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Generation of arbitrary qubit states by adiabatic evolution split by a phase jump
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We propose a technique for the accurate, flexible, and robust generation of arbitrary preselected coherent
superpositions of two quantum states. It uses a sequence of two adiabatic pulses split by a phase jump serving as
a control parameter. Each pulse has a chirped detuning, which induces a half crossing, and acts approximately
as a half-π pulse in the adiabatic regime. The phase jump is imprinted onto the population ratio of the created
superposition state. Of the various possible relations between the two pulses, we select the case when the Rabi
frequency and the detuning of the second pulse are mirror images of those of the first pulse, and the two detunings
have opposite signs. Then the mixing angle of the created superposition state depends on the phase jump only. For
other arrangements, the superposition mixing angle is shifted by the dynamic phases of the propagators, which
makes these cases suitable for state tomography. This sandwich setup comes along with the advantage that it
reduces the error ε of each individual pulse down to 4ε2 overall. Therefore, the proposed technique combines
the benefits of robustness stemming from adiabatic evolution with accuracy generated by the twin-pulse error
suppression, and flexibility of the created superposition state controlled by the value of the phase jump φ. In
addition to the general analysis, we present a simple exactly soluble trigonometric model in order to illustrate the
proposed technique. In this model, when the pulse area A increases, the nonadiabatic oscillations are damped as
A−1 for a single pulse and A−2 for the two-pulse sequence. Finally, the proposed technique is iteratively extended
to sequences of N = 2n pulses by concatenating half-π sequences and splitting them by a phase jump, thereby
further reducing the nonadiabatic error ε to (2ε)N . This makes the proposed technique suitable for generating
high-fidelity quantum rotation gates even when starting with errant pulses.
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I. INTRODUCTION

Coherent superposition states are one of the cornerstones
of contemporary quantum physics. They are essential in a va-
riety of quantum phenomena, such as dark resonances [1–3],
electromagnetically induced transparency [4–6], light amplifi-
cation without inversion [7], photon memories [8], conversion
efficiency improvements in high harmonic generation [9], and
nonlinear optics [10], to mention just a few. Coherent superpo-
sitions of quantum states are crucial in quantum information
and quantum technologies in general [11]. For example, the
Hadamard gate which, starting from a single-qubit state, cre-
ates a maximally coherent equal superposition of two states,
is a basic quantum gate at the core of most quantum protocols.

Due to their numerous applications a number of tech-
niques have been developed for their generation. The simplest
technique is a direct linkage between the two states of the
superposition with a resonant pulse with a temporal area of
π/2 [12,13]. This technique, however, is not robust to experi-
mental errors since the superposition states are very sensitive
to variations in the experimental parameters, including the
amplitude, the duration, and the detuning of the field. For that
matter any alternative technique is required most of all to be
robust, and, if possible, technically undemanding.

Adiabatic techniques are a viable alternative to resonant
pulses of a precise temporal area. They offer robustness
to variations in various experimental parameters at the ex-
pense of a larger pulse area and hence longer interaction
duration [14]. In two-state systems, two basic regimes of

adiabatic evolution are distinguished. Complete population
transfer (CPT) occurs when the energies of the two states cross
at a certain instant of time [15–18]. On the contrary, complete
population return (CPR) takes place when these energies do
not cross [14] and it has interesting applications, too [19].

In three-state systems, adiabatic evolution is used in the
famous stimulated Raman adiabatic passage (STIRAP) tech-
nique [20]. STIRAP is the most popular tool to completely
transfer the population between the two end states 1 and 3 in
a three-state chain 1-2-3, whenever the direct linkage 1 → 3
is not possible, e.g., due to electric-dipole selection rules. A
unique feature of STIRAP is that in the adiabatic limit the
(usually lossy) middle state 2 remains unpopulated, even tran-
siently, because the population remains in the so-called dark
state, which is a coherent superposition of states 1 and 3 only.
This remarkable feature makes STIRAP largely immune to
losses from state 2. Extensions of STIRAP to more states have
also been proposed and implemented [20]. We note that there
exist other adiabatic techniques in three-state and multistate
systems, which use the level crossing concept [14,21,22].

Variations of the above adiabatic techniques have been
proposed and demonstrated also for the generation of co-
herent superposition states. In two-state systems, adiabatic
evolution has been used in a technique known as half-SCRAP
(Stark-chirped rapid adiabatic passage) [23] and the closely
related two-state STIRAP [24,25]. In both cases pulse shaping
and chirping are designed such that their time dependences
resemble the delayed-pulse ordering of conventional STI-
RAP. In three-state chains, STIRAP has been modified in a
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configuration known as fractional STIRAP [26–28], in which
the Stokes pulse arrives before the pump pulse but the two
pulses vanish simultaneously. This leads to the creation of a
coherent superposition of the two end states 1 and 3. Tripod-
STIRAP [29–31], an extension of STIRAP wherein a single
state is coupled to three other states, has also been used for
the generation of coherent superpositions of these three states
or two of them. We also note a technique for the creation of
coherent superposition states and for navigation between them
by quantum Householder reflections [32].

In a previous paper [33] we have introduced a single-pulse
technique to exploit the robustness of adiabatic evolution
for the generation of arbitrary coherent superpositions of
two states, including maximally coherent states, i.e., with
a transition probability of 1

2 . The final superposition state
is determined by the initial and final ratios of the field’s
amplitude and its detuning. In particular, if the detuning is
chirped such that it starts from a nonzero initial value and
ends up on resonance (or vice versa), in a “half-crossing”
pattern, while the Rabi frequency changes in the opposite
manner, such a pulse produces a transition probability of 1

2
in the adiabatic limit. An extension of this technique to three
states has been experimentally demonstrated in a trapped-ion
experiment, with a fidelity close to the 99.99% quantum com-
putation benchmark level [34]. Such a mechanism requires a
precise control over the initial and final values of the Rabi
frequency �(t ) and the detuning �(t ). When such a control is
difficult, one may seek a different efficient control parameter,
while preserving the robustness.

To this end, here we propose using a phase jump in the
field amplitude as a control parameter. Phase jumps have
proved to have a dramatic influence over the evolution of the
system [35,36]. Furthermore, phase jumps are the key control
parameter in robust coherent control techniques, such as the
composite pulses [37–44], which are a popular control tool for
compensating systematic field errors [45–59]. Specifically, we
introduce a technique for the creation of arbitrary preselected
coherent superposition states of a qubit. It uses a combina-
tion of two adiabatic pulses, each producing a single-pulse
transition probability of p ≈ 1

2 , divided by a phase jump.
In this manner we harness the robustness of the adiabatic
evolution but shift the control solely to the phase jump. After
fixing the Rabi frequency �(t ) and the detuning �(t ) of
the first pulse, we demonstrate in Sec. II how the second
pulse must be selected such that an error ε in the transition
probability p = 1

2 − ε of each pulse can be reduced to O(ε2)
for the two-pulse sequence. Then we provide examples with
a simple analytically solvable trigonometric model in Sec. III.
Finally, we discuss the extension of this two-pulse technique
to sequences of multiple pulses in Sec. IV, which further
increase the accuracy.

II. TWIN PULSES SPLIT BY A PHASE JUMP

A. Adiabatic solution for a single pulse

We assume that the Hamiltonian is given in the symmetric
form

H(t ) = 1
2 h̄

[−�(t ) �(t )
�(t ) �(t )

]
, (1)

where �(t ) is the Rabi frequency of the interaction and �(t )
is the system-field frequency offset (the detuning). Both �(t )
and �(t ) are assumed real, unless a dedicated phase shift is
applied to �(t ). The Hamiltonian can be written in terms of
the Pauli matrices σk (k = x, y, z) also as

H(t ) = 1
2 h̄�(t )σx − 1

2 h̄�(t )σz. (2)

The evolution of the two-state system is governed by the
Schrödinger equation,

ih̄
d

dt
c(t ) = H(t )c(t ), (3)

where c(t ) = [c1(t ), c2(t )]T is the state vector comprising the
probability amplitudes, with some specified values c1(ti ) and
c2(ti ) at the initial time ti. The propagator U(t, ti ) links the
initial values of the probability amplitudes to their values at
any time t ,

c(t ) = U(t, ti )c(ti ). (4)

The propagator satisfies the Schrödinger equation (3),

ih̄
d

dt
U(t, ti ) = H(t )U(t, ti ), (5)

with the initial condition U(ti, ti ) = I. Of special interest is
the propagator U(tf, ti ) at the end of the interaction, at time
tf. The propagator has the SU(2) symmetry and hence can be
parametrized as

U(tf, ti ) =
[

a −b∗
b a∗

]
, (6)

where a and b are the complex-valued Cayley-Klein parame-
ters, obeying the condition |a|2 + |b|2 = 1.

The Bloch variables relate to the propagator through
the density-matrix evolution ρ(t ) = U(t, ti )ρ(ti )U(t, ti )† as
u(t ) = 2 Re ρ12(t ), v(t ) = 2 Im ρ12(t ), and w(t ) = ρ22(t ) −
ρ11(t ). For Bloch variables starting at ui = vi = 0, wi = −1
(meaning that the system is initially in state 1), the relation to
the propagator elements reads

uf = 2 Re(a∗b), vf = 2 Im(a∗b), wf = |b|2 − |a|2. (7)

The adiabatic solution for the Bloch vector reads [33,60]

uf = �i�f + �i�f cos η

	i	f
ui − �f sin η

	f
vi

+ �i�f − �i�f cos η

	i	f
wi, (8a)

vf = �i sin η

	i
ui + cos ηvi − �i sin η

	i
wi, (8b)

wf = �i�f − �i�f cos η

	i	f
ui + �f sin η

	f
vi

+ �i�f + �i�f cos η

	i	f
wi, (8c)

where the subscripts i and f refer to the values of the respective
variables at the initial and final times ti and tf. Here,

	(t ) =
√

�(t )2 + �(t )2, (9a)

η =
∫ tf

ti

	(t )dt . (9b)
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This adiabatic solution applies to pure and mixed states as
well, provided the adiabatic evolution is completely coherent.

The condition for adiabatic evolution is [14]

	(t ) � |ϑ̇ (t )| = |�(t )∂t�(t ) − �(t )∂t�(t )|
	2

, (10)

with ϑ (t ) = tan−1[�(t )/�(t )].
If the system is initially in state |1〉, then ui = vi = 0, wi =

−1, and the adiabatic solution in the end reads

uf = −�i�f − �i�f cos η

	i	f
, (11a)

vf = �i sin η

	i
, (11b)

wf = −�i�f + �i�f cos η

	i	f
. (11c)

Therefore the single-pulse transition probability p = (wf +
1)/2 is

p = 1

2
− �i�f

2	i	f
− �i�f

2	i	f
cos 2η. (12)

In the adiabatic regime, the Rabi frequency’s and detun-
ing’s initial values �i,�i and final values �f,�f determine
the final position of the Bloch vector. Therefore, an appro-
priate choice of these values can give any desired state on
the Bloch sphere. Using this leeway, recently [33,34] we
showed how adiabatic evolution can be used to create arbitrary
preselected coherent superposition states. In particular, if

0
ti←t←− �(t )

�(t )
t→tf−→ ∞, (13a)

or

∞ ti←t←− �(t )

�(t )
t→tf−→ 0, (13b)

then in each case a maximally coherent superposition (p = 1
2 )

of states 1 and 2 is created when starting from state 1. For ex-
ample, these two cases are implemented by the combinations
of the Rabi frequency �(t ) and the detuning �(t ) shown in
Fig. 1. If one (or both) of the asymptotic value(s) of the ratio
�(t )/�(t ) is different from 0 or ∞, then an unequal coherent
superposition state is created.

In order to create a coherent superposition state with this
method, two conditions must be fulfilled. First, the adiabatic
condition (10) must be satisfied; away from the adiabatic
limit the efficiency of this process may drop considerably.
Second, the initial and final values �i,f and �i,f must be
well controlled; small deviations from these values reduce the
fidelity of the target state.

Here, we show that by taking two such imperfect pulses,
and phase shifting the second one with respect to the first,
we can considerably reduce the nonadiabatic and boundary-
value errors, from O(ε) to O(ε2). Moreover, the phase shift
is mapped onto the mixing angle of the superposition and
hence this approach allows one to create arbitrary preselected
coherent superposition states with very high accuracy.

(a)

(b)

(c)

(d)

FIG. 1. Various choices of pulse pairs for the double-pulse sce-
nario. The first pulse (on the left) is the same in all cases, with the
Rabi frequency �(t ) and the detuning �(t ) changing in opposite
directions, from a zero to a nonzero value and vice versa. The second
pulse (on the right) contains a phase jump of φ (not shown) in the
Rabi frequency �(t ). The different cases are as follows: (a) The
second pulse is identical to the first one. (b) The Rabi frequency �(t )
of the second pulse is the same as the first pulse but the detuning �(t )
has the opposite sign. (c) The Rabi frequency �(t ) and the detuning
�(t ) of the second pulse are mirror images of the ones of the first
pulse. (d) The same as (c) but the detuning changes sign.

B. Two pulses

Let us consider a sequence of two interactions described
by two Hamiltonians and two corresponding propagators. We
assume that the first one is parametrized as in Eq. (6), U1 =
U(tf, ti ), and the second one U2(φ) similarly but with different
Cayley-Klein parameters c and d (|c|2 + |d|2 = 1), and phase
shifted,

U2(φ) =
[

c −d∗e−iφ

deiφ c∗

]
. (14)

The total propagator then reads

U = U2(φ)U1. (15)

In various cases the second propagator can be related to the
first one, and hence expressed by the parameters a and b,
rather than c and d . These cases include sign flips in the Rabi
frequency � or/and the detuning �, and also time reversal
(i.e., the second pulse is a mirror image of the first one). As
a result, the elements of the overall propagator of Eq. (15)
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become particularly simple and allow us to create simple
recipes for the phase control of the quantum dynamics. Next,
we briefly review these relations.

C. Relations between Hamiltonian and propagator changes

In general, it is not an easy task to relate a change in the
Hamiltonian to a change in the propagator. However, sign
flips, phase shifts, and time reversal in the former are easily
traced in the latter.

(i) Sign-flip transformations. Sign flips of �(t ) and/or �(t )
are equivalent to the similarity transformations

H(t )
�→−�−→ σxH(t )σx, (16a)

H(t )
�→−�−→ σzH(t )σz, (16b)

H(t )
�→−�−→
�→−�

σyH(t )σy, (16c)

which can easily be derived from Eq. (2) using the relation
σ−1

k = σk (k = x, y, z).
A sign-flip transformation of the Hamiltonian, H(t ) →

σkH(t )σk , is imprinted onto the propagator as

U(tf, ti ) → σkU(tf, ti )σk . (17)

Of special interest is the transformation (16a), which flips the
sign of the detuning �,

U(tf, ti )
�→−�−→ σxU(tf, ti )σx =

[
a∗ b

−b∗ a

]
. (18)

The sign flip of � is a special case of the phase-jump trans-
formation which follows and therefore we will not consider it
separately.

(ii) Phase jumps. A phase jump in the Rabi frequency,
�(t ) → �(t )eiφ , can be described with the transformation

H(t ) → �(φ)∗H(t )�(φ), (19)

with

�(φ) = ei(φ/2)σz =
[

eiφ/2 0
0 e−iφ/2

]
. (20)

The propagator becomes

U(tf, ti ) → �(φ)∗U(tf, ti )�(φ) =
[

a −b∗e−iφ

beiφ a∗

]
. (21)

Of course, �(φ)∗ = �(−φ). For φ = π the phase-jump trans-
formation reduces to the � → −� transformation.

(iii) Time reflection. We consider four cases of symmetric
and antisymmetric Rabi frequency and detuning.

(1) If �2(−t ) = �1(t ) and �2(−t ) = �1(t ), which means
that H2(t ) = H1(−t ), then (see Appendix)

U2 = UT
1 =

[
a b

−b∗ a∗

]
. (22)

(2) If �2(−t ) = −�1(t ) and �2(−t ) = −�1(t ), which
means that H2(t ) = −H1(−t ), then we have

U2 = U†
1 =

[
a∗ b∗
−b a

]
. (23)

TABLE I. Propagator relations for the various cases of pulse
pairs illustrated in Fig. 1. U1 and U2 denote the propagators of
the first and second pulses. When the Rabi frequency �(t ) and the
detuning �(t ) of the second pulse are the same (first row), or are
phase shifted (second row), or are mirror images of the ones of
the first pulse (third and fourth rows), then the second propagator
U2 can be expressed in terms of the first one U1 (second column).
The second pulse is phase shifted, with the resulting propagator
�(−φ)U2�(φ). The overall transition probability for the two-pulse
sequence is listed in the third column. α and β are the Stückelberg
phases of Eq. (27).

Pulses U2 Transition probability P

�2(t ) = �1(t − τ ) U1 4p(1 − p) cos2 (α + 1
2 φ)

�2(t ) = �1(t − τ )
�2(t ) = �1(t − τ ) σxU1σx 4p(1 − p) sin2 (β − 1

2 φ)
�2(t ) = −�1(t − τ )
�2(t ) = �1(−t ) UT

1 4p(1 − p) sin2 (α − β + 1
2 φ)

�2(t ) = �1(−t )
�2(t ) = �1(−t ) σzU

†
1σz 4p(1 − p) cos2 ( 1

2 φ)
�2(t ) = −�1(−t )

(3) If the Rabi frequency is symmetric and the detuning
antisymmetric, i.e., �2(−t ) = �1(t ) and �2(−t ) = −�1(t ),
we find from Eq. (22) or Eq. (23), along with Eqs. (16)
and (17), that

U2 = σxUT
1 σx = σzU

†
1σz =

[
a∗ −b∗
b a

]
. (24)

(4) If, on the contrary, �2(−t ) = −�1(t ) and �2(−t ) =
�1(t ), we find from Eq. (22) or Eq. (23) that

U2 = σzUT
1 σz = σxU†

1σx =
[

a −b
b∗ a∗

]
. (25)

Of particular interest are Eqs. (22) and (24) because in the
other two the sign flip of the Rabi frequency can be included
in the phase jump.

D. A pair of pulses with a phase jump

We consider four cases of sequences of two pulses, as seen
in Fig. 1, with the second one being phase shifted, i.e., the
overall propagator reads �(−φ)U2�(φ)U1. We fix the first
pulse to be represented by the propagator U1 = U of Eq. (6),
and take different choices for the second pulse using the
transformations above. The results are summarized in Table I.
We note here that the first phase gate �(−φ) does not affect
the transition probability and the simpler sequence U2�(φ)U1

delivers exactly the same transition probability.

1. Identical pulses

The most natural choice is to take the second pulse the
same as the first one, except for the phase jump, U2 =
�(−φ)U1�(φ) [see Fig. 1(a)]. The overall propagator is
�∗U�U, and the overall transition probability reads

P = 4p(1 − p) cos2(α + φ/2). (26)
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Here, we have used the polar form of the Cayley-Klein
parameters,

a =
√

1 − p eiα, b = √
p eiβ, (27)

where p is the single-pulse transition probability, while α and
β are often referred to as the Stückelberg phases. If p = 1

2 ,
then P = cos2(α + φ/2), i.e., the transition probability (26)
depends both on the phase shift φ and the Stückelberg phase
α. Therefore, this scenario may not be suitable for the robust
creation of coherent superposition states unless the phase α is
well controlled, which may not be generally the case.

2. Bichromatic pulses

Let us now take the second pulse to have the opposite
detuning to the first one, i.e., U2 = σxU1σx [see Fig. 1(b)]. The
overall propagator is �∗σxUσx�U, and the overall transition
probability is given by

P = 4p(1 − p) sin2(β − φ/2). (28)

If p = 1
2 , then P = sin2(β − φ/2), i.e., the transition probabil-

ity (28) depends both on the phase shift φ and the Stückelberg
phase β. Therefore, as in the preceding case, this scenario may
not be suitable for the robust creation of coherent superposi-
tion states unless the phase β is well controlled.

3. Time-reflected pulses

Now take the second pulse to be the mirror image of the
first one [see Fig. 1(c)]. Then U2 = UT

1 [see Eq. (22)]. The
overall propagator is �∗UT �U, and the overall transition
probability reads

P = 4p(1 − p) cos2
(
α − β + 1

2φ
)
. (29)

As in the previous two cases, the transition probability (29)
depends on the phase jump φ and the dynamic phases α and
β.

4. Time-reflected bichromatic pulses

Let us now take the second pulse to be the mirror image
of the first one but also the detuning to flip the sign [see
Fig. 1(d)]. Then U2 = σzU

†
1σz [see Eq. (24)]. The overall

propagator is �∗σzU†σz�U, with Cayley-Klein parameters

a2 = |a|2 − |b|2e−iφ, (30a)

b2 = ab(1 + eiφ ). (30b)

The overall transition probability reads P = |b2|2, or

P = 4p(1 − p) cos2
(

1
2φ

)
. (31)

Contrary to the previous three cases, the transition probabil-
ity (31) depends on the phase jump φ only, but not on the
Stückelberg dynamic phases α and β. Obviously, if p = 1

2 ,
then P = cos2(φ/2). Therefore, the overall transition proba-
bility is determined by the phase jump φ alone. In particular,
if φ = π/2, then P = 1

2 , and hence a maximally coherent
superposition is created, u2 + v2 = 1 and w = 0.

The Bloch vector components read

uf = 4
√

p(1 − p) cos
(

1
2φ

)[
(1 − p) cos

(
α + β + 1

2φ
)

− p cos
(
α + β + 3

2φ
)]

, (32a)

vf = 4
√

p(1 − p) cos
(

1
2φ

)[
(p − 1) sin

(
α + β + 1

2φ
)

+ p sin
(
α + β + 3

2φ
)]

, (32b)

wf = 8p(1 − p) cos2(φ/2) − 1. (32c)

Such an excitation mechanism proves to be very robust.
Let us assume that each single pulse generates a transition
probability close to 1

2 , i.e., p = 1
2 − ε (|ε| 
 1). Then

P = 4
(

1
2 + ε

)(
1
2 − ε

)
cos2(φ/2) = (1 − 4ε2) cos2(φ/2).

(33)

Therefore, the error ε in the single-pulse transition probability
is relegated to O(ε2). For instance, a deviation of 10% from
the value 1

2 in p is reduced to 1% in the overall transition
probability P, while an error of 2% in p is reduced to just
0.04% in P.

E. Discussion

The four cases of pulse pairs split by a phase jump φ

present interesting opportunities.
(i) The fourth case, with the second pulse being a mirror

image of the first one and the detuning being an odd function
of time, provides a tool for the robust creation of coherent
superpositions of states, with the population ratio controlled
solely by the phase φ. This ratio has no dependence on the
phases of the propagator α and β, which assures that it will
not be affected by any geometric or dynamic phase acquired
during the evolution. The robustness derives from the fact
that if each constituent pulse creates a transition probability
with an error ε 
 1, the sandwiched double pulse gives
probabilities with an error 4ε2 (
ε), as follows from Eq. (33).
However, the coherences u and v do depend on the phases α

and β, which in turn depend on the interaction parameters. For
that matter we can deliver any coherent superposition state on
the Bloch sphere by controlling the polar angle via the phase
jump and the azimuthal angle by a proper choice of interaction
parameters.

(ii) The other three cases produce transition probabilities,
which depend on the phase jump φ as well as on the dynamic
phases α [in the first case, Eq. (26)], β [in the second case,
Eq. (28)], or both α and β [in the third case, Eq. (29)]. This
renders such configurations inappropriate for the controlled
creation of superposition states, unless a good control over
these phases is possible. However, we can look at these
dependences from another viewpoint: We can use the double-
pulse approach to actually determine the phases α and β and
consequently the related dynamical and geometrical phases,
associated with a certain interaction. We note that the error
reduction from O(ε) to O(ε2) occurs in these three cases too
because the overall transition probabilities of Eqs. (26), (28),
and (29) contain the factor 4p(1 − p).

We note that the present scenario formally resembles the
standard construction of a rotation gate in quantum informa-
tion in the form of two Hadamard gates split by a phase gate.
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However, as the above analysis shows, the relation between
the two half-π pulses matters. The first case, when the second
pulse is identical to the first one, is the most natural choice;
however, if the detuning is nonzero, then the overall mixing
ratio will depend on the dynamical phase α. (If the detuning
is zero, then it does not matter if the two half-π pulses are
identical or not.) The last case shown in Fig. 1(d) is the
optimal two-pulse arrangement which ensures the maximal
accuracy and robustness to errors.

III. TRIGONOMETRIC MODEL

In order to illustrate the results in the last section we take
the first pulse to be the cos-sin model [33], in which the Rabi
frequency and the detuning are given by

�(t ) = �0 cos(t/T ), �(t ) = −�0 sin(t/T ), (34)

with − 1
2π � t/T � 0. They are depicted in Fig. 1 (left

frames). This model has an exact solution if �0 = �0 =
	 [33], which reads

a = (1 + iA) sin
(

1
4πs

) + s cos
(

1
4πs

)
√

2s
, (35a)

b = (1 − iA) sin
(

1
4πs

) − s cos
(

1
4πs

)
√

2s
, (35b)

where A = 	T is the pulse area and s = √
A2 + 1. The tran-

sition probability reads

p = 1

2
− sin

(
1
2π

√
A2 + 1

)
2
√

A2 + 1
. (36)

In the adiabatic limit (A � 1) we have p → 1
2 , with the

nonadiabatic oscillations vanishing as A−1.
The two-pulse sequence of Fig. 1(d) with the phase jump

of φ produces the transition probability [cf. Eq. (31)],

P =
[

1 − sin2
(

1
2π

√
A2 + 1

)
A2 + 1

]
cos2 (

1
2φ

)
. (37)

In the adiabatic limit (A � 1) we have

P ≈ cos2
(

1
2φ

)
, (38)

that is, the transition probability is determined by the phase
shift φ alone. In agreement with the general theory [cf.
Eq. (33)], the nonadiabatic error vanishes as A−2, i.e., quadrat-
ically faster than for the single pulse [cf. Eqs. (36) and (37)].
These features are illustrated in Fig. 2, where the transition
probability for a single pulse (dashed) is compared to double-
pulse transition probabilities for phase jumps of φ = 1

3π , 1
2π ,

and 2
3π . Clearly, the nonadiabatic oscillations for the two-

pulse sequence are damped much faster. Moreover, the two-
pulse sequence provides the flexibility to reach any desired
probability ( 1

4 , 1
2 , and 3

4 in this figure) in the adiabatic limit.

IV. EXTENSION TO LONGER SEQUENCES

The two-pulse technique can be extended to longer se-
quences, thereby further reducing the error. We use an iterative
nesting technique as follows. As discussed hitherto, a pair of

P

P

P

P

FIG. 2. Transition probability vs the pulse area A = 	T for the
cos-sin model of Eq. (34) for a single pulse [dashed, Eq. (36)] and
for a sequence of two pulses split by phase jumps of φ = 1

3 π , 1
2 π ,

and 2
3 π [solid, Eq. (37)]. In the adiabatic limit (A � 1), the single-

pulse transition probability reaches the value of 1
2 , while the two-

pulse transition probability, depending on the value of the phase jump
φ, reaches the values 1

4 , 1
2 , and 3

4 .

two pulses, which produce a coherent superposition state with
a mixing angle φ, reads

U2(φ) = U�(φ)U, (39)

where U = σzU†σz, as before (Sec. II D 4). For a target transi-
tion probability of 1

2 we set φ = 1
2π . We use this sandwich in

order to construct the next sequence by replacing each of the
pulses U by the sandwich U2( 1

2π ),

U4(φ) = U�∗U�(φ)U�U, (40)

where � = �( 1
2π ) and �∗ = �(− 1

2π ). We continue by re-
placing U by U4(π/2) in Eq. (39) to find

U8(φ) = U�∗U�∗U�U�(φ)U�∗U�U�U. (41)

Then we replace U by U8(π/2) in Eq. (39) to obtain the next
sequence,

U16(φ) = U�U�U�∗U�∗U�U�∗U�∗U�(φ)

× U�∗U�∗U�U�U�∗U�U�U, (42)

and so on. This concatenation procedure produces sequences
of N = 2n pulses. The first few concatenated sequences are
shown in Fig. 3.

Consider a target transition probability of 1
2 . The con-

catenation procedure described above leads to the following
transition probability,

PN = 1
2 [1 − (1 − 2p)N ]. (43)

If p = 1
2 − ε, then PN = 1

2 [1 − (2ε)N ]. Therefore, the relative
error scales as (2ε)N . In other words, if a single pulse produces
a transition probability 0.45 (instead of 1

2 , meaning ε = 0.05
or 10% error), then the sequence composed of two such
pulses will reduce the probability error to 1%, the four-pulse
sequence will further reduce the error to 0.01%, and the
eight-pulse sequence to 10−6. Instead, if the single pulse
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T T

t

T T

t t

T T T T

t t t t

FIG. 3. Concatenated sequences of N = 2, 4, and 8 pulses, which
produce a transition probability of cos2(φ/2) with an error O(εN ).

produces a transition probability of 0.49 (meaning ε = 0.01 or
2% error), then the two-pulse sequence will reduce the error
to 0.04%, the four-pulse sequence to 1.6 × 10−7, etc. Hence
the concatenated-sequence procedure allows one to quickly
reduce the probability error beyond the quantum computation
benchmark values (usually 10−4), even when starting with
low-fidelity pulses.

For the sin-cos model the transition probability for the
concatenated sequences UN (φ) reads

PN = 1

2

[
1 − sinN

(
1
2π

√
A2 + 1

)
(A2 + 1)N/2

]
. (44)

The probability error diminishes very quickly with N , as
A−N . Figure 4, which shows the transition probability versus
the pulse area A for a single pulse and sequences of 2, 4,
and 8 pulses, demonstrates this scaling. The nonadiabatic
oscillations for a single pulse require very large values of
the pulse area in order to be diminished to sufficiently small
values because their amplitude scales as A−1. The oscillation
damping is much faster already for two pulses (as A−2), while
for sequences of four (as A−4) and eight (as A−8) pulses
the oscillations are barely visible at all. We stress that this
error damping does not derive merely from the larger total
pulse area of the sequences but rather from the effect of the
destructive cancellation of errors, similar to what happens
in composite pulses. For example, the four-pulse sequence
has obviously a factor of 4 larger pulse area than a single
pulse. However, the error damping produced by the four-pulse
sequence for A > 0.4π is far stronger than the error damping
by a single pulse for A > 4 × 0.4π = 1.6π .

P

P
P

P

FIG. 4. Transition probabilities PN of Eq. (44) for the multipulse
sequences of Fig. 3 compared to the single-pulse transition probabil-
ity P1.

V. SUMMARY, CONCLUSIONS, AND OUTLOOK

In this paper, we proposed a technique for the accurate,
flexible, and robust generation of coherent superposition qubit
states. The technique uses a pair of adiabatic pulses split by a
phase jump, which is used as a control parameter. Each pulse
uses a chirped detuning which induces a half crossing that acts
approximately as a half-π pulse in the adiabatic regime. The
phase jump is directly mapped onto the mixing angle of the
created superposition state. The error ε 
 1 of each half-π
pulse is suppressed to 4ε2 (
ε) by the two-pulse sequence,
thereby allowing one to improve the overall accuracy. In such
a manner we combine the benefits of robustness stemming
from adiabatic evolution with accuracy generated by the error
suppression, and flexibility of the created superposition state,
whose population ratio is determined by the value of the phase
jump φ. In particular, a maximally coherent superposition
with equal populations is created for φ = 1

2π .
Given the first pulse, we have identified four distinctly

different choices for the second pulse, as depicted in Fig. 1.
The Rabi frequency of the second pulse is the same as the
first pulse or a mirror image of it, and the same applies to the
detuning, with the latter having the same or the opposite sign
to the first pulse. We have shown that in the general case, only
one of these four cases can be used for the proposed technique,
namely, when the Rabi frequency and the detuning of the
second pulse are mirror images of those of the first pulse,
and the two detunings have opposite signs [see Fig. 1(d)].
Then the overall transition probability depends on the phase
jump φ only. In the other three cases, it depends also on the
dynamic phases of the propagators. Therefore, the sequence
of Fig. 1(d) can be used for the efficient, flexible, and robust
creation of preselected superposition states, while the other
three sequences in Fig. 1 can be used for the tomography of
coherent superpositions.

The proposed technique formally resembles the well-
known sequence of two Hadamard gates split by a phase gate
for creating an arbitrary rotation gate. The present analysis
shows that in the general case of an asymmetric temporal
shape of the Rabi frequency and nonzero detuning, the most
obvious scenario of using two identical pulses, as in Fig. 1(a),

013426-7



KALOYAN N. ZLATANOV AND NIKOLAY V. VITANOV PHYSICAL REVIEW A 101, 013426 (2020)

is not the optimal one because then the rotation angle is shifted
by a (probably unknown) dynamical phase. It is only the
last case shown in Fig. 1(d) which eliminates such unwanted
shifts.

We used a simple, exactly soluble trigonometric model to
illustrate the proposed quantum control technique. It allows
one to explicitly estimate the nonadiabatic oscillations and
their damping in the near-adiabatic regime. This damping
behaves as A−1 for a single pulse and A−2 for the two-
pulse sequence. The analytic model shows that a high-fidelity
rotation gate can be generated by sequences of pulses with
areas of just over π .

The proposed technique was extended to sequences of
more than two pulses by concatenating half-π sequences
and splitting them by a phase jump. The two concatenated
sequences must obey the general symmetry principles of the
two-pulse sequence: The Rabi frequency and the detuning of
the second sequence should be the mirror images relative to
the ones of the first sequence, and the detuning must also flip
its sign. In this manner, we obtain sequences of N = 2n pulses,
with the nonadiabatic error ε scaling as (2ε)N . Therefore,
starting from a low-fidelity pulse with a significant error ε,
one can achieve a very high error correction by appropriately
concatenating this pulse. This makes the proposed technique
appropriate for generating very high-fidelity quantum rotation
gates, such as the Hadamard gate, with rather poor initial
resources. Moreover, this approach is applicable to a wide
range of systems, including ground-state atomic [61] and
ionic [62] qubits, Rydberg atoms [63], Rydberg ions [64],
superconducting qubits [65], etc.

Finally, we have focused on pulse pairs obtained by twin-
ning two half-crossing adiabatic pulses. The same approach
can be used if each π/2 is produced in a different manner, e.g.,
by resonant or detuned fields. The accuracy, the robustness,
and the flexibility of the resulting sequence may be similar to
the present work provided the symmetry relations of Fig. 1 are
satisfied. This makes the present approach applicable beyond
the adiabatic regime.
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APPENDIX: TIME REVERSAL

If we change the direction of time to t → −t , we see that
Eq. (5) changes to

ih̄
d

dt
U(−t, 0) = −H(−t )U(−t, 0). (A1)

There are important differences between symmetric and anti-
symmetric Hamiltonians.

(i) The case of a symmetric Hamiltonian H(t ) = H(−t ) is
obtained if �(t ) = �(−t ) and �(t ) = �(−t ). If we complex
conjugate Eq. (5), we find

ih̄
d

dt
U(t, 0)∗ = −H(t )U(t, 0)∗, (A2)

provided H(t ) is real. The initial condition for both U(t, 0)∗
and U(−t, 0) is the same: U(0, 0)∗ = U(0, 0) = I. Then
U(t, 0)∗ and U(−t, 0) coincide because they satisfy the same
differential equation with the same initial condition,

U(−t, 0) = U(t, 0)∗ =
[

a∗ −b

b∗ a

]
. (A3)

(ii) The antisymmetric case H(−t ) = −H(t ) implies
�(−t ) = −�(t ) and �(−t ) = −�(t ). Then Eq. (A1) will
have the same form as Eq. (5) and therefore U(−t, 0) and
U(t, 0) will be equal,

U(−t, 0) = U(t, 0) =
[

a −b∗

b a∗

]
. (A4)

In both symmetric and antisymmetric cases we have, due
to unitarity,

U(0,−t ) = U(−t, 0)†. (A5)

Therefore, for a symmetric H(t ), we have

U(0,−t ) = U(t, 0)T =
[

a b

−b∗ a∗

]
, (A6)

while for antisymmetric H(t ), we find

U(0,−t ) = U(t, 0)† =
[

a∗ b∗

−b a

]
. (A7)

If �(−t ) = �(t ) and �(−t ) = −�(t ), we have

U(0,−t ) = σzU(t, 0)†σz =
[

a∗ −b∗

b a

]
. (A8)

If �(−t ) = −�(t ) and �(−t ) = �(t ), we have

U(0,−t ) = σzU(t, 0)T σz =
[

a −b

b∗ a∗

]
. (A9)
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