions can be assumed to
be hydrogenic. For our calculations, we use the parameters
of optical power P01 = P02 = 150 mW and waists w01 =
3.41 μm and w02 = 3.39 μm. The Rabi frequencies presented
in Fig. 4 are numerically integrated with a quasi-Monte Carlo
algorithm.

C. Adiabatic potentials

In general, states |g〉 and |e〉 will see different pondero-
motive energy shifts introduced by Vp(R + re). These energy
shifts are on the order of the Rabi frequency and are respon-
sible for a cylindrical trap for the Rydberg atoms. Through
the application of external magnetic and electric fields, it can
be ensured that the perturbations of the ponderomotive poten-
tial are much less than the external-field-induced frequency
splittings among the relevant atomic states. Thus, we can
assume that the electron’s wave function is the same for all
center-of-mass positions R. To determine the ponderomotive
energy shift as a function of center-of-mass position for the
CS, we calculate the Born-Oppenheimer adiabatic potential

�4 �2 0 2 4
0.0

0.2

0.4

0.6

0.8

1.0

1.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

X(units ofw0 )

(u
ni
ts
of
2

xM
H
z)

V
ad
(u
ni
ts
of
h
xM
H
z)

FIG. 4. Adiabatic potential (green) seen by the CS atom of n =
32 as a function of the atom’s center-of-mass position along the X
axis for w01 = 3.41 μm w02 = 3.39 μm and P01 = P02 = 150 mW.
The Rabi frequency (black) for the transition of 21F to the CS of
n = 32 along the X axis for the same optical parameters.

from nondegenerate perturbation theory:

Vad(R) =
∫

ψ∗
e (re)Vp(R + re)ψe(re)d3re. (10)

Numerical integration of Eq. (10 with a quasi-Monte Carlo
algorithm results in the energy shifts shown in Fig. 4 for |e〉
along the X axis. Because the diameters of the atoms in states
|g〉 and |e〉 are ∼90 nm and the diameter of the radial trap is
∼20 μm, these low-n Rydberg atoms are effectively pointlike
particles with respect to the trap’s intensity profile. Therefore,
through calculation of Eq. (10), there is little spatial averaging
over the electron’s wave function and Vad � Vp in magnitude.
As a result, |g〉 and |e〉 see the same adiabatic potential.

D. Experimental considerations

The difference in level shifts �Vad, i.e., the adiabatic po-
tential of |g〉 subtracted from that of |e〉, has a dependence
on R(t ), the center-of-mass position as a function of time.
However, as mentioned above, because the wave functions of
|g〉 and |e〉 have similar sizes, the trap is nearly magic, as it has
a maximum �Vad of 0.7 kHz. To evaluate the circularization
efficiency, it is required to consider the trajectories of the
trapped atoms. We can extract R(t ) from Newton’s equations
by treating the atoms as classical bodies in a two-dimensional
trapping potential. The trapped atoms can be modeled by an
ensemble with a uniform spatial distribution and a Maxwell-
Boltzmann distribution of speed. A typical rms speed of an
atom in a Rb corkscrew molasses is v0 = 5 cm/s. Simulations
show that this case would lead to a typical round-trip period
of 0.6 ms for the aforementioned parameters. Given that the
lifetime of a 85Rb Rydberg atom in the 21F state is τ21F =
11 μs, the period is almost 60 times the lifetime of an atom
in the 21F state in a 300 K blackbody field, meaning that the
atoms excited into the 21F state with an initial center-of-mass
position at the center of the trap would decay before they reach
the trap walls (where they would become circularized if they
were still in 21F). Therefore, only the atoms initially close to
the edge of the trap have a chance of becoming circularized.
For an atom to become circularized, it has to be laser-excited
into 21F sufficiently close to a peak in Fig. 4 so it can reach the
trapping-light field within the 21F radiative decay time, τ21F.
The maximum distance is dr ∼ v0τ21F. The cross-sectional
area of the ring corresponding to the set of points that are
within a distance dr from the circle that outlines the intensity
maximum of the cylindrically symmetric trap beam is about
2πr0dr, with r0 ≈ 10 μm denoting the radius of the trap (see
Fig. 4). With the total cross-sectional area of the trap, πr2

0 , the
fraction of 21F atoms that can reach the circularization area
is seen to be ∼2v0τ21F/r0. Further, since the Rabi frequency
for optical circularization is several 100 kHz (see Fig. 4), the
circularization probability for 21F atoms within the trap-beam
light field is about 50%. It is concluded that the circularization
probability for all 21F atoms generated is ∼5%.

The energy splitting between |g〉 and |e〉 is several THz to
guarantee sufficient wave function overlap. It is not trivial to
phase lock two lasers with a THz frequency difference. A pos-
sible realization of this scheme is the following. Two tunable
lasers at 532 nm (beam 1) and 536 nm (beam 2) are phase
locked to two modes of a frequency comb laser separated by
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4.2 THz and diffract off spatial light modulators (SLMs) or
digital micromirror devices (DMDs) to give opposite winding
numbers 14 and −14 [23]. When the beams are combined,
they overlap a cold sample of 85Rb, prepared in an optical
molasses at ∼10 μK. Cold atoms are adiabatically loaded into
the radial trap by slowly ramping up beam 1 to allow efficient
cooling within the center of the LG beams, while keeping
beam 2 off. The highly blue-detuned frequencies of the LG
modes provide a repulsive dipole force on ground-state 85Rb
atoms, confining them inside the cylindrical region formed
by the beams. The atoms are then optically pumped into the
|5S1/2, mF = 3〉 Zeeman sublevel with a 780-nm laser of σ+-
polarization. Subsequently, the sample is excited to |g〉 with
780-nm, 776-nm, and 1292-nm lasers of σ+-polarizations
pulsed on for a duration of ∼1 μs. Beam 2 is then pulsed on
for a duration on the order of τ21F. The timing and pulse shapes
of this procedure may be optimized by quantum optimal
control theory to yield the highest fidelity [12,13].

III. RAPID ADIABATIC PASSAGE IN AN RF-MODULATED
PONDEROMOTIVE OPTICAL LATTICE

In the previous section, we considered a case where an
atom is circularized by a single ponderomotive interaction
that is highly forbidden for an electric-dipole interaction
(�ml = 28). For this section, we consider many quadrupole-
like ponderomotive interactions that lead to circularization in
a RAP scheme [10,11]. We consider an optical lattice that
is a superposition of a laser beam shifted in frequency by
ωrf and an unmodulated beam. We can use the effects of
the ponderomotive interaction [19,20] to couple states for the
RAP method. For this calculation, we consider the hydrogenic
states of the n = 32 Rydberg level under static, homogeneous
fields F = 2.736 V/cm and B = 5.0 G. Also, we assume the
carrier frequency of the laser is 532 nm. The bound-state
energy W , in the parabolic basis of |n, n1, n2, ml〉, with n =
n1 + n2 + |ml | + 1, is given by

W = −hc

(
m+

me + m+

)
R∞
n2

+ 3

2
Fea0n(n1 − n2)

+ eh̄B

2me
(ml + gsms) − 1

4
πε0a3

0F 2n4

× [
17n2 − 3(n1 − n2)2 − 9m2

l + 19
]
, (11)

where m+ is the mass of the 85Rb ion core, R∞ is the
Rydberg constant, gs = 2, and ms is the Zeeman sublevel of
the electron’s spin. The last term of W is responsible for
modeling the energy splittings in the quadratic Stark effect.

While the static fields are polarized along the quantization-
axis ẑ, the POL propagates along x̂ and is polarized along ŷ.
It is important to note that because the theory of RAP is best-
described in the dressed-atom picture, we represent the POL
laser’s vector potential as

A(r, t ) = ŷ
∑

k

Ek

2ωk
akei(k·r−ωkt ) + H.c., (12)

with Ek being the quantized field amplitude (
√

2h̄ωk
ε0V ) and ak

being the annihilation operator for mode k. Recall that r is the

position vector in the laboratory frame that is the sum of the
atom’s center-of-mass position R and the Rydberg electron’s
relative coordinate re. For the case of a modulated POL,
k = ±k1,±k2 with k1 being the wave vector corresponding
to the unmodulated mode with angular frequency ωL and k2

corresponding to the mode modulated by ωrf(t ). The minus
signs correspond to the backward-propagating modes. The
angular frequency accompanying mode k is denoted by ωk.
If we consider the atom in the presence of parallel electric and
magnetic fields, F and B, respectively, we can make the Born-
Oppenheimer approximation by adiabatically separating R,
the center-of-mass position in the laboratory frame, from re,
the electron’s position in the atom’s frame. Under the assump-
tions of real field amplitudes and a perfectly balanced lat-
tice, the quasi-free-electron ponderomotive term e2A(r=R+re,t )2

2me

gives an interaction potential VAF(R + re, t ) described
by

VAF(R + re, t ) = e2 f (t )Ek2Ek1

4meωL[ωL + ωrf(t )]

× {
ak2 a†

−k1
exp[i(k1 + k2)(X + xe)]

+ a−k2 a†
k1

exp[−i(k1 + k2)(X + xe)]
}
,

(13)

where a±k2 and a†
±k1

are, respectively, the annihilation and
creation operators for a modulated mode and an unmodulated
mode. The modulated mode also has a temporal envelope de-
scribed by f (t ). Because the rf frequency is so much smaller
than the optical frequency of the lattice, we can neglect the
ωrf(t ) in the denominator of Eq. (13). Note that we adopt the
rotating-wave approximation to arrive at Eq. (13).

The interaction modeled by Eq. (13) describes the inelastic
scattering process of a forward-propagating modulated photon
into an unoccupied backward-propagating mode. During the
scattering process, the modulated photon imparts its rf energy
to the atom, promoting it to a state with �ml = 2, as shown
in Fig. 5.

The POL interacts with hydrogenic states of a principal
quantum number n with Zeeman sublevels ml and parabolic
numbers n1 = 0, and n2 = n − 1 − ml . Additionally, because
we work in the dressed-atom picture involving photons of
modes ±k2 and ∓k1, we must include their photon numbers,
which we will represent by N + n2/2 and M − n2/2, respec-
tively, where N and M are background photon numbers that
can be set to zero in the energy eigenvalues, as they contribute
the same offset for each state. Note that if we assume a
perfectly balanced lattice, there are the same number of pho-
tons for modes k and −k. Thus, we characterize the dressed
states with |i〉 = |ml , n2 = n − 1 − ml , N + n2/2, M − n2/2〉
and eigenvalues

W ′
i (t ) = W + n2

2
h̄(ωrf + αt ) + Vad,n2,ml , (14)

where Vad,n2,ml is the offset of the ponderomotive lattice shift,
which is determined to differ among states within n = 32.
The modulator imprints a phase of − 1

2 (2ωrf,0t + αt2) on the
transmitted wave for a POL that is chirped with a frequency
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(n1=2, n2= 24)

(n1= 1, n2= 25)
(n1= 1, n2= 24)
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(n1= 1, n2= 0)…

……… ……

…

FIG. 5. Hydrogenic manifold in the parabolic basis n = n1 + n2 + |ml | + 1 under parallel electric and magnetic fields F and B. The solid
green arrows represent desired couplings provided by the rf-modulated POL; the dashed lines represent undesired “leakage” transitions that
reduce the overall circularization efficiency. Magnetic field B detunes these “leakage” transitions from resonance and minimizes CS population
loss from them.

range �ν over a period τ , where α = 2π �ν
τ

[24] and ωrf,0 is
the rf center frequency.

The relevant eigenstates for n = 32 and n1 = 0 are rep-
resented as coherent superpositions of spherical hydrogenic
states given by

|ml , n2, N + n2/2, M − n2/2〉
=

∑
l

(−1)(−31+ml −n2 )/2+l
√

2l + 1

×
( 31

2
31
2 l

ml −n2
2

ml +n2
2 −ml

)
|n = 32, l, ml〉

⊗|N + n2/2, M − n2/2〉, (15)

where the terms in parentheses are the Wigner 3-j symbol
[25].

In the limit of strong laser fields, the interaction potential
becomes

VAF(R + re, t ) = e2e− ln (16)t2/2τ 2√
Ik1 Ik2

mecε0ω
2
L

× cos [(k1 + k2)(X + xe)]. (16)

Also, we set f (t ) = e− ln (16)t2/2τ 2
. An atom sitting at the

bottom of a potential well will see a quadratic potential
approximated by

VAF(re) � e2e− ln (16)t2/2τ 2√
Ik1 Ik2 (k1 + k2)2

2mecε0ω
2
L

r2
e

×
[√

2π

15
Y 2

2 (θe, φe) +
√

2π

15
Y −2

2 (θe, φe) + sin2 θe

2

]
,

(17)

which corresponds to a nondiagonal matrix element of

〈ml + 2, n2 − 2|VAF(re)|ml , n2〉 � e2e− ln (16)t2/2τ 2

4mecε0ω
2
L

√
2Ik1 Ik2/3(k1 + k2)2

∑
l,l ′

(−1)−31−n2+l+l ′(r2
e

)l ′

l

× (2l + 1)(2l ′ + 1)

( 31
2

31
2 l ′

ml −n2
2 + 2 ml +n2

2 −ml − 2

)

×
(

l 2 l ′
ml 2 −ml − 2

)(
l 2 l ′
0 0 0

)( 31
2

31
2 l

ml −n2
2

ml +n2
2 −ml

)
, (18)

where (r2
e )l ′

l is the radial matrix element between two hydro-
genic states in the spherical basis.

Nonadiabatic transitions that reduce the efficiency of RAP
schemes are best modeled using the Schrödinger equation in
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the adiabatic basis. The adiabatic eigenkets | j〉 of this Hamil-
tonian can be obtained by applying a unitary transformation
[26,27] D, where

| j〉 =
∑

i

Di j |i〉. (19)

Additionally,

|i〉 =
∑

j

D∗
ji| j〉. (20)

Thus, for quantum state |i〉 with Schrödinger equation∑
j

[ih̄∂t (D
∗
ji| j〉) = HD∗

ji| j〉], (21)

∑
j

[ih̄Ḋ∗
ji| j〉 + ih̄D∗

ji∂t | j〉 = ĤD∗
ji| j〉], (22)

∑
j

[〈 j′|ih̄Di j′Ḋ
∗
ji| j〉 + 〈 j′|ih̄Di j′D

∗
ji∂t | j〉

= 〈 j′|Di j′HD∗
jiδ j j′ | j〉], (23)

where the 〈 j′|ih̄Di j′Ḋ∗
ji| j〉 term is responsible for nonadiabatic

transitions from one adiabatic ket, | j〉, to another, | j′〉. The
idea behind the RAP method is to minimize this term such
that a state initialized at ml = 3 arrives at ml = 31 at the end
of the frequency chirp. Efficiency of this process is diminished
if atoms are lost to other adiabatic states via nonadiabatic
transitions.

In the regime in which the Rabi frequency is lower than the
splittings of the second-order Stark effects and ponderomotive
shifts, the RAP involves sequential two-level Landau-Zener
transitions into the CS. The probability of atoms in state | j〉
transitioning to | j′〉 is, as presented in Refs. [26,28],

P( j → j′) = e−2π�, (24)

where

� = |〈i′|VAF|i〉|2
h̄|d[W ′

i′ (t ) − W ′
i (t )]/dt | . (25)

To achieve a nonadiabatic transition probability lower than
∼0.01, 2π� � 4. However, we calculate Rabi frequencies as
high as 2π × 1.90 MHz for the case of a perfectly balanced
lattice consisting of 1.43 W modulated and unmodulated
beams focused to a waist of 10 μm. These coupling strengths
put us in a regime where the atom transitions into multiple
states at a time, as shown in Fig. 6(a), making two-level
Landau-Zener models inaccurate.

Figure 6(a) shows the population P of atoms occupying
the lowest ladder of the hydrogenic manifold in parabolic co-
ordinates for τ = 25 μs and �ν = 1.41 MHz for a Gaussian
amplitude modulation and a linear chirp. Notice that the be-
ginning of the chirp rate seems to have the behavior of a two-
level Landau-Zener transition. That is because there exists a
differential ponderomotive shift �Vad between atoms in ml =
3 and those in ml = 5 are comparable to the Rabi frequency
of the coupling between them, i.e.,  = 2π × 1.04 MHz and
�Vad/h̄ = 2π × 1.28 MHz for atoms situated at the bottom of
a lattice well. Throughout the middle of the RAP procedure,
the Rabi frequencies are much larger and allow multiple
nonadiabatic states to be excited at the same time. We find a

(a)

�2 �1 0 1 2
t(units of )

0.2

0.4

0.6

0.8

1.0
P

(b)

�0.4 �0.2 0.2 0.4
t(units of )

�1.5

�1.0

�0.5

0.5

1.0

1.5
W (units of h xMHz)

FIG. 6. In (a), we display the probability of atoms populat-
ing hydrogenic states from |3, 28, N + 14, M − 14〉 to the CS,
|31, 0, N, M〉, as a function of time scaled by τ = 25 μs and �ν =
1.41 MHz. The rightmost green curve displays the probability of
atoms populating the CS, while the leftmost red curve represents the
population of atoms in the |3, 28, N + 14, M − 14〉 state. In (b), we
show the adiabatic eigenenergies of the Hamiltonian dressed by the
inelastic scattering interactions of the lattice photons.

circularization efficiency of nondecayed Rydberg atoms from
this simulation to be 89%. Including Rydberg-atom decay in
the simulation, the circularization efficiency drops to 77%.

While n = 32 Rydberg atoms with low angular momenta
would decay from radiative losses after ∼50 μs in a 4 K
environment, CS atoms shielded from thermal photons would
live much longer, at the order of ∼10 ms. The development
of a nonlinear chirp that maintains an average rate equal to
α, yet scans more quickly during the passage through low-ml

states than the rate through high-ml states, would circumvent
this issue.

The leakage transitions represented by the dashed lines in
Fig. 5 can lead to a significant reduction of the atoms in the CS
at the end of the sequence. Circularization schemes involving
RAP with linearly polarized couplings require the application
of a magnetic field to lift the degeneracy of the unwanted
and desired transitions [10]. For our calculation, where these
transitions differ in resonant frequency by ∼28 MHz, we
restrict the Hilbert space to states with n1 = 0 and ml � 3, as
the magnetic-field-induced detuning of 28 MHz is assumed to
be strong enough to inhibit the leakage transitions into other
states.

The experimental realization of this method would require
constructing a POL with a high-powered laser beam split in a
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Mach-Zehnder interferometer with one arm acousto-optically
modulated by an rf source of center angular frequency ωrf,0 =
2π × 350 MHz and the other unmodified. Suitable electrode
and Helmholtz coil geometries would allow the static fields
used in this calculation.

IV. CIRCULARIZATION OF RYDBERG ATOMS IN A
TIME-ORBITING PONDEROMOTIVE OPTICAL LATTICE

As previously mentioned, the fidelity of circularization
schemes is reduced by unwanted transitions within the hy-
drogenic manifold if the polarization of the coupling is not
purely σ+ or σ−. In this section, we will show that a TOPOL,
with effective electro-optic control, would provide potentials
that would drive transitions equivalent to those of purely σ±-
polarized rf radiation.

The idea of the TOPOL is that the two-dimensional opti-
cal lattice is constructed by a ponderomotive potential with
a rapidly orbiting, time-dependent component, resulting in
a static part that is approximately harmonic and a time-
dependent part that is equivalent to rotating rf electric field.
Such a potential is realized by a two-dimensional POL with
the x and y components phase shifted with a cosine and
sinelike time dependence, respectively. To drive transitions
between two Rydberg states, the phase-modulation frequency
must be equal to the resonant frequency of a Rydberg
transition. It will be shown that the effect is an electric-
dipole coupling between Rydberg states in a manner such
that ml can only increase or decrease by one unit but not
both.

Consider the intersection of four optical fields described by

E(+)
1 (x, t ) = ε̂ (1)E (+)

1 cos [kx − ωLt + βx cos (ωrft )], (26)

E(+)
2 (y, t ) = ε̂ (2)E (+)

2 cos [ky − ωLt + βy sin (ωrft )], (27)

E(−)
1 (x, t ) = ε̂ (1)E (−)

1 cos (kx + ωLt ), (28)

E(−)
2 (y, t ) = ε̂ (2)E (−)

2 cos (ky + ωLt ), (29)

where x = X + xe and y = Y + ye are coordinates in the
laboratory frame and βx (βy) is the amplitude of the phase
shift of the beam forward propagating along x̂ (ŷ). Here, we
assume that βx = βy = β. We use the assumptions that the
polarization vectors ε̂ (1) and ε̂ (2) are orthogonal and that the
counterpropagating beams have polarizations parallel to those
of the forward-propagating beams. Time integration of these
fields yields the vector potential operators used in the minimal
coupling Hamiltonian.

As a result, the electronic ponderomotive potential aver-
aged over a phase-modulation cycle becomes

Vp(r) = e2

cε0meω
2
L

[√
I (+)
1 I (−)

1 J0(β )

× cos (2kx) +
√

I (+)
2 I (−)

2 J0(β ) cos (2ky)

+ I (+)
1 J2

0 (β )

2
+ I (+)

2 J2
0 (β )

2
+ I (−)

1

2
+ I (−)

2

2

]
, (30)
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ml0
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FIG. 7. (a) Ponderomotive shifts for an atom in state |n =
32, n1 = 0, n2 = n − |ml | − 1, ml〉 sitting at the bottom of a lattice
well for the one-dimensional, rf-modulated POL described in the
previous section (red) and for the TOPOL described in this section
(blue). (b) Rabi frequencies coupling a state with ml to ml + 2 for
the one-dimensional, rf-modulated POL (red) and with ml to ml + 1
for the TOPOL (blue).

where I (+)
i (I (−)

i ) is the forward- (backward)-propagating peak
intensity of lattice arm i = 1, 2. We ignore the higher-order
phase-modulation terms. Numerically determined pondero-
motive lattice shifts, Vad,n2,ml , for atoms situated at the bottom
of a well for each state |ml〉 in the n = 32 hydrogenic manifold
are shown in Fig. 7(a) and compared with the shifts in the
previous section for the case of I (+)

1 = I (+)
2 = I (−)

1 = I (−)
2 �

0.907 MW/cm2 and J0(β ) = 0.17. We also set k = 2π/532
nm and assume sufficiently large stabilization fields F and B
polarized along ẑ to prevent state mixing.

The harmonic orbiting of the trap center at ωrf, the reso-
nant angular frequency for the transitions in the hydrogenic
manifold, is modeled by the potential

VAF(x, y, t ) = e2

cε0meω
2
L

{[√
I (+)
1 I (−)

1 J1(β )

× sin (2kx) − i
√

I (+)
2 I (−)

2 J1(β ) sin (2ky)
]

×eiωrft + [√
I (+)
1 I (−)

1 J1(β ) sin (2kx) + i
√

I (+)
2 I (−)

2

×J1(β ) sin (2ky)
]
e−iωrft

}
. (31)
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Under the assumption that the atom’s center-of-mass coin-
cides with a lattice-well minimum and that the atom is small,

VAF(re, t ) �
√

8π/3e2kre

cε0meω
2
L

{[√
I (+)
1 I (−)

1 J1(βx )

+
√

I (+)
2 I (−)

2 J1(β )
][

Y −1
1 (θe, φe)eiωrft − Y 1

1 (θe, φe)e−iωrft
]

+ [√
I (+)
1 I (−)

1 J1(β ) −
√

I (+)
2 I (−)

2 J1(β )
][

Y −1
1 (θe, φe)eiωrft

−Y 1
1 (θe, φe)e−iωrft

]}
. (32)

If
√

I (+)
1 I (−)

1 =
√

I (+)
2 I (−)

2 , transitions from an unwanted he-
licity into lower-|ml | states cannot be driven. How well
this condition is met determines how well the effective rf
field is circularly polarized. After making the rotating-wave

approximation and assuming that
√

I (+)
1 I (−)

1 =
√

I (+)
2 I (−)

2 =√
I (+)I (−), we arrive at an approximate dressed-atom Rabi

frequency from Eq. (32), coupling states |n, n1 = 0; ml , n2〉
and |n, n1 = 0; ml + 1, n2 − 1〉, of

ml ,ml +1 � 4
√

2e2
√

I (+)I (−)J1(β )k

h̄cε0meω
2
L

∑
ll ′

(−1)−n−n2+l ′+l (re)l ′
l (2l + 1)(2l ′ + 1)

×
( n−1

2
n−1

2 l
ml −n2

2
ml +n2

2 −ml

)(
l 1 l ′

ml 1 −ml − 1

)(
l 1 l ′
0 0 0

)( n−1
2

n−1
2 l ′

ml −n2
2 + 1 ml +n2

2 −ml

.

)
. (33)

We numerically calculate these Rabi frequencies and
plot them in Fig. 7(b) for the case of I (+) = I (−) �
0.907 MW/cm2 and J1(β ) = 0.57. For comparison, we also
display the Rabi frequencies of the one-dimensional optical
lattice described in the previous section.

In addition to the advantage of preventing leakage transi-
tions, the TOPOL clearly provides stronger couplings. This is
mainly because the ponderomotive term of the Hamiltonian
provides a dipolelike potential which is proportional to a
factor of k instead of k2 as for the previously discussed lattice
that provides quadrupolelike couplings for atoms at the center
of the well. Also, notice that the variation in ponderomotive
lattice shifts is lower for the TOPOL because the phase mod-
ulation reduces the trap depth by setting J0(β ) = 0.17. For a
RAP scheme, this would allow more efficient transfer because
all dressed states involved would meet closer to degeneracy
when the modulation frequency is chirped. By using quantum
optimal control theory by varying the TOPOL parameters,
one could engineer pulses of βx cos (ωrft ) and βy sin (ωrft ) to
obtain fast transfer to the CS on the order of ∼ ns and observe
coherent Rabi oscillations between the F state and the CS
[12,13].

V. DISCUSSION

We now give a discussion comparing each of our three
proposed methods with each other and with the traditional
methods of circularization that require quasistatic electromag-
netic fields and free-space rf radiation. Among the traditional
methods of circularization, the RAP method can be separated
into two regimes based on the rf-induced coupling strength
between atomic states. The method of RAP into the CS with
weak rf couplings, initially performed in Ref. [9], consists of
a series of sequential transitions of �ml = 1. A highly pure
ensemble of CSs at the end of the RAP method is the main
benefit of this scheme, in addition to the ease of only requiring
linearly polarized rf radiation. However, RAP in the weak-
field regime suffers from the extended duration of the process
due to the need to meet the adiabaticity condition for each

consecutive transition [see Eq. (24)]. Another drawback is that
this scheme limits the principal quantum number of the CS to
∼60. Additionally, the long ramping time of the dressed-state
eigenenergies in this scheme limits the coherence time of the
CS in applications that require a superposition of CSs and
other hydrogenic states [29]. For the strong-field regime of
RAP, where multiple hydrogenic states are excited at once,
the procedure does not require as long ramping times and can
be used in conjunction with quantum optimal control theory
[12,13] to minimize the time of passage by means of pulse
engineering. The disadvantage of this strong-field regime is
that it often requires purely σ+- or σ−-polarized rf radiation
[11,12], or a sufficiently large magnetic field parallel to the
electrostatic field [10] to prevent leakage transitions.

Advantages of the crossed-fields method include the ver-
satility of circularizing within manifolds of higher principal
quantum numbers. Also, there is no need for rf radiation
at the location of the Rydberg atoms. As mentioned earlier,
the crossed-fields method is susceptible to mixing of the CS
with low-|ml | states by means of residual electric fields. The
crossed-fields method is also not suitable for applications that
require a quantization axis defined by the electrostatic field
[2,11], as in such applications, one would have to suddenly
turn on an electric field that is exactly parallel to the magnetic
field. This effects a nonadiabatic transition of the CSs through
a multilevel crossing that takes the atoms from the magneti-
cally stabilized to the electrically stabilized regime. If there is
any remaining perpendicular component of the electric field,
the CS becomes contaminated in this process by reduction
of |ml |.

For preparation of an ensemble of cold CSs, laser cooling,
trapping, and circularizaiton can all be done with laser fields
at appropriate frequencies using the methods proposed in this
paper based on an additional term in the minimal coupling
Hamiltonian. In place of constructing in-vacuum and external
electrodes and magnetic coils for the static and rf fields of
the traditional methods, there is the technical convenience of
aligning laser beams external to the vacuum chamber. We
propose three schemes in this paper to cover a versatile range
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of experimental contexts from high-precision spectroscopy
to long-range interactions of Rydberg atoms. The method
of circularization using LG beams would prepare a dilute,
macroscopic sample of CSs that would increase the signal-
to-noise ratio in spectroscopic experiments on CSs yet reduce
density-dependent line broadening due to the low density of
CS atoms produced in this method. Furthermore, because this
method affords a single, direct coupling of the F state to
the CS, the rate of circularization is faster than in low-field
RAP methods, allowing the preparation of CSs to be done in
low-intensity laser fields and weak, static stabilization fields,
F and B, that are parallel. These weak fields provide smaller
perturbations to the Rydberg ensemble, which benefits exper-
iments in high-precision spectroscopy. Circularization via LG
laser modes faces the experimental challenge of stabilizing a
beat frequency at the order of a few THz and yields a low
circularization efficiency of ∼5%.

The one-dimensional, rf-modulated POL presented in
Sec. III yields an appealing efficiency of 89%, is experimen-
tally simple to construct with an acousto-optic modulator,
and provides the control of Rydberg-Rydberg collisions with
lattice depths. Additionally, this scheme could be useful for
the study of magnetic phase transitions in a one-dimensional
chain of Rydberg states [3]. Strong-coupling RAP using this
scheme requires the application of a large magnetic field in
order to prevent leakage transitions that could be experimen-
tally difficult to switch because of eddy currents; this method
also faces the issue of ml -dependent ponderomotive shifts that
need to be controlled, as exhibited in Fig. 7(a).

A superior method to the one-dimensional rf-modulated
POL is the TOPOL presented in Sec. IV that does not require
a large magnetic field for strong ponderomotive couplings due
to the prevention of leakage transitions. With the TOPOL,
a two-dimensional sample of CSs can be prepared with a
spatial selectivity at the diffraction limit of the lattice beams.
Furthermore, the TOPOL provides stronger couplings than the
one-dimensional POL, as exhibited in Fig. 7(b), because the
time-dependent ponderomotive potential effects an electric-
dipole-like coupling of a circularly polarized rf field. One
can also implement quantum optimal control theory for this
configuration in order to select pulses for the rf modulation of
the lattice that transfer the F-states to the CS in the shortest
amount of time. This fast transfer minimizes decoherence
due to stray electric and magnetic fields and would allow

realization of applications in quantum sensing and simulations
of two-dimensional Ising models [29–31]. However, for the
TOPOL, failure in matching the intensities and phases of the
modulating rf and optical beams in each lattice arm, as well
as the polarizations of forward and backward-propagating
lattice beams will result in an effective elliptically polarized
rf field from the ponderomotive coupling that would yield a
low circularization fidelity. Thus, careful optical alignment is
required for the TOPOL.

A key difference between our all-optical methods and the
traditional circularization schemes is the requirement of trap-
ping the atoms with optical fields to realize the ponderomotive
atom-field couplings in the Hamiltonian. We therefore deem
our methods not suitable for experiments with hot atomic
beams because the atoms must be slow enough to be captured
in the optical traps.

VI. CONCLUSION

In summary, we have proposed and discussed three ex-
perimental schemes for optical circularization of Rydberg
atoms using ponderomotive laser traps. These theoretical
investigations demonstrate the versatility of the emerging
subfield of ponderomotive interactions with Rydberg atoms.
Our proposals could address the difficulty of initializing a
quantum system of CSs by using optical couplings instead
of static and rf fields. It would be interesting to investi-
gate multilevel Rydberg systems involving the direct optical
coupling of a direct, first-order optical coupling of an F
state with a CS [32], afforded by the method we proposed
in Sec. II. Additionally, the TOPOL discussed in Sec. IV
would allow a convenient means of initializing a long-lived,
two-dimensional Ising model simulator [30,31]. Another pro-
posed quantum simulator that would benefit from these three
discussed methods would investigate the angular momentum
transport of flexible Rydberg aggregates [33]. Furthermore, all
three of these methods would advance the field of engineering
Rydberg wave packets [34].
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