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A system consisting of a number of trapped two-level atoms in the presence of external inhomogeneous
magnetic field undergoes dephasing: classically, since each atom feels a different field along its trajectory, the
pseudospin rotation rates differ; as a result the average spin decays. It has been demonstrated in recent years
that in the case of systems initiated in the atomic coherent state such spin dephasing can be prevented by tuning
the interaction between the atoms to induce so-called spin self-rephasing. While the effect has been studied
theoretically from a semiclassical point of view, a quantum-mechanical description is limited. In this paper we
provide a numerical simulation of an ab initio model and provide realistic examples of spin self-rephasing used
to counteract the effect of inhomogeneous magnetic field. We found that the spin self-rephasing method can
be also used to prevent atomic squeezed states from decoherence: while the dephasing inhibition is lower as
compared with the case of coherent states, it is still comparatively large and may be useful in real interferometric
scenarios.
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One of the fundamental limitations of precise measure-
ments is noise introduced by measurement statistics: if one
tries to estimate the expectation value of a classical random
variable φ, the variance of an estimator diminishes with the
number of independent experiments N as square root, �〈φ〉 ∝
N−1/2. Quantum information is highly successful in utilizing
entangled states to beat this kind of limit [1]. Gravitational
wave detectors soon are going to utilize the squeezed state
of light to capture the tiny signal coming from the collision
of massive astronomical objects; squeezed states were also
used in the prototypes of magnetometers, capable of scanning
magnetic-field fluctuations varying on the micrometer scale
[2].

In principle, the system of N correlated subsystems, e.g.,
qubits, may be used to reduce the statistical uncertainty down
to the so-called Heisenberg limit, �〈φ〉 ∝ N−1 [3]. The limit
can be saturated by initiating the particles in the interferometer
in a Schrödinger cat state [4]. However, the strongly correlated
states are very fragile and due to their sensitivity to external
disturbances even a small amount of noise can completely
destroy the quantum correlations, making their applications
questionable. In this respect there are very discouraging the-
oretical results showing that in the presence of any noise
the precision scales asymptotically like N−1/2 with at most
constant factor improvement [5]. The larger the noise, the
shorter the duration at which the highly entangled state can
be of importance.

On the other hand, it has been demonstrated in experiments
[6,7] that effects of certain noises can be strongly suppressed,
by so-called spin self-rephasing—a subtle effect imposed by
the quantum statistics and short-range interactions [8]. It has

been observed that for atoms initiated in an uncorrelated
classical-like state the spin self-rephasing increases coherence
time by orders of magnitude. The effect was specifically used
to overcome the noise coming from uncontrolled residual
magnetic field and random shifts due to fluctuations of the
total number of atoms [9].

The natural question arises whether these techniques can
be applied to the correlated atomic sources, useful in the
context of interferometry. In general, the question is very
difficult, as one has to account for continuous degrees of
freedom, typically omitted in theoretical treatments.

Here, we search for improvements in a specific micro-
scopic ab initio model with decoherence caused by the ex-
ternal magnetic field, trying to elucidate the role of quantum
statistics in preserving quantum correlations in systems of
interacting, trapped two-level atoms (qubits) coupled to a
magnetic field.

The paper is organized as follows. In Sec. I we present
our model of N interacting two-level atoms trapped in the
harmonic trap and in the presence of the inhomogeneous
magnetic field. The first results are given in Sec. II, devoted
to the simplest case of the ideal gas. In this section we
discuss how the quantum state loses its coherence due to the
inhomogeneous magnetic field and how the process depends
on quantum statistics. In Sec. III we turn to the interacting
case, in which the spin self-rephasing occurs. We show how
the interaction keeps the spin state completely symmetric,
therefore blocking the dephasing. On the other hand, the
mechanism does not ensure that the desired properties (e.g.,
visibility and squeezing parameter) are preserved. This leads
to the central part of the paper—the study of whether the
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interactions can be employed to protect entanglement. We
answer this question by giving an example of the squeezed
states, the squeezing of which is preserved in a certain window
of interaction. Discussion of the results follows in Sec. IV.

I. SYSTEM DESCRIPTION

We study a thermal cloud of N bosonic two-level atoms
trapped in a harmonic one-dimensional (1D) trap, the internal
degrees of freedom of which are spanned by two hyper-
fine states, which we denote by |↓〉 and |↑〉 (in physical
realizations various atoms and internal states are used). The
magnetic field is assumed to be nonuniform. We focus on
dynamics in which an equilibrated system, a thermal cloud
of N atoms in |↓〉, is suddenly initiated in a certain state of
the internal degrees of freedom |ψspin〉, assuming unchanged
spatial degrees of freedom:

ρ̂(t = 0) = ρ̂thermal ⊗ |ψspin〉 〈ψspin| , (1)

where ρ̂thermal is the initial spatially thermal state [10]. Such
a family of states covers the typical ones, in which by a
π/2 pulse the atoms are in the spin coherent state with
|ψ〉 equal to ⊗N

i=1( |↓〉i+|↑〉i√
2

) or squeezed states generated by
two-axis countertwisting dynamics [11]. This is the standard
initial state of atomic interferometers, where the fundamental
quantity is the coherence

C := |	S| =
√

〈Ŝx〉2 + 〈Ŝy〉2, (2)

useful when the dynamics takes place on the equator of the
Bloch sphere (〈Sz〉 = 0), which is the case in typical scenarios.
The above is expressed with the help of the collective spin
projection operators:

Ŝx :=
N∑

i=1

σ̂x,i, Ŝy :=
N∑

i=1

σ̂y,i, Ŝz :=
N∑

i=1

σ̂z,i. (3)

The dynamics is generated by the Hamiltonian:

Ĥ =
N∑

i=1

(
− h̄2

2m

∂2

∂x2
i

+ V (x̂i ) + Ĥ (i)
B

)
+

∑
i< j

V̂ (i, j)
int . (4)

The first sum in the Hamiltonian (4) contains a sum of the
single-particle contributions, with a harmonic external poten-
tial V (x̂) = 1

2 mω2x̂2 and a nonuniform magnetic field. We will
show results for the case B(x) = b0 + b1x + b2x2 polarized
along the Z direction. Therefore, the operator ĤB expressing
the energy in magnetic field takes the form

Ĥ (i)
B := �μ B(x̂i ) σ̂z,i, (5)

where the coefficient �μ has the meaning of the differential
magnetic moment between the states |↓〉 and |↑〉. The second
sum in (4) expresses the energy arising from the interaction
between atoms. We focus on the short-range interactions
modeled by delta functions. There are three channels of such
interaction, depending on the internal levels of the interacting
atoms. Therefore, the interaction potential

V̂ (i, j)
int := δ(x̂i − x̂ j )

(
g00P̂00

i, j + g11P̂11
i, j + g01P̂01

i, j

)
(6)

depends on the projectors P̂σσ ′
i, j which restrict the ith and jth

atoms to the subspace with one atom in |σ 〉 and one atom
in |σ ′〉.

The position dependent magnetic field, which results in
the decay of coherence, has three contributions in our model.
The uniform part b0σz only shifts the energy levels. This
term alone would only rotate the whole state |ψ (t )〉 =
e−i�μ b0t Ŝz/h̄ |ψ (0)〉; since it commutes with every other part of
the Hamiltonian, it may be removed by considering the state in
the rotating reference frame. Because it introduces only trivial
dynamics, we employ this procedure and set b0 = 0.

The term b1x σ̂z,i shifts the center of the trapping harmonic
potential depending on the internal state. Finally b2x2 σ̂z,i

modifies the trap frequency ω into ω′ :=
√

ω2 + 2�μb2〈σ̂z〉
making it also state dependent. We restrict our consideration
to small magnetic field, such that ω2 � �μb2—an often
encountered scenario in the experiments.

II. NONINTERACTING CASE: ROLE OF THE QUANTUM
STATISTICS

Due to the nonuniform quadratic fields one has to deal
with two harmonic potentials Vσ (x) associated with atoms in
|σ 〉, with σ =↓, ↑. We will designate eigenstates (Hermite
functions) for these two potentials as |φn,σ 〉. In the ideal gas
case, the only effect of the linear term

∑
b1x̂σ̂z,i is the relative

shift between the eigenstates |φn,↑〉 and |φn,↓〉. In the extreme
case of strong magnetic field the two harmonic traps would
be separated, and then the coherence C would vanish, just
due to vanishing overlap between clouds of atoms in different
internal states. For small magnetic field, being the subject of
this paper, the linear term is less significant than the quadratic
term

∑
b2x̂2

i σz,i, as discussed below. The quadratic term in the
magnetic field is also an experimental issue [6] .

We first show in the example of one qubit how the pres-
ence of the state-dependent potentials leads to the contrast
decay in time. For one particle, initially in a pure state
|ψ (x; t = 0)〉 (|↓〉 + |↑〉)/

√
2, dynamics can be easily eval-

uated. The spatial part of the state can be expanded in both
bases of eigenstates (separately for σ =↑ and ↓):

ψ (x; t = 0) =
∑

n

cn,σ |φn,σ 〉 , (7)

which leads to a formula for the state at time t :

|ψ (t )〉 = e−iHt/h̄ |ψ (t = 0)〉 =
∑

n

cn,σ e−iEn,σ t/h̄ |φn,σ 〉 |σ 〉 ,

(8)
where En,σ = h̄

√
ω2 + 2 �μ b2 〈σ |σ̂z|σ 〉(n + 1/2) are the

eigenstates of the modified harmonic potentials. The con-
trast (2) can be written as C = |〈Sx + iSy〉|. Let us define
the term s := 〈Sx + iSy〉; being an expectation value of the
single-particle operator, it is extensible—contributions from
independent atoms are simply added. Its value for a single
atom in a state described by Eq. (8) is

ssp = 1

2

∑
n,m

c∗
n,0cm,1 e−i(En,1−Em,0 )t/h̄ 〈φn,0|φm,1〉. (9)

We consider only weak magnetic fields. Then the phase evo-
lution will be more important than the stationary overlaps, for
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FIG. 1. Decay of the coherence (2) of ideal gas in a thermal state.
The decay is due to a quadratic magnetic field with b2 = 0.05 (in
oscillatory units), without the linear term (b1 = 0). Temperature is
kBT = 10h̄ω and number of atoms is equal to N = 100 in all three
considered cases.

which we assume 〈φn,0|φm,1〉 ≈ δm,n. If the initial spatial state
is the nth eigenstate of the bare harmonic potential |n〉, the
value determining the constant rotates on the complex plane:
s|n〉

sp ≈ 1
2 exp[−i2�μb2nt/(mω)]. In this situation the contrast

is constant—when more atoms are added, the situation is
changed due to different rates of rotation.

The last formula is handy to determine the decay of the
contrast. If the atom was initially in the thermal state of
the bare potential, sth

sp ≈ 1−ξ

1−ξ e−i
2�μb2t

mω

, where ξ = e−h̄ω/(kBT ).

The computation may be applied to a thermal state of many
noninteracting atoms: the composite contrast depends on
single-particle contributions weighted according to the atom
occupation,

Cth ≈
∣∣∣∣∣

∞∑
k=0

〈nk〉T

N
s|k〉

sp

∣∣∣∣∣, (10)

where 〈nk〉T is the thermal average occupation of the kth
energy level.

Intuitively, the bigger the spread of atoms’ energies, the
bigger the differences between the phases the atoms accumu-
late during the evolution. By raising the gas temperature, we
should observe faster decay of the contrast. An interesting
situation is when we fix a temperature and increase the
number of atoms. Then one observes qualitatively completely
different behaviors of the contrast decays, depending on the
atomic statistics one assumes. An example for ideal gas is
given in Fig. 1, which shows the role of the atomic statistics—
a key factor in preservation of the coherence.

In the fermionic case, the thermal state in the limit N → ∞
converges to a many-body state in which each single-particle
level up to the energy Nh̄ω is occupied by a single atom.
The spatial and momentum distributions both widen, leading
to quicker dephasing and coherence decay. In the case of
bosons the reverse happens. In the limit N → ∞ mostly the
single-particle ground-state mode becomes occupied—a 1D
reminiscence of Bose-Einstein condensation. The density is
then dominated by the ground-state contribution, with all

atoms being in a narrow region of space and momentum. Such
gas dephases at a slower pace as compared to fermions and
distinguishable particles.

III. INTERACTING CASE: SPIN SELF-REPHASING

The interacting case does not admit analytical treatment,
therefore numerical simulations of the dynamics have been
performed.

Due to the interaction three additional parameters do ap-
pear: the interaction strengths g00, g01, and g11 [see Eq. (6)].
To reduce the parameter space we decided for the following
parametrization [12]:

g00 = g − c,

g01 = g,

g11 = g + c.

(11)

As a motivation for this choice, let us mention some results
in the field of Bose-Einstein condensation of cold clouds
of several two-level atoms. It is known that in the single
mode approximation, when all atoms occupy a single common
spatial orbital, the dynamics in the internal degrees of freedom
is governed by the Hamiltonian HOAT = χ Ŝ2

z + χ̃ ŜzN̂ , where
N̂ is a particle number operator—a model similar to the one-
axis twisting Hamiltonian known from [11]. The parameters
χ and χ̃ , often called called “nonlinearities,” in the one spatial
mode approximation of the Bose-Einstein condensate are
equal to

χ = 1

2h̄

(
∂2E

∂N1
+ ∂2E

∂N2
2

− 2
∂2E

∂N2∂N1

)
, (12)

χ̃ = 1

2h̄

(
∂2E

∂N0
− ∂2E

∂N2
1

)
, (13)

where E is the energy of the bimodal Bose-Einstein con-
densate, with N0 atoms in one mode and N1 atoms in the
second one. The derivatives in Eqs. (12) have to be evaluated
at the mean mode occupations, i.e., in the case of a half-half
superposition studied in this paper, at 〈N0〉 and 〈N1〉 equal to
N/2, where N is the total number of atoms.

This one-axis twisting Hamiltonian leads to nontrivial
dynamics—a coherent state may become squeezed during the
evolution. In the long-time regime (not yet realized in an
experiment) a Schrödinger cat state—superposition of two or-
thogonal spin coherent states—appears [13]. This entangling
dynamics would make the model more complex and it would
be more difficult to draw conclusions. Therefore we want a
system in which the nonlinear term χ Ŝ2

z is small, even though
the interactions play an important role for spin self-rephasing.
In the aforementioned approximation the parameter by Ŝ2

z
vanishes when interaction strengths are parametrized as in
Eq. (11): χ ∝ (g00 + g11 − 2g01). Avoidance of the nonlinear-
ities is the primary cause of this parametrization.

In real experiment the system is quasi-1D—the gas is
trapped in the strongly elongated harmonic trap. The cor-
responding effective 1D model has the coupling strength g
equal to 2h̄ω⊥a, where ω⊥ is the high frequency of the
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(a)

(b)

FIG. 2. Energy diagram illustrating the dephasing and the spin
self-rephasing mechanisms for (a) two and (b) three bosons. Two
(pseudo)spins can be either in the completely symmetric space
(triplet) or in the singlet state; the nonuniform magnetic field couples
the two subspaces. As the subspaces have the same energies, this
coupling leads to a transfer of atoms out of the symmetric subspace,
i.e., to the dephasing. In the case of higher number of atoms the
nonuniform magnetic field acts similarly, coupling the maximal and
lower total spin subspaces. Interactions between particles separate
the total spin subspaces [J = 1 and 0 in (a), J = 3/2 and two copies
of J = 1/2 in (b)], leading to smaller effective coupling. The figure
is an adaptation of the figure and explanation given in [15].

transverse harmonic potential blocking the motion in the
direction perpendicular to the X axis. As an example, in
the case of rubidium atoms trapped in the potential with
frequencies (ωx, ω⊥) = 2π × (17, 14 000) Hz, as in [14], one
has g ≈ 0.5 in oscillatory units based on ωx. Therefore we
scan parameter space in the experimentally relevant interval
g ∈ [0, 1]. The scattering lengths of 87Rb are close to each
other—the difference between g11 and g00 is around 0.05g, so
the parameter c for rubidium atoms trapped in the state of the
art trap will be around 0.01.

In the next section we will show how the spin self-
rephasing works for this parametrization and the experimen-
tally relevant coupling strengths range.

The spin self-rephasing phenomenon relies on the proper
tuning of the interaction strengths [6]—such that the energy-
level shift in the symmetric subspace (see Fig. 2) overcomes
the effects of the inhomogeneity of the magnetic field. This
energy shift, known as the collisional shift δcol is approxi-
mately equal to |g11 − g00|n̄, where n̄ is the average density
of the gas. The effect of the magnetic-field inhomogene-
ity �B also introduces its own energy shift: Approximately
the energy originating from the presence of the magnetic
field 〈B̂(x)〉.

Finally the so-called lateral elastic collision energy (see
[6]), Elat = 2g2

01n̄vT/(3π
√

πm) should be smaller than h̄ω

(Knudsen regime) and the collisional energy δcol. We intro-
duced vT which is the thermal velocity equal to

√
kBT/m; T

is the temperature. In the simulations presented in this paper,
�B and Elat are of the order of 10−2 and δcol is of the order of
1 in oscillatory units.

A. Coherent states

In this section the state [|ψspin〉 in Eq. (1)] is initiated as
maximal spin projection of Sx; the aim is to tune interactions
in such a way that the coherence C [Eq. (2)] decays slower.

It has been experimentally demonstrated that the dephas-
ing can be substantially blocked thanks to the interaction
between atoms in the so-called spin self-rephasing effect
[6,7,16–18]. In articles following the initial discovery of
spin self-rephasing, the importance of total spin preservation
has been studied as well [6]. The original explanation is
illustrated by the diagrams in Fig. 2(a) involving analysis
of two-particle subsystems: Initially, the particles are in the
triplet spin state; the inhomogeneous magnetic field couples
| j = 1; m = 0〉 := (|↑↓〉 + |↓↑〉)/

√
2 to the antisymmetric

singlet spin state | j = 0; m = 0〉 = (|↑↓〉 − |↓↑〉)/
√

2, effec-
tively lowering population of maximal total angular momen-
tum. As we deal with bosons, the atoms can be in the singlet
states in the internal degrees of freedom only if simultane-
ously their spatial wave function is antisymmetric. The inter-
action energy coming from the short-range potential is zero
in the singlet subspace—a result of the spatial wave function
being antisymmetric as well. On the other hand if the internal
state of atoms is in the symmetric triplet manifold then also
their spatial wave function has to be symmetric, and these
atoms do interact. Therefore, in the case of interacting bosons
energy levels of triplet spin substates are shifted by �E (see
Fig. 2), but the energy of the singlet case is constant (the
spatial state is antisymmetric). As a result, population transfer
is diminished. In the case of the higher number of atoms
the dephasing mechanism in this picture is slightly more
complicated, as energies of all spin subspaces do change, but
the core reasoning still applies [see Fig. 2(b)].

To visualize the aforementioned transfers of population, let
us introduce the spin-density matrix of a system: After partial
trace of spatial degrees of freedom, only internal degrees of
freedom are left. We can rearrange them to form the block-
diagonal spin-density matrix, containing all of the information
useful in quantum metrology:

ρ̂spin =

⎛
⎜⎜⎜⎜⎝

ρ̂ j=N/2 . . .

ρ̂ j=(N−1)/2
...

...
. . .

...
. . . ρ̂ j= jmin

⎞
⎟⎟⎟⎟⎠, (14)

where jmin = 1/2 for odd N , otherwise jmin = 0. The sub-
space with the maximal collective (pseudo)spin, j = N/2,
corresponds to completely symmetric states. Usually in
metrological scenarios the state is initialized so that only
the ρ j=N/2 part is populated (it is the case for coherent and
squeezed states). Population conservation of this part of the
spin-density matrix is hence a natural goal.

As demonstrated in Fig. 3, in the simulations, the desired
behavior is observed: When interactions are present, a large
amount of maximal spin population is preserved. The number
of simulations is summarized in the lower panel of Fig. 3,
showing the map of weights of the maximal spin subspace
at fixed time ωt = 30. By this metric, total spin is preserved
well if high enough interaction between particles is present; a
wide range of interaction strengths works well.
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FIG. 3. Top: Evolution of maximal spin population as a function
of time for several interaction strengths denoted in the bottom image
by dots (the noninteracting case is denoted by thick black line),
N = 5, kBT = 3h̄ω, and quadratic inhomogeneity b2 = 0.01. Quick
decay followed by plateau is visible. Bottom: Preservation of trace
for the same parameters for time ωt = 50 as a function of interac-
tions parametrized by mean interaction strength g and c.

As shown above, interactions help in preservation of the
total spin. To determine how the coherence is protected in the
same scenario, Fig. 4 shows the dynamics and the map of
values of C at a fixed instant of time ωt = 50 in the broad
range of interaction strengths. Although the state remained
symmetric, apparently its dynamics is quite complex, and in
many cases its coherence has been lost. This is caused in part
by the small transfer between the symmetric and the other
subspaces, but also the interactions may separate the clouds of
atoms in different internal states (spin-position entanglement)
or introduce strong, here unwanted, quantum correlations.

A natural question arises whether it is possible to use
the spin self-rephasing to prevent not only the first-order
coherence—already shown in the experiment—but also more
subtle correlations. The simulations performed do not indi-
cate usefulness in protection of the highly entangled states
like the Schrödinger cat state (|N0〉 + |0N〉); from now on we
focus on squeezed states of practical importance in quantum
metrology.

B. Squeezed spin states

Typical preparation of the squeezed spin state involves
utilization of particle-particle interactions to produce the
effective Hamiltonian quadratic in spin components. A few
of the examples are one-axis twisting S2

z (implemented in the

FIG. 4. Effect of interactions on preservation of the coherence
C. Total number of particles N = 5, temperature kBT = 3h̄ω, and
quadratic inhomogeneity b2 = 0.01. Top: typical short-time evolu-
tion of C for several interaction strengths denoted in the bottom
image by dots; the noninteracting case is denoted by thick black
line. As evidenced by the figure, it is possible to approximately
double the time of decoherence (when the contrast attains half of
its original value). Bottom: 〈Sx〉 at ωt = 50 for various values of
interaction strengths parametrized by g and c. Please note that the
same interaction range is used in Fig. 3.

number of experiments [19–22]) or two-axis countertwisting
(TACT) SySz + SzSy. Spin squeezed states are produced as a
result of the evolution. Here we use the TACT model of spin
squeezing (although we expect the results to be essentially the
same for OAT because of short squeezing times), in which
the initial squeezed state is generated by evolution of coherent
state |+〉 (the eigenstate to the maximal Sx eigenvalue):

|ψθ 〉 = exp[iθ (SySz + SzSy)]|+〉. (15)

The TACT Hamiltonian is used only in the preparation of the
spin state for further numerical evolution according to Hamil-
tonian Eq. (4). During the preparation only spin degrees of
freedom are taken into account (in particular, inhomogeneous
magnetic field does not affect the initial state). The squeezing
parameter quantifies the usefulness of the state in quantum
metrology, as compared with the spin coherent states [23].
The definition depends on the choice of direction of spin
observation 	n and a perpendicular direction 	n⊥:

ξ 2
ψ = N (�2 	S · 	n⊥)ψ

〈	S · 	n〉2
ψ

. (16)
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FIG. 5. Effect of interaction on preservation of squeezing param-
eter ξ 2 for various values of interaction strengths parametrized by
g and c. The color is correlated with the time of decoherence t at
which squeezing parameter ξ 2 becomes larger than 1 as compared
to the time of decoherence without interactions t0. The temperature
kBT = 3h̄ω, quadratic inhomogeneity b2 = 0.01, and total number
of particles N = 5 (top) and N = 10 (bottom). In both cases the
squeezing time [θ in Eq. (15)] is 0.05, leading to ξ 2(N = 10) = 0.44
and ξ 2(N = 5) = 0.69 at the beginning of the evolution. In the case
of N = 10 it is possible to increase the time at which ξ 2 becomes
higher than 1 by a factor of 75%; for N = 5 this time can be increased
by about 60%.

In our calculations we use 	n ∝ 〈	S〉. Since 〈Sz〉 = 0 during the
evolution and the spin dynamics is confined to the equator of
the Bloch sphere, we choose 	n⊥ = (ny,−nx, 0). This variable
is a measure of entanglement between individual spins: If
ξ 2 < 1, the spins are entangled. In the following paragraphs
we study the dynamics of the squeezing parameters, assuming
the initial spin state prepared by the TACT Hamiltonian
[Eq. (15)].

Our results are shown in Fig. 5. For ten particles even
for relatively long evolution time, ωt = 30, one can restore
squeezing ξ < 1 in certain windows of parameters, which
corresponds to delay of the decoherence time of about 75%
(for N = 5 the decoherence time can be delayed by about
60%). The large interaction strengths are not desired: They are
outside the parameter range required by spin self-rephasing (a
result of Elat increase) and induce strong correlations along
with complicated spatial dynamics.

Our results indicate that the protection of squeezed states is
lower as compared to coherent states, however still reasonably
large to expect good results when the number of particles
is higher. Schrödinger cat states—superpositions of two co-
herent states—on the other hand are known to be extremely
fragile to any source of noise, which is reflected in our sim-
ulations: Their coherence is quickly lost and particle-particle
interaction offers no protection.

IV. DISCUSSION AND CONCLUSIONS

In this paper we investigated ab initio a system of sev-
eral two-level particles (pseudospins) in one-dimensional har-
monic potential. In such an approach, all effects typically
considered in metrology in an approximated way, such as col-
lisional shift, noises, or identical spin-self rotation effect, are
automatically and rigorously taken into account, as incorpo-
rated in the dynamics generated by a many-body Hamiltonian.

The subject of the paper is to show that the spin self-
rephasing mechanism can be used to prevent decoherence of
the entangled states induced by an inhomogeneous magnetic
field. In the semiclassical description, each pseudospin would
rotate around the magnetic-field polarization axis, with an
angular velocity depending on the value of the local field
B(x). As a result, the collective spin decays in time. From one
point of view, the dephasing is caused by populating a space
with a total spin of less than N/2. This unwanted process can
be inhibited by tuning the interactions between particles: In
the interacting system, the subspaces with different total spin
have different interaction energies, which stops the population
transfer between them [6]. On the other hand, even if the
state remains completely symmetric (total spin j = N/2), the
interactions also contribute to the different type of dephasing,
as shown in Fig. 4. One such effect is the introduction of
collisional shift, and in the case of larger interactions even
nonlinear effects leading to phase collapse. In the light of
emerging quantum technologies, it is not clear whether the
interactions can be used to protect entanglement. In this paper
we have shown that there is a window of parameters in
which the squeezed state obtained from the TACT model is
stable despite the presence of nonlinear magnetic field. In
the example for ten particles, the time scale at which the
squeezing disappears can be extended by a factor of 75%
using reasonably low interaction strengths.
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APPENDIX A: SIMULATION METHOD

Our implementation provides a way to determine the
evolution of state vectors and expectation values of observ-
ables of a system consisting of several bosons in a weakly
inhomogeneous harmonic trap, in both the high- and low-
temperature limit. The numerical simulations assume uni-
tary evolution generated by Hamiltonians composed of (1)
pseudospin components, Sx, Sy, Sz, and polynomials of them,
S2

z , SxSy + SySx, . . .; (2) spin-position couplings, emerging
from the trap inhomogeneities,

∑
x̂i σ̂z,i,

∑
x̂2

i σ̂z,i, . . .; and
(3) particle-particle interaction [Eq. (6)].

In the high-temperature scenario we use a quantum Monte
Carlo technique, which requires construction of sub-basis
around the fixed spatial Fock state, which corresponds to the
subspace traversed by the state under time evolution.
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1. Initial state

The initial state is assumed to be thermal in spatial degrees
of freedom and pure in spin: The spin part is in fact assumed to
be in the minimal spin projection Sz eigenstate. The resulting
state is subsequently rotated by Sy, so that it is now in
maximal spin projection of Sx, with the spatial degrees of
freedom left intact; if needed, the state can also be squeezed
by the TACT Hamiltonian. This is motivated by the usual
experimental realizations, in which trapped atoms are selected
by their internal state and left to thermalize in the trap, then
a sequence of pulses is applied to the trapped ensemble, and
later evolution is studied.

2. Thermal state

The initial state thus depends on the properties of the
Hamiltonian restricted to the subspace with minimal spin pro-
jection, Sz = −N/2. In the low-temperature limit, the relevant
part of the Hamiltonian can be diagonalized and the eigen-
states evolved according to the procedure described above
with appropriate weights.

The simulation of high-temperature states is more intri-
cate: The relevant part of the Hamiltonian (i.e., the subspace
in which the majority of the population resides) has high
enough dimension so that no direct diagonalization might be
applied. There is, however, a method of random sampling
from the thermal density matrix, often called quantum Monte
Carlo, which greatly reduces the computational cost needed
to determine the evolution of the initially thermal state at
the expense of deterministic behavior. Consider the thermal
density matrix,

ρT = exp(−H/T )

Tr exp(−H/T )
. (A1)

By denoting Tr exp(−H/T ) by Z , it is possible to rewrite the
above expression by inserting the identity matrix:

ρT = Z−1 exp

(
− H

2T

)[∑
i

|i〉 〈i|
]

exp

(
− H

2T

)
. (A2)

Sampling from the density matrix can now be understood
as approximating the identity matrix with finite number of
elements |i〉 〈i|—this is the same as choosing random vectors
from a (fixed) basis S with uniform probability and evolving
them by exp (− H

2T ). This of course works the best if S is as
close to the eigenbasis of H as possible. In the simulations we
have chosen S to be the eigenbasis of the harmonic oscilla-
tor without inhomogeneities and interactions—since both of

FIG. 6. Figure analogous to the bottom picture of Fig. 5 (preser-
vation of squeezing parameter for N = 10); note the same range of
interaction parameters. In order to prepare this picture, the simulation
basis has been artificially restricted, effectively leading to ignoring
of spatial dynamics. The oversimplified description leads to deco-
herence time delay of about 180%, far from 75% obtained with more
accurate simulation.

these terms of the Hamiltonian are small as compared to the
bare harmonic oscillator energy, the assumption is fulfilled.

The sampled vectors are not normalized, since exp (− H
2T )

is not unitary. This is anticipated behavior: Length of the vec-
tor indicates the relative weight when the sampled ensemble is
brought together in order to calculate the expectation values.
Samples can be further evolved unitarily to determine the
dynamics of a system, and this is the procedure employed
in the simulations. In our case, samples are drawn until
the appropriate expectation values in the relevant time span
converge to a stable value.

APPENDIX B: IMPORTANCE OF SPATIAL DYNAMICS

Proper treatment of spatial degrees of freedom is important
in order to obtain a meaningful result, especially when large
interaction strengths are present. To determine the effect of
spatial dynamics, we have performed additional simulations
with an artificially restricted basis. The restriction effectively
reduces the effect of particle-particle interactions to energy
shift, which is not an accurate description for high interaction
strengths. This is illustrated in Fig. 6, in which results analo-
gous to those in Fig. 5 are presented. The discrepancy between
the two pictures is clear and demonstrates the importance
of full quantum description in the analysis presented in this
paper.

However, such simplified simulations are convenient in
analysis of noninteracting bosons. Provided the magnetic field
is small, and little spatial dynamics is introduced, the descrip-
tion is sufficient and useful in calculation of e.g., evolution
of the squeezing parameter [Eq. (16)], which depends on
expectation values of two-particle operators though variance.
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