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We present a pulse-shaper-based holographic technique for the time-resolved and phase-sensitive observation
of ultrafast quantum dynamics. The technique combines bichromatic white light polarization pulse shaping with
the tomographic reconstruction of photoelectron wave packets. The physical scheme is based on the interference
of a probe wave packet from N + 1 resonance-enhanced multiphoton ionization via the target states and a
reference wave packet from M + 1 multiphoton ionization of the ground state. To create the wave packets,
we employ carrier-envelope phase stable bichromatic (Mω:Nω) pump-probe pulse sequences. The scheme is
demonstrated on femtosecond Rydberg wave-packet dynamics in potassium atoms using corotating circularly
polarized (2ω:3ω) pulse sequences. The interference of continuum states with different angular momenta yields
a crescent-shaped photoelectron wave packet rotating in the laser polarization plane due to the interplay of
the optical phase and the accumulated quantum phase. Carrier-envelope phase control of the rotation provides
access to the photoelectron asymmetry, enabling background-free detection of the crescent’s angular motion
which maps the bound-electron dynamics.
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I. INTRODUCTION

The phase-sensitive detection of ultrafast dynamics has re-
cently attracted much attention [1–5]. Different interferomet-
ric [3,6–11] and holographic [11–15] techniques have been
devised to that end. The fundamentals of holographic imaging
have been developed in optics by Gábor [16], honored by the
Nobel Prize in 1971 [17], and were later extended to ultrafast
optics [18,19]. The general scheme of holography is based
on the interference of an object (also termed signal or probe)
wave and a reference wave. The object path involves the target
to be measured, whereas the reference path bypasses the tar-
get. After recombination of both paths, the target can be recon-
structed from the interference pattern, provided the reference
wave is well characterized. The application of this concept
to the measurement of electronic wave functions in terms of
both amplitude and phase was initially proposed by Leichtle
et al. [1]. Since then, various experimental implementations
of quantum state holography have been reported [20–23].

Here we present a technique for holographic imaging of
ultrafast quantum dynamics. The technique is based on the
creation of sculpted free-electron wave packets by interfer-
ence of different multiphoton ionization (MPI) paths [24–27]
using shaper-generated bichromatic femtosecond laser pulse
sequences [28,29]. Recently, we have applied the method to
create and control photoelectron wave packets with unusual
symmetry properties, employing phase-stable polarization-
tailored bichromatic pulses with commensurable frequen-
cies [26,27]. In particular, we demonstrated the creation of
a crescent-shaped photoelectron wave packet by nonresonant
MPI of sodium atoms using (3ω:4ω) corotating circularly po-
larized (COCP) pulses [27]. It was shown that the orientation
of the crescent in the laser polarization plane is controlled by
the optical phases, in particular, the carrier-envelope phase
(CEP). In a resonantly enhanced MPI (REMPI) scenario,

however, the rotation is additionally sensitive to quantum
phases, introduced either by the excitation itself, for example,
due to Stark shifts, or during the subsequent time evolution of
the system. Hence, for fixed optical phases, the highly asym-
metric crescent acts like a pointer indicating the accumulated
quantum phase by its rotation angle, reminiscent of the hands
of a clock [30].

In this work we utilize the photoelectron crescent as a
spectroscopic tool to obtain holographic information on ul-
trafast bound-electron dynamics. In contrast to our previous
study, where the crescent rotation was manipulated via the
optical phases [27], here we analyze the angular dynamics of
the crescent induced by the time evolution of electronic wave
packets propagating in the excited quantum system. The gen-
eral scheme is based on the use of time-delayed bichromatic
COCP pulse sequences with one color serving as a pump and
the other color serving simultaneously as a probe and a refer-
ence pulse [31,32]. The pump pulse initiates the bound target
wave packet via N-photon excitation. The probe pulse ionizes
the system from the excited target states and maps the bound
dynamics into a probe photoelectron wave packet. Effectively,
the probe wave packet results from a time-delayed bichro-
matic N + 1 REMPI process. The twist of the holographic
technique is that the probe pulse simultaneously creates a
reference photoelectron wave packet by direct single-color
M + 1 MPI from the ground state (M �= N). Energetic overlap
of the probe and reference wave packet in the continuum
requires Nωpu + ωpr = (M + 1)ωpr . This relation is fulfilled
by choosing commensurable central frequencies of the pump
and probe pulse with Nωpu = Mωpr (spectral overlap in the
bound system), i.e., by employing bichromatic (Mω:Nω)
pump-probe pulse sequences (see Fig. 1). Due to the different
numbers of photons absorbed on each ionization path, the
resulting interference pattern of the probe and the reference
wave packet in the continuum is sensitive to the CEP [26,27].
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FIG. 1. Holographic excitation scheme of K atoms interacting
perturbatively with a COCP (2ω:3ω) pump-probe pulse sequence.
The red pulse (pump) launches an n f -type Rydberg wave packet by
three-photon excitation. The time-delayed blue pulse acts as both a
probe and a reference pulse, mapping the Rydberg dynamics into
a g-type photoelectron wave packet and simultaneously creating an
f -type reference wave packet (top inset). The interference of both
partial waves gives rise to a crescent-shaped total wave packet. The
orientation of the crescent is controlled by the optical phase, in
particular the CEP, and the accumulated quantum phase, encoding
holographic information on the bound-state-electron dynamics. The
bottom inset shows a close-up of the primarily excited Rydberg
states 7 f and 8 f lying within the bandwidth of the third-order pump
spectrum.

In the COCP case, the CEP dependence induces a rotation of
the photoelectron asymmetry in the polarization plane. The
use of energy- and angle-resolved photoelectron detection
enables us to utilize this controlled rotation to separate the
symmetric and the antisymmetric part of the photoelectron
density. Both parts deliver complementary spectroscopic in-
formation. Their joint analysis allows for the independent and
unambiguous characterization of individual quantum states in
the bound-electron wave packet. Direct experimental access
to the antisymmetric part, moreover, provides background-
free observation of the crescent dynamics, thus enhancing
the contrast of the holographic technique. In combination,
the CEP-sensitive interference of photoelectron wave packets
with different angular momenta and the use of differential
detection techniques for their measurement are the key to the
holographic observation of ultrafast dynamics imprinted in the
photoelectron asymmetry.

The paper is structured as follows. We start in Sec. II with
a description of the physical system, including the theoretical

background of our holographic technique and the experimen-
tal setup and strategy. The experimental results are presented
in Sec. III. In Sec. III A we focus on the symmetric part of the
measured time-resolved photoelectron spectra, which yields
spectroscopic information on the beatings between pairs of
excited bound states. In Sec. III B we evaluate the antisym-
metric part of those spectra describing the beating between the
individual states and the probe pulse. We present tomographic
reconstructions of the three-dimensional (3D) photoelectron
density for selected time delays to demonstrate its crescent
shape and illustrate its angular dynamics. We summarize in
Sec. IV.

II. PHYSICAL SYSTEM

In this section we introduce the physical system and de-
scribe our experiment. To motivate the experimental strategy
for the holographic reconstruction of ultrafast electron dynam-
ics, we start with a theoretical description of the probe and the
reference wave packet, both of which are created by the probe
pulse after resonant multiphoton excitation of the Rydberg
dynamics by the pump.

A. Theoretical background

The dynamic quantum state holography technique intro-
duced in Sec. I is demonstrated on Rydberg wave-packet dy-
namics in potassium atoms serving as a prototype for ultrafast
electron dynamics. The excitation scheme for K atoms inter-
acting perturbatively with a COCP (2ω:3ω) pulse sequence is
depicted in Fig. 1. An n f -type Rydberg wave packet is created
via three-photon excitation (N = 3) by a red pump pulse
Ẽ+

pu(ω) centered at ωpu = 2.06 rad/fs (λpu = 915 nm). The
blue probe pulse Ẽ+

pr (ω), centered at ωpr = 3.09 rad/fs (λpr =
610 nm), maps the dynamics into a g-type continuum. Simul-
taneously, the blue pulse acts as a reference pulse providing
an f -type reference wave packet by direct 2 + 1 REMPI from
the ground state (M = 2). Due to the commensurable central
frequencies, with 3ωpu = 2ωpr , the probe and the reference
wave packet interfere at 3h̄ωpu + h̄ωpr = 3h̄ωpr in the con-
tinuum, enabling holographic measurement of the Rydberg
dynamics similar to the quantum state holography reported
in [1,20,33]. Despite its polarization, the electric field of the
pulse sequence is completely described by a scalar function,
i.e., by the circular field component. In frequency domain, we
express the field by its positive-frequency spectrum

Ẽ+(ω) = Ẽ+
pu(ω) + Ẽ+

pr (ω)

= Ẽpu(ω − ωpu)ei[ϕce−ϕpu (ω)]

+ Ẽpr (ω − ωpr )ei[ϕce−ϕpr (ω)], (1)

where Ẽν (ω) (ν = pu, pr) are the spectral envelopes of the
two colors, ων are the corresponding central frequencies, ϕce

is the common CEP, and ϕν (ω) are spectral phase modulation
functions [28,34,35]. In the pump-probe experiment presented
here, the pump pulse is advanced in time by application of
a linear spectral phase ϕpu(ω) = τ (ω − ωpu), with τ < 0. To
avoid the additional τ -dependent optical phase introduced by
a mechanical interferometer, we applied the linear phase with
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respect to the central frequency ωpu. By this means, only the
temporal envelope of the pump is shifted while the carrier
oscillation remains fixed [36]. For optimal time resolution,
the probe pulse was chosen to be bandwidth limited, i.e.,
ϕpr (ω) ≡ 0. Residual spectral phases introduced by optical
elements in the beamline were compensated by adding the
inverse of these phases to ϕpu(ω) and ϕpr (ω) [28]. The cor-
responding electric field in time domain is obtained by the
inverse Fourier transformation F−1 of Eq. (1) as

E+(t ; τ ) = E+
pu(t ; τ ) + E+

pr (t )

= Epu(t − τ )ei(ωput+ϕce ) + Epr (t )ei(ωprt+ϕce ). (2)

The temporal pulse envelopes Eν (t ) = F−1[Ẽν](t ) are the
inverse Fourier transforms of the spectral amplitudes Ẽν (ω).
Assuming a left-handed circularly polarized pump pulse,
the dipole selection rules for σ+ transitions starting from
the s-type ground states read �	 = �m = +1. Therefore,
three-photon excitation by the pump populates only Rydberg
states with 	 = 3 and m	 = 3. In the absence of intermediate
resonances, this n f -type Rydberg wave packet is composed
of those states |n	, m	〉 = |n f , 3〉 (nmin � n � nmax) within
the bandwidth of the third-order pump spectrum Ẽ (3)

pu (ω) =
F[(E+

pu)3](ω) (see the bottom inset in Fig. 1). For a quasi-
one-electron system, such as the K atom, the Rydberg wave
packet can be written in spherical coordinates r = (r, θ, φ) as

ψ (r, t ; τ ) =
nmax∑

n=nmin

fn(t ; τ )Rn,3(r)Y3,3(θ, φ)e−iωnt , (3)

with fn(t, τ ) the population amplitudes and ωn the eigen-
frequencies of the excited Rydberg states. The functions
Rn,3(r) and the spherical harmonic Y3,3(θ, φ) describe the
corresponding radial and angular parts, respectively. The pop-
ulation amplitudes depend parametrically on τ through the
time delay of the pump pulse relative to the probe. In the
weak-field limit, these amplitudes are calculated using third-
order time-dependent perturbation theory [37–40]. Using the
negative-frequency analytic signal of the laser electric field
and applying the rotating-wave approximation, the amplitudes
read

fn(t ; τ ) = μ(3)
ns

(ih̄)3

∫ t

−∞
E3

pu(t ′ − τ )e−i[(3ωpu−ωn )t ′+3ϕce]dt ′

t→∞−→ μ(3)
ns

(ih̄)3
Ẽ (3)

pu (3ωpu − ωn)e−i(3ωpu−ωn )τ e−i3ϕce . (4)

Herein μ(3)
ns is the effective three-photon dipole coupling

element between the s-type ground state and the Rydberg
state n f , including the radial and angular coupling of all
intermediate states, and Ẽ (3)

pu (ω) denotes the third-order spec-
trum of the envelope Epu(t ). In the second step we made use
of the Fourier shift theorem. After the excitation, i.e., for
times longer than the pump pulse duration �t , the population
amplitudes become time independent. Their modulus squared
is determined by the power spectral density of the third-
order pump spectrum evaluated at the three-photon transi-
tion frequency. The Rydberg wave packet in Eq. (3) then

undergoes the free time evolution determined by the eigenfre-
quencies ωn.

Next we consider the free-electron wave packet created by
the probe pulse E+

pr (t ). The left-handed circularly polarized
probe maps the Rydberg dynamics via one-photon ionization
into a g-type continuum with m	 = 4 and simultaneously
creates an f -type reference wave packet with m	 = 3 by 2 + 1
REMPI from the ground state. By design of the commensu-
rable central frequencies, fulfilling 3ωpu + ωpr = 3ωpr , both
wave packets are created in the same energy window, allowing
them to interfere. Their interference, as will be shown below
[cf. Eq. (8)], is CEP sensitive, since the two ionization paths
comprise different numbers of photons [26,27,41,42]. The
total photoelectron wave packet is a superposition of the
probe and the reference wave packet. In momentum represen-
tation, with the photoelectron momentum k = (k, θ, φ), we
write

ψ̃ (k; τ ) = ψ̃pr (k; τ ) + ψ̃ref (k)

= apr (k; τ )Y4,4(θ, φ) + aref (k)Y3,3(θ, φ). (5)

The population amplitudes apr (k; τ ) and aref (k) of the contin-
uum states are calculated in analogy to Eq. (4) by employing
first- and third-order perturbation theory, respectively [43,44].
For the amplitudes of the probe wave packet, after the excita-
tion by the pump pulse, we obtain

apr (k; τ ) =
∑

n

μkn

ih̄
f ∞
n (τ )

×
∫ ∞

−∞
Epr (t )e−i[(ωpr+ωn−ωip−ωk )t+ϕce]dt

=
∑

n

cg
n(k)e−i(3ωpu−ωn )τ e−i4ϕce , (6)

with f ∞
n (τ ) = fn(∞; τ ), the ionization potential h̄ωip, and

h̄ωk = h̄2k2

2me
the kinetic energy of the photoelectron. The coef-

ficients cg
n(k) are introduced as abbreviations describing the k

dependence of the amplitudes. For the reference wave packet
we find

aref (k) = μ
(3)
ks

(ih̄)3

∫ ∞

−∞
E3

pr (t )e−i[(3ωpr−ωip−ωk )t+3ϕce]dt

= c f (k)e−i3ϕce . (7)

While the reference wave packet exhibits a phase of 3ϕce, the
probe wave packet in Eq. (6) displays a phase of 4ϕce. This
difference in the CEP sensitivity of both partial waves is the
basis for the differential data analysis described in Sec. II B,
which provides background-free access to the photoelectron
asymmetry encoding holographic information of the Ryd-
berg dynamics. Inserting these expressions into Eq. (5) and
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calculating the modulus square of the wave function, the total
photoelectron density (k; τ ) = |ψ̃ (k; τ )|2 measured in the

experiment is described by (arguments are omitted for ease
of notation)

(k; τ ) = |ψ̃pr (k; τ ) + ψ̃ref (k)|2 = |c f Y3,3|2

+
∑

n

∣∣cg
nY4,4

∣∣2 + 2 Re

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∑
n, m

n > m

cg
n

(
cg

m

)∗|Y4,4|2eiωnmτ +
∑

n

cg
n(c f )∗|Y ∗

3,3Y4,4|eiφei�nτ e−iϕce

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

. (8)

Here ωnm = ωn − ωm are the transition frequencies between
pairs of excited Rydberg states and �n = ωn − 3ωpu are the
three-photon detunings between the individual Rydberg states
and the pump pulse (see Fig. 1). Since 3ωpu = 2ωpr , the
latter may also be conceived as beating frequencies of the
Rydberg states and the second harmonic of the probe. The first
term in Eq. (8), proportional to |Y3,3|2, is the density of the
reference wave packet. This contribution describes a static,
i.e., τ -independent, f -type torus-shaped background signal.
The second and third terms, proportional to |Y4,4|2, are the
density of the probe wave packet including a τ -dependent
quantum phase. This g-type contribution is also torus shaped
and describes the beating between any two excited Rydberg
states n f and m f at the frequencies ωnm, which we refer
to as Rydberg beating modes. This contribution provides
spectroscopic information on the Rydberg dynamics similar
to [32]. Together, the first three terms constitute a dynamical
but angularly symmetric signal. The last term in Eq. (8) is
a mixing term resulting from the interference of probe and
reference wave packet. This contribution contains holographic
information on the Rydberg dynamics and is exploited for
quantum phase retrieval. It maps the beating between the
Rydberg states and the second harmonic of the probe at the
frequencies �n in the continuum. Due to the different angular
momenta of the probe and reference wave packet, the interfer-
ence term is proportional to the product |Y ∗

3,3Y4,4| and therefore
retains an azimuthal phase factor of e−iφ . The corresponding
angular distribution is antisymmetric and has the shape of a
bipolar crescent, i.e., a positive and a negative crescent facing
one another [see the insets in Fig. 2(b)] [27,45]. The rotation
angle of the crescent in the laser polarization plane indicates
the ionization phase βn = arg[cg

n(c f )∗] and the accumulated
quantum phase �nτ . In addition, the rotation is controlled
by the CEP [27]. As illustrated in the top inset in Fig. 1, a
variation of the CEP by �ϕce = π inverts the photoelectron
asymmetry. In the present paper we utilize this CEP depen-
dence to separate the antisymmetric crescent-shaped signal
from the symmetric torus-shaped signal. By measuring the
photoelectron momentum distribution (PMD) for ϕce = 0 and
ϕce = π and subtracting the results, we eliminate the CEP-
independent symmetric signal. The resulting density differ-
ence

�−(k; τ ) = (k; τ, ϕce = 0) − (k; τ, ϕce = π )

2

=
∑

n

Cn(k) cos(φ + �nτ + βn), (9)

with Cn = 2|cg
n(c f )∗Y ∗

3,3Y4,4|, extracts the antisymmetric part
of the total density (k; τ ). Provided the probe frequency ωpr

is known, Fourier analysis of this part with respect to the time
delay τ delivers the absolute frequencies ωn of the involved
Rydberg states through the detunings �n. By adding both
results, we obtain the symmetric part of the density

�+(k; τ ) = (k; τ, ϕce = 0) + (k; τ, ϕce = π )

2

= A(k) +
∑
n, m

n > m

Bnm(k) cos(ωnmτ + αnm), (10)

with the static background A = |c f Y3,3|2 + ∑
n |cg

nY4,4|2, the
beating amplitudes Bnm = 2|cg

n(cg
m)∗||Y4,4|2, and the ionization

phases αnm = arg[cg
n(cg

m)∗]. This part gives us spectroscopic
information on the Rydberg beating modes as described, for
example, in [7,32,46–48]. The relations ωnm = �n − �m and
αnm = βn − βm provide the link between the symmetric and
the antisymmetric part, which we will make use of in the data
evaluation presented in Sec. III B. The joint information of
both parts allows us to independently determine the eigenen-
ergy of each excited Rydberg state.

To illustrate the dynamics of the two density differences
�±(k; τ ), both are shown in Fig. 2 for a generic Rydberg
model. The model includes the two Rydberg states 7 f and
8 f , which are also excited in the experiment (see Sec. III A),
with the same population. The time evolution of both states
is mapped onto the continuum by a Gaussian-shaped probe
pulse with the same central frequency as in the experiment.
To establish a close connection to the 2D projections detected
in the experiment, we introduce the Abel transform [49,50] of
�±(k; τ ) in the x direction

�±
proj(p, θ ; τ ) =

∫ ∞

−∞
�±(k; τ )dkx, (11)

where p denotes the transverse photoelectron momentum in
the y-z plane. Furthermore, we introduce the total photoelec-
tron yield emitted into the right hemisphere

�±
int (τ ) =

∫ ∞

0

∫ π

0
�±

proj(p, θ ; τ )dθ d p (12)

to obtain a scalar quantity sensitive to both the photoelectron
yield and asymmetry. Both yield curves are plotted in Fig. 2
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FIG. 2. Illustration of the symmetric and antisymmetric part of
the photoelectron wave packet for a generic Rydberg model com-
prising the Rydberg states 7 f and 8 f . (a) Dynamics of the sym-
metric difference density �+(k; τ ), integrated over the right hemi-
sphere, shown as the red curve. Three-dimensional representations
are shown for two selected time delays τ of minimum and maximum
yield, respectively. (b) Integrated difference density �−(k; τ ) as
a function of τ (blue curve). The 3D representations illustrate the
bipolar crescent rotating in the laser polarization plane due to the
accumulated quantum phase. The surface color encodes the sign of
the antisymmetric angular distribution.

as a function of τ . For selected time delays, the corresponding
3D density differences �±(k; τ ) are shown, along with the
2D projections �±

proj(k; τ ) in the x direction (detector plane)
and in the z direction (polarization plane). The yield �+

int (τ )
of the symmetric part, depicted in Fig. 2(a), exhibits a pro-
nounced oscillation at the beating frequency ω8 f ,7 f , centered
around a constant offset (gray dashed line). The two selected
3D graphs display symmetric torus-shaped angular distribu-
tions with different peak amplitudes. The distributions result
from the interference of two g-type wave packets probing
the Rydberg states. The amplitude modulation is due to the
beating of the two tori at ω8 f ,7 f .

The yield �−
int (τ ) of the antisymmetric part is depicted

in Fig. 2(b). It describes a superposition of two oscillations
reflecting the coherent motion of two bipolar crescents created
by the interference of the g-type probe wave packets and the
f -type reference wave packet. In the model scenario, both
contributions are counterrotating in the polarization plane
with the angular velocities �7 f = −13 mrad/fs and �8 f =
86 mrad/fs, respectively (see also Sec. III B). The former
gives rise to the slow amplitude modulation with a period of
T7 f = 2π/�7 f = 480 fs, while the latter is responsible for the
fast oscillation with a time constant of T8 f = 2π/�8 f = 73 fs

FIG. 3. Experimental setup. Time-delayed COCP (2ω:3ω) pulse
sequences are generated by bichromatic amplitude and phase modu-
lation of a WLS using a 4 f polarization shaper and a λ/4 plate. The
top inset shows a measured bichromatic amplitude profile together
with the input WLS (gray-shaded background). Long-term CEP
stability with rms fluctuations of σrms = 215 mrad/fs (middle inset)
is achieved by picking an additional (ω:2ω) field from the edges of
the WLS to feed an f -2 f interferometer coupled to the control loop
of the laser system. Photoelectron wave packets created by the in-
teraction of K atoms with the bichromatic pump-probe sequence are
imaged by a VMI spectrometer. Projections of the crescent-shaped
wave packets are measured by a position-sensitive 2D detector and
recorded by a CCD camera. For the tomographic reconstruction of
the wave packets, a λ/2 plate is used to rotate the pulses about the z
axis.

(see the bottom inset in Fig. 1). The coherent sum of two
bipolar crescents is again a bipolar crescent with modulated
peak amplitude and orientation. This effective bipolar distri-
bution is shown in the selected 3D graphs. All four graphs
are normalized to highlight the rotational dynamics of the
antisymmetric density difference. The amplitude modulation
due to the beating of the two counterrotating crescents is
discernible in the backward (z) projections. The combination
of both effects determines the yield variation of the photoelec-
trons in the right hemisphere. This example highlights that dif-
ferential, i.e., angle-resolved, measurement is indispensable
for the observation of the antisymmetric contribution which
vanishes upon full angular integration.

B. Experimental setup and strategy

In our experiment, we combine bichromatic white light po-
larization pulse shaping [29] with photoelectron imaging [51]
and tomography techniques [52]. A schematic overview of the
experimental setup is depicted in Fig. 3. Infrared input pulses
provided by an actively CEP-stabilized multipass chirped
pulse amplifier (FEMTOLASERS Rainbow 500, CEP4 mod-
ule, Femtopower HR 3 kHz, with λ0 = 790 nm and 1.0 mJ
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pulse energy) are used to seed a neon-filled hollow-core
fiber (absolute gas pressure of 2.5 bars) for the generation
of an octave-spanning white light supercontinuum (WLS).
The white light pulses are modulated in frequency domain
using a home-built 4 f polarization pulse shaper [28,34,35]
specifically adapted to the ultrabroadband WLS [29]. Bichro-
matic amplitude and phase modulation is implemented by
a dual-layer liquid-crystal spatial light modulator (Jenoptik
SLM-640d) and a broadband p polarizer (CODIXX colorPol)
mounted in the Fourier plane of the 4 f setup. In this con-
figuration, the shaper provides horizontally polarized bichro-
matic fields. For the conversion from linear to corotating
circular polarization, we use a superachromatic λ/4 waveplate
(Bernhard Halle Nachfl.) at the shaper output. A measured
sample spectrum of the (2ω:3ω) COCP fields employed in the
experiment is shown in the top inset in Fig. 3. The spectral
bandwidth of the pump pulse is �ωpu = 0.09 rad/fs (red
band), corresponding to a bandwidth-limited pulse duration
of �tpu ≈ 22 fs. The pump bandwidth is chosen sufficiently
narrow to address only a few Rydberg states within the n f
series. This allows for a transparent analysis of the experi-
mental results, in particular, the dynamics of the photoelec-
tron crescent (see Sec. III B). The bandwidth of the probe
pulse �ωpr = 0.14 rad/fs (blue band), corresponding to a
bandwidth-limited pulse duration of �tpr ≈ 12 fs, was chosen
somewhat larger to increase the time resolution of the probe
step. Using the central wavelengths λpu = 915 nm and λpr =
610 nm (cf. Sec. II A), the energetic overlap of the probe and
the reference wave packet in the continuum occurs around
the kinetic energy ε = 3h̄ωpu + h̄ωpr − h̄ωip ≈ 1.77 eV (see
Fig. 1). The peak amplitudes of the two colors were chosen
in a two-step procedure. First we adjusted the amplitudes
coarsely by matching the yield of the one-color photoelectron
signals produced by each color alone. Second we applied
a CEP sweep (−6π to 6π ) via the CEP stabilization unit
of the laser system and used the shaper to fine-tune the
amplitudes by maximizing the asymmetry contrast of the
two-color signal inspected online on the detector. For the time-
resolved studies, a linear spectral phase ϕpu(ω) = τ (ω − ωpu)
is applied to the red band to advance the pump pulse in time
by a variable time delay τ (see the top inset in Fig. 3). By
applying the linear spectral phase relative to ωpu (as opposed
to ω = 0), the envelope of the pump is shifted while its
carrier remains fixed. Therefore, no additional τ -dependent
optical phase is introduced by the time delay, in contrast to
an interferometric setup. Owing to the common-path geom-
etry of the shaper-based scheme, the generated bichromatic
pulse sequences are inherently phase locked [53]. To achieve
the CEP stability required for the holographic pump-probe
studies presented in Sec III B, we use an external active CEP-
stabilization loop. An additional (ω:2ω) field is extracted from
the spectral edges of the WLS by the shaper, split off the
main beam by a dichroic mirror and sent to a single-shot
f -2 f interferometer feeding the control loop of the laser
system [26]. The central inset to Fig. 3 shows a long-term
monitoring of the CEP (green dots) recorded by the f -2 f in-
terferometer during the tomographic measurements presented
in Sec. III B [see Fig. 7(a)]. Over a period of 11 h, the CEP
fluctuations are measured to be σrms = 215 mrad root mean
square (rms).

The bichromatic pulse sequences are focused via a spher-
ical mirror ( f = 250 mm) into the interaction region of a
velocity map imaging (VMI) spectrometer [51] filled with
K vapor from a dispenser source (SAES Getters). The tar-
get pressure is 5 × 10−7 mbar, at a background pressure of
2 × 10−7 mbar. The total pulse energy measured at τ = 0
is Etot = 1.17 μJ. From the pulse spectrum in Fig. 3 (top
inset), we derive an energy distribution among the two colors
of Epu = 0.61 μJ and Epr = 0.56 μJ. With a measured focal
beam waist of w0 = 30 μm and the bichromatic pulse pa-
rameters given above, we estimate the individual peak inten-
sities I0,pu ≈ 2 × 1012 W/cm2 and I0,pr ≈ 3 × 1012 W/cm2.
The photoelectron wave packets created by atomic MPI are
projected onto a position-sensitive 2D detector (Scientific
Instruments S3075-10-I60-PS43-FM) consisting of a dual-
layer microchannel plate in chevron configuration stacked
with a phosphor screen. The 2D images are recorded by a
charge coupled device (CCD) camera (Lumenera LW165M)
using an exposure time of 150 ms. When the dispenser
source is switched off, the total count rate reduces to 0.5%.
Residual events are mainly attributed to detector dark counts,
while the photoelectron contribution from the background
gas is negligible. To retrieve the 3D PMD, we employ the
Fourier-based tomographic technique introduced in [52]. Sub-
sequently, photoelectron tomography is applied to the 3D
imaging of PMDs from atomic strong-field ionization [54],
the reconstruction of molecular PMDs in the laboratory [55]
and the molecular [56] frame, and the retrieval of cir-
cularly polarized XUV fields from high-harmonic gener-
ation [57]. For the tomographic measurements, the input
pulse sequence is rotated about the laser propagation di-
rection using a superachromatic λ/2 waveplate. Each PMD
is retrieved from 45 projections, measured with an angular
step size of δφ = 4◦, employing the Fourier slice algorithm
[58].

In the experiment, we vary the time delay τ ∈
[−1000 fs, 50 fs] in steps of δτ = 5 fs. For each step, we
measure a pair of 2D projections P (p, θ ; τ, ϕce) of the PMD,
one for ϕce = 0 and another one for ϕce = π . A sample pair
of measured spectra is depicted in Figs. 4(a) and 4(b). The
spectra show the probe and/or reference signal centered at
ε = 1.77 eV. In order to highlight this contribution, the one-
color signal of the pump pulse, centered at ε = 1.08 eV (red
dashed arrow in Fig. 1), and a signal attributed to bichromatic
2 + 1 REMPI via the near-resonant 3d state, centered at ε =
0.36 eV, are filtered out numerically by applying a super-
Gaussian high-pass filter to the spectra. The origin of the latter
is identified by comparison with the numerical simulation.
The spectra exhibit a pronounced lateral asymmetry in the
y direction which is inverted by switching the CEP from 0
to π . By calculating the sum and the difference of each pair
�P±(p, θ ; τ ) = P (p, θ ; τ, 0) ± P (p, θ ; τ, π ), we obtain the
symmetric and the antisymmetric part of the spectra, respec-
tively. This procedure is illustrated in Figs. 4(c) and 4(d).
The resulting 2D images �P±(p, θ ; τ ) are almost perfectly
symmetric or antisymmetric, except for tiny experimental
imperfections. Because symmetrization and projection are
commutative operations, the quantities �P±(p, θ ; τ ) derived
from the measured data correspond to the projections of
the density differences �±(k; τ ) introduced in Eqs. (9)
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FIG. 4. Exemplification of the data evaluation procedure to ex-
tract the symmetric and antisymmetric parts of the PMD. The left
column shows a pair of 2D projections P (p, θ ; τ, ϕce) of the pho-
toelectron density measured for (a) ϕce = 0 and (b) ϕce = π . The
middle column shows (c) the sum �P+(p, θ ; τ ) and (d) the differ-
ence �P−(p, θ ; τ ) of both spectra, revealing nearly symmetric and
antisymmetric signals, respectively. In the right column the signals
are almost indistinguishable from the corresponding (e) symmetric
part S (p, θ ; τ ) and (f) antisymmetric part A(p, θ ; τ ).

and (10):

�P±(p, θ ; τ ) ∝ �±
proj(p, θ ; τ ). (13)

Therefore, the 2D images �P±(p, θ ; τ ) provide a direct link
between the experimental data and the theoretical model de-
scribed in Sec. II A. In order to eliminate minute experimental
imperfections of the signals �P±(p, θ ; τ ), we calculate the
respective symmetric part S (p, θ ; τ ) and antisymmetric part
A(p, θ ; τ ) according to

S (p, θ ; τ ) = �P+(p, θ ; τ ) + �P+(p,−θ ; τ )

2
, (14)

A(p, θ ; τ ) = �P−(p, θ ; τ ) − �P−(p,−θ ; τ )

2
. (15)

These signals are evaluated and discussed in Sec. III. The
symmetrized and antisymmetrized images of the example
spectra are shown in Figs. 4(e) and 4(f). Only marginal differ-
ences from the images in Figs. 4(c) and 4(d) are discernible,
confirming the high fidelity of the measurement. The signal
S (p, θ ; τ ), associated with the symmetric part �+(k, τ ) of
the photoelectron density, reveals modulations of the integral
photoionization cross section due to the Rydberg dynamics in
the bound system. In contrast, the signal A(p, θ ; τ ), related
to the antisymmetric part �−(k, τ ) of the density, reveals
variations of the differential cross section due to the angular
dynamics of the photoelectron crescent. In the following
section, both signals will be analyzed separately for wave-
packet spectroscopy (Sec. III A) and wave-packet holography
(Sec. III B). The dynamic quantum state holography technique
presented here delivers both results in one measurement.

III. RESULTS AND DISCUSSION

In this section we present the experimental results and
discuss our findings. We start in Sec. III A by evaluating

FIG. 5. Experimental results obtained by evaluation of the sym-
metric signal S (p, θ ; τ ). (a) Time-resolved photoelectron signal in
the energy window of the probe or reference signal. The middle
frame shows measured angle-integrated and energy-resolved pho-
toelectron spectra. The results are compared to a numerical simu-
lation shown in the top frame. The bottom frame shows the total
photoelectron yield as a function of τ . (b) The Fourier spectrum of
the τ -dependent yield (green line) reveals three prominent Rydberg
beating modes attributed to the major excitation of the states 7 f and
8 f and minor excitation of states 9 f and 10 f . The assignment of
states is confirmed by a generic stick spectrum (gray lines) based on
spectroscopic data from [59]. The blue dotted lines are the extracted
ionization phases αnm.

the symmetric part of the measured photoelectron spectra to
retrieve spectroscopic information on the Rydberg beating
modes. In Sec. III B we utilize the holographic properties of
our method. By exploiting the CEP sensitivity of the interfer-
ence between probe and reference wave packet we gain access
to the antisymmetric part of the spectra providing independent
information on the individual Rydberg states. In addition,
we present tomographic reconstructions of the 3D PMD to
demonstrate the crescent shape of the total photoelectron
density and illustrate its angular dynamics.

A. Wave-packet spectroscopy

By analyzing the symmetric signal S (p, θ ; τ ) [cf. Eq. (14)]
as a function of the time delay τ , we gain access to the
beating of pairs of excited Rydberg states, similar to [32].
The experimental results are presented in Fig. 5. The middle
frame of Fig. 5(a) shows time- and energy-resolved data,
obtained by angular integration of S (p, θ ; τ ) over the inter-
val θ ∈ [0◦, 180◦] (right detector hemisphere) in the relevant
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TABLE I. Spectroscopic parameters derived from the experiment. (a) The symmetric part of the photoelectron density (cf. Sec. III A)
provides information on the beating of pairs of excited Rydberg states n f , yielding the Rydberg beating modes ωnm and the ionization phases
αnm. The corresponding oscillation periods Tnm = 2π/ωnm are calculated from the measured beating modes. (b) The antisymmetric part of the
density (cf. Sec. III B) delivers information on the beating between individual Rydberg states and the second harmonic of the probe pulse 2ωpr ,
yielding the detunings �n (not listed) and the ionization phases βn. In conjunction, both signals enable the independent characterization of the
excited states in terms of eigenenergies h̄ωn and final populations (not listed). The reference data given in the last column are taken from the
NIST database [59].

(a) Wave-packet spectroscopy
Mode ωnm

a (mrad/fs) Tnm
b (fs) αnm (rad) Beating ωnm

c (mrad/fs)

(1) 99.4 ± 0.2 63.2 ± 0.1 4.15 ± 0.01 7 f − 8 f 99.195
(2) 68.3 ± 0.2 92.0 ± 0.3 5.94 ± 0.01 8 f − 9 f 67.984
(3) 46 ± 3 137 ± 9 1.8 ± 0.3 9 f − 10 f 48.617

(b) Wave-packet holography
Mode h̄ωn

a (eV) Tn
b (fs) βn (rad) Beating h̄ωn

c (eV)

(i) 4.07 ± 0.01 491 ± 7.7 −0.99 ± 0.02 7 f − 2ωpr 4.062317
(ii) 4.12 ± 0.01 73 ± 0.2 3.27 ± 0.01 8 f − 2ωpr 4.127608

aExperimental results.
bCalculational results.
cLiterature results.

energy window ε ∈ [1.6 eV, 2.0 eV]. Pronounced oscillations
of the photoelectron yield are observed along the τ direction.
The experimental data are compared to a simulation (top
frame) based on the numerical solution of the time-dependent
Schrödinger equation for the interaction of a hydrogenlike
multilevel atom with a Gaussian-shaped bichromatic pump-
probe pulse sequence compatible with the experimental pa-
rameters, but higher τ resolution [40]. Examination of the
neutral population dynamics yields a final population of the
f -type target states on the order of 1%, confirming the per-
turbative character of the excitation in the experiment. The
energy-resolved photoelectron spectra are calculated using
time-dependent perturbation theory (cf. Sec. II A). The tempo-
ral dynamics of the simulated signal is in good agreement with
the experimental results. However, the simulation exhibits
subtle dynamics in the ε direction which reflect the energetic
structure of the Rydberg wave packet, because each Rydberg
state n f is mapped into an individual energy window centered
at εn = h̄ωn + h̄ωpr − h̄ωip. These windows are displaced
by the eigenenergy difference of the corresponding Rydberg
states, separating the time signals of the different beating
modes energetically. In the experiment, these energetic sig-
natures are not resolved.

The strong photoelectron signal measured around τ = 0
but not reproduced in the simulation is due to bichromatic
2 + 2 REMPI via the 4d state. When both pulses overlap in
time, the 4d state is resonantly excited by frequency mixing
of one red and one blue photon [25]. Ionization by another two
red photons generates additional photoelectrons in the energy
window of the probe or reference signal. In the simulation, we
considered only one-photon ionization from the target states,
which is relevant for τ > �tpu. Therefore, these photoelec-
trons are absent in the simulation result.

Integration over the entire energy window delivers the
total photoelectron yield emitted into the right hemisphere,
analogously to the quantity �+

int (τ ) described by Eq. (12).
The integrated signal is plotted as a function of τ in the bottom

frame. Fourier analysis of this signal, depicted as a green
solid line in Fig. 5(b), reveals three distinct Rydberg beating
modes at the frequencies ω(1) = 99.4 ± 0.2 mrad/fs, ω(2) =
68.3 ± 0.2 mrad/fs, and ω(3) = 48 ± 3 mrad/fs. The errors
are determined by fitting multiple Gaussians to the Fourier
spectrum. These modes are identified as beatings between
the Rydberg states (1) 7 f and 8 f , (2) 8 f and 9 f , and (3)
9 f and 10 f (see Table I). Their amplitudes indicate a major
population of states 7 f and 8 f , similar to the generic Rydberg
model from Fig. 2, and only minor population of states 9 f
and 10 f . For comparison with spectroscopic data from the
NIST database [59], a generic line spectrum including the
Rydberg states 7 f –23 f is shown in gray. The corresponding
amplitudes are determined by the third-order pump spectrum
evaluated at the corresponding line frequencies (cf. Sec. II A).
By considering a slight redshift of the pump spectrum, we
achieve good qualitative agreement with the experimental
spectrum. This effective redshift presumably is induced by
the 3d state being nearly two-photon resonant with the pump
pulse, as already discussed in [32]. From the Fourier analysis
we also extract the ionization phases αnm, i.e., the relative
phases between the continuum amplitudes cg

n(k) and cg
m(k) [cf.

Eq. (10)], which are shown as blue dotted lines in Fig. 5(b).
These phases are almost flat for each individual mode with
mean values of α8 f ,7 f = 4.15 rad, α9 f ,8 f = 5.94 rad, and
α10 f ,9 f = 1.82 rad. The above results will be used in the next
section together with the information encoded in the anti-
symmetric signal to unambiguously characterize individual
Rydberg states in the bound-state wave packet. A summary
of the results derived from the symmetric signal is given in
Table I(a).

B. Wave-packet holography

Next we analyze the temporal dynamics of the antisym-
metric signal A(p, θ ; τ ) [cf. Eq. (15)]. This signal reflects
the interference term arising from the coherent superposition
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FIG. 6. Experimental results obtained by evaluation of the an-
tisymmetric signal A(p, θ ; τ ). The figure is structured similarly
to Fig. 5. (a) Time-resolved data, displaying a fast oscillation su-
perimposed on a slow oscillation. The corresponding frequency
components are revealed by the Fourier spectrum of the integrated
time signal, shown in (b). The components are attributed to the
beating of the primarily excited Rydberg states 7 f and 8 f with
the second harmonic of the probe pulse and enable the independent
spectroscopic characterizations of both Rydberg states. The extracted
ionization phases βn are shown as blue dotted lines.

of the probe and the reference wave packet [cf. Eq. (9)].
Therefore, A(p, θ ; τ ) carries the essential holographic in-
formation encoded in the rotation of the photoelectron
crescent. The experimental results are presented in Fig. 6, in
a similar manner as the results from the symmetric part in
Fig. 5. The time signal shown in Fig. 6(a) alternates between
positive and negative values depending on the orientation of
the crescent in the polarization plane. Large positive values
correspond to the crescent oriented preferentially in the +y
direction, while large negative values are indicative of the
crescent oriented in the −y direction. Zeros imply the crescent
pointing upward or downward or, according to the discussion
in Sec. II A, the vanishing of the complete difference density
�−(k; τ ). The high-resolution simulation shown in the top
frame agrees well with the measured data in the middle frame.

The integrated signal shown in the bottom frame displays a
superposition of two oscillations, similar to �−

int (τ ) in the
generic Rydberg model shown in Fig. 2(b) [cf. Eq. (13)].
The gray dashed line serves as a guide to the eye, indicating
the slow oscillation with a period of about T = 480 fs. The
additional fast oscillation with a period of about T = 73 fs
is clearly discernible. Figure 6(b) shows the Fourier analysis

of the integrated signal. In this case, the frequency axis
corresponds to the detuning � between the second harmonic
of the probe pulse 2ωpr and the eigenfrequencies ωn of the
Rydberg states [cf. Eq. (9)]. On the positive detuning axis,
the Fourier spectrum exhibits two peaks centered at |�(i)| =
12.8 mrad/fs and |�(ii)| = 86.4 mrad/fs, indicating the exci-
tation of essentially two Rydberg states. The corresponding
periods are T(i) = 490.9 fs and T(ii) = 72.7 fs. However, since
a priori the sign of the detunings is unknown, the Hermi-
tian counterparts of these peaks on the negative detuning
axis need to be considered as well. Altogether we hence
find four possible detunings with �(i) = ±12.8 mrad/fs and
�(ii) = ±86.4 mrad/fs. To unambiguously decide which pair
of detunings corresponds to actual excited Rydberg states, we
make use of the spectroscopic information derived from the
symmetric signal S (p, θ ; τ ) in Sec. III A. By comparing all
possible difference frequencies and relative ionization phases,
we find that the negative �(i) and positive �(ii) components
are consistent with the beating mode of the Rydberg states 7 f
and 8 f . The difference frequency

�(ii) − �(i) = 86.4 mrad/fs − (−12.8 mrad/fs)

= 99.2 mrad/fs (16)

and relative ionization phase

β(ii) − β(i) = 3.27 rad − (−0.99 rad)

= 4.26 rad (17)

are in excellent agreement with ω8 f ,7 f and α8 f ,7 f as
listed in Table I(a). Therefore, we assign �7 f = �(i) =
−12.8 mrad/fs and �8 f = �(ii) = 86.4 mrad/fs. With the
second harmonic probe frequency 2ωpr = 6.18 rad/fs, we re-
trieve the eigenenergies h̄ω7 f = 4.07 ± 0.01 eV and h̄ω8 f =
4.12 ± 0.01 eV, in good accordance with data reported in the
literature [59]. In this case, the estimated errors are mainly
determined by the uncertainty of the central frequencies of the
two colors, due to their slightly asymmetric shapes (see the top
inset in Fig. 3), for which we assume an error of 5 mrad/fs.
The amplitudes of the two peaks suggest a two times more
efficient population of the 8 f state than the 7 f state. All of
these results are summarized in Table I(b).

The last part of the experiment is dedicated to the 3D
mapping of the photoelectron crescent and its angular dynam-
ics. To this end, we reconstructed the PMD tomographically
for various characteristic time delays τ , keeping the CEP
fixed at ϕce = 0. Since the dynamics occurs on timescales of
T7 f = 480 fs and T8 f = 73 fs, respectively, we sampled the
time window τ ∈ [−750 fs,−150 fs] with a step size of δτ =
25 fs. The experimental results are presented in Fig. 7(a). The
middle frame displays the time series of angle-resolved (φ)
and energy-integrated spectra as a function of τ . The experi-
mental result (lower panel) is compared to a high-resolution
simulation (upper panel) based on the same parameters as
in Fig. 6(a). Reconstructed 3D PMDs with corresponding z
projections are shown in the top and bottom row for selected
time delays. The PMDs in the top row (green frames) were
chosen to cover the period T8 f , illustrating the fast oscillation
of the crescent, while the PMDs in the bottom row (orange
frames) cover the period T7 f of the slow oscillation. Because
the PMD reflects the total photoelectron density (being a
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FIG. 7. Three-dimensional mapping of the photoelectron crescent and its dynamics. (a) Tomographic reconstruction of the photoelectron
density for a series of time delays τ covering about one period of the slow 7 f oscillation. The two central frames show the entire time series as
angle-resolved spectra integrated over the energy window of the probe or reference signal. Green frames in the top row display 3D PMDs for
selected time delays covering about one period of the fast 8 f oscillation. Orange frames in the bottom row display selected 3D PMDs from the
7 f oscillation. The z projections shown in the background are normalized independently. (b) Calculated 2D sections through the polarization
plane of the photoelectron density of the generic Rydberg model (cf. Fig. 2). The snapshots illustrate the yield variation and rotational dynamics
of the total density as a result of the intertwined motion of the counterrotating 7 f and 8 f crescents, indicated by orange and green arrows.

superposition of the torus-shaped symmetric part and the
crescent-shaped antisymmetric part) its effective shape is an
unbalanced torus. This asymmetric shape is also visible in
the z projections of the 3D graphs. The 3D photoelectron
crescent emerges in the isosurface representations. To increase
the contrast of the crescent versus the torus in the 3D represen-
tation, the already pronounced c1 Fourier component has been
enhanced by a factor of 4 [60]. This enhancement effectively
reduces the noise floor in addition. Combined with a spectral
low-pass filter applied during the tomographic reconstruction
procedure, this results in very smooth surface structures.

The angle-resolved spectra reveal that the PMD undergoes
complex dynamics with respect to both the total yield and
the angular distribution. To motivate the discussion of these
dynamics, we start by analyzing the time evolution of the
generic photoelectron crescent in the generic Rydberg model
(cf. Fig. 2). For this purpose, Fig. 7(b) presents calculated x-y
sections (polarization plane) of the total photoelectron density
(k; τ ), showing sequential snapshots of the dynamics. The
2D images display the photoelectron crescent with varying
amplitude and orientation. These variations result from the
intertwined motion of the 7 f and 8 f crescent counterrotating
in the polarization plane. When viewed in the +z direction,
the 7 f crescent rotates counterclockwise (�7 f < 0), while
the 8 f crescent rotates clockwise (�8 f > 0). Because of their
different angular velocities, both crescents periodically shift
in-phase (constructive interference) and antiphase (destructive
interference). The three columns in Fig. 7(b), labeled by

roman numbers I–III, show three consecutive time windows
of constructive interference, separated by the instants of max-
imum destructive interference (dashed gray frames). In each
time window, the angular dynamics of the density is governed
by the fast clockwise rotation of the 8 f crescent. This motion
is indicated by green arrows. The very first frame shows the
onset of constructive interference where the 8 f crescent starts
to shift in-phase with the 7 f crescent. In the second frame,
both crescents are perfectly aligned, resulting in the maximum
amplitude and clockwise rotation of the total density. The
latter is due to the greater (absolute) angular velocity of
the 8 f crescent. The third frame shows the dephasing of
both crescents reducing the signal amplitude but maintaining
the rotational sense. In contrast, the slow counterclockwise
rotation of the 7 f crescent is uncovered by comparing similar
stages within different time windows of constructive inter-
ference, i.e., by comparing different images within one row.
For example, upon rephasing and alignment of both crescents
(bold black frames) in the second and third time windows,
the total density is successively rotated counterclockwise due
to the intermediate time evolution of the 7 f crescent. This
motion is indicated by orange arrows. The oscillation period
T8 f of the 8 f crescent roughly corresponds to the duration of
one time window of constructive interference. The oscillation
period T7 f of the 7 f crescent is not complete before the
orientation of the crescent at the stage of, for example, max-
imum amplitude (constructive interference) has performed a
full counterclockwise rotation.
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In the measured photoelectron spectra, depicted in
Fig. 7(a), we also observe alternating time windows of
constructive and destructive interference. In each window of
constructive interference, the maximum of the PMD appears
at a different angle, indicating the rotation of the crescent.
Inspecting the simulation, we see that the time windows of
constructive interference correspond to tilted ellipses in the
2D representation. The ellipses are separated by valleys of
destructive interference and shift successively in the positive
angular direction for increasing time delays |τ | (right to left).
This gradual descent of the ellipses indicates the motion of
the slowly rotating 7 f crescent, intersected periodically by
destructive interference with the fast rotating 8 f crescent.
Viewed in the +z direction, the negative φ shift implies coun-
terclockwise rotation of the 7 f crescent, in accordance with
the negative detuning �7 f < 0. The angular velocity of the ro-
tation is obtained by evaluation of the orange gradient triangle.
In the time interval �τ = 65.0 fs between two recurrences,
the ellipses shift by an angle of �φ7 f = −0.87 mrad, from
which we infer the angular frequency �7 f = �φ7 f /�τ =
−13.4 mrad/fs. This frequency corresponds to an oscillation
period of T7 f = 469 fs, in good agreement with the above
results. The slow rotation is visualized by the measured PMDs
in the bottom row (orange frames) of Fig. 7(a). As demon-
strated by the PMDs measured for τ = −250 and −700 fs,
we observe a recurrence of the crescent shape and orientation
(around φ = π/4) after approximately a period of T7 f . Inter-
mediately, the measured crescent appears to move irregularly,
due to the interfering fast rotation of the 8 f crescent which
is not fully resolved in the coarse-grained measurement. To
identify the fast 8 f oscillation in the simulated 2D map, we
first notice that the ellipses are tilted in the +φ direction.
This indicates the clockwise rotation of the 8 f crescent. The
magnitude of the slope, however, is not suitable to extract the
velocity of the rotation because it is additionally influenced by
the beating of the symmetric part. To determine the angular
velocity of the 8 f crescent, we consider that in the recurrence
time �τ = 65.0 fs, in which the 7 f crescent rotates by �φ7 f ,
the 8 f crescent rotates by �φ8 f = �φ7 f + 2π = 5.41 rad.
Thus we obtain the angular frequency �8 f = �φ8 f /�τ =
84.0 mrad/fs. The corresponding oscillation period of T8 f =
74.8 fs is also in good agreement with the above results. In
the figure, the fast 8 f rotation is indicated by a green gradient
triangle, the evaluation of which leads to the same result.
Despite the sparsely sampled fast oscillation, the rotation
of the 8 f crescent is captured in the time window between
τ = −500 and −575 fs. The corresponding PMDs are shown
in the top row (green frames) of Fig. 7(a). Over the period
of approximately T8 f , the crescent rotates monotonically in
a clockwise manner (for increasing |τ |, when viewed in the
+z direction) and eventually reproduces its initial orientation
(around φ = 3π/4).

IV. CONCLUSION AND OUTLOOK

In this paper we presented a shaper-based experimental
technique for the time-resolved holographic imaging of ultra-
fast quantum dynamics. The technique combines CEP-stable
bichromatic white light polarization shaping with the tomo-
graphic reconstruction of photoelectron wave packets. The

physical scheme is based on the CEP-sensitive interference
of a probe wave packet from bichromatic N + 1 REMPI
involving the target states and a reference wave packet from
single-color M + 1 MPI of the ground state. The wave
packets are created by shaper-generated bichromatic pump-
probe pulse sequences with commensurable central frequen-
cies Nωpu = Mωpr . The red band serves as a pump pulse,
initiating the bound-state dynamics via N-photon excitation.
The blue band acts as both a probe and a reference pulse,
simultaneously ionizing the system from the target states and
from the ground state. The former maps the dynamics into
the probe wave packet, while the latter provides the reference
wave packet for holographic measurements.

To demonstrate the technique, we studied femtosecond Ry-
dberg wave-packet dynamics in K atoms as a model system,
employing COCP (2ω:3ω) pulse sequences. The interference
of wave packets with different angular momenta yields a
highly asymmetric crescent-shaped PMD. The orientation of
the crescent in the laser polarization plane is controlled by an
interplay of the optical phases, e.g., the CEP, and the quantum
phase accumulated between excitation and probe or reference
ionization. For fixed optical phase, the rotating crescent rep-
resents a pointer indicating quantum phases by virtue of its
rotation angle. The use of energy- and angle-resolved detec-
tion techniques enables us to disentangle the photoelectron
asymmetry from the symmetric dynamical background. In the
experiment, the decomposition of the measured PMD into
symmetric and antisymmetric parts is achieved by utilizing
the CEP sensitivity of the photoelectron asymmetry. Both
parts deliver complementary spectroscopic information. The
symmetric signal provides information on the beating between
pairs of excited Rydberg states, i.e., on the Rydberg beating
modes ωnm. Since these are difference frequencies, ambigu-
ities may arise in their spectroscopic assignment. Especially
when more than one Rydberg series is excited, e.g., by the
use of a linearly polarized pump pulse [32], different modes
can be very similar or even indistinguishable. However, the
joint analysis of the symmetric and the antisymmetric signal
provides unambiguous information on the individual quantum
states contributing to the Rydberg dynamics. Moreover, the
experimental access to the antisymmetric signal allows for
the background-free observation of the crescent dynamics,
offering enhanced contrast of the holographic technique. We
presented tomographic reconstructions of the 3D PMD for a
series of pump-probe time delays. The 3D mapping highlights
the crescent shape of the total photoelectron density and
illustrates its rotational motion as a phase-sensitive indicator
of the bound-electron dynamics.

Time-resolved holographic imaging of the rotating photo-
electron crescent yields detailed spectroscopic information on
the underlying quantum dynamics. The key to the creation
and observation of the crescent is the combination of CEP-
sensitive N + 1 vs M + 1 REMPI with the highly differential
detection of the released photoelectron wave packets. Cur-
rently, we employ the holographic technique to investigate
resonance-induced phase dynamics in the perturbative multi-
photon excitation or ionization of atomic model systems. For
this purpose, we use the shaper to vary the central wavelengths
of pump and probe, while keeping the bichromatic ratio
fixed, and compare the results for resonant and off-resonant
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multiphoton excitation. In addition, we study intensity-
dependent phase shifts due to, for example, the resonant
(Autler-Townes) and nonresonant AC Stark effect in non-
perturbative laser-atom interactions. Such effects are not
accounted for in the theoretical description presented in
Sec. II A, but are included in our numerical simulations.

Owing to the shaper-based approach, the presented tech-
nique is robust, tunable, and highly versatile, holding great
promise for holographic investigations of ultrafast dynamics

in more complex quantum systems such as multielectron
atoms, polyatomic molecules, and nanometric structures.
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