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Dark-time decay of the retrieval efficiency of light stored as a Rydberg excitation
in a noninteracting ultracold gas
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We study the dark-time decay of the retrieval efficiency for light stored in a Rydberg state in an ultracold
gas of 87Rb atoms based on electromagnetically induced transparency (EIT). Using low atomic density to avoid
dephasing caused by atom-atom interactions, we measure a 1/e time of 30 μs for the 80S state in free expansion.
One of the dominant limitations is the combination of photon recoil and thermal atomic motion at 0.2 μK. If the
1064-nm dipole trap is left on, then the 1/e time is reduced to 13 μs, in agreement with a model taking differential
light shifts and gravitational sag into account. To characterize how coherent the retrieved light is, we overlap it
with reference light and measure the visibility V of the resulting interference pattern, obtaining V > 90% for
short dark time. Our experimental work is accompanied by a detailed model for the dark-time decay of the
retrieval efficiency of light stored in atomic ensembles. The model is generally applicable for photon storage in
Dicke states, such as in EIT with �-type or ladder-type level schemes and in Duan-Lukin-Cirac-Zoller single-
photon sources. The model includes a treatment of the dephasing caused by thermal atomic motion combined
with net photon recoil, as well as the influence of trapping potentials. It takes into account that the signal light
field is typically not a plane wave. The model maps the retrieval efficiency to single-atom properties and shows
that the retrieval efficiency is related to the decay of fringe visibility in Ramsey spectroscopy and to the spatial
first-order coherence function of the gas.
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I. INTRODUCTION

Decay of coherence is a major performance-limiting fac-
tor in photonic quantum memories [1]. Among the various
schemes for such memories, the focus of the present work is
on storage and retrieval of light [2–5] in an ultracold atomic
ensemble based on electromagnetically induced transparency
(EIT) [6]. The storage produces a spin wave in the atomic
ensemble. Various physical effects cause the coherence of the
spin wave to decay as a function of the dark time between stor-
age and retrieval. As a result, the efficiency of the retrieval de-
cays. Over the years, various techniques have been used to ex-
tend the decay time. For ground-state EIT in ultracold atomic
gases, a 1/e time of 16 s was reached a few years ago [7].

Aiming at the creation of strong interactions between
photons, EIT has been combined with Rydberg states [8–10].
Coherence in Rydberg EIT suffers from the fact that the
sensitivity of a Rydberg atom to interactions with surrounding
ground-state atoms increases with atomic density and with
increasing principal quantum number [11–14]. In addition,
when the atoms are held in a red-detuned optical dipole trap,
the differential light shifts between the ground and Rydberg
state are large. To avoid light shifts, many experiments are car-
ried out in free expansion. In recent experiments on Rydberg
EIT, the 1/e decay time has been pushed to 12 μs for the 45S
state in free expansion [14] and to approximately 20 μs for
the 65S state in a magic-wavelength optical lattice specifically
designed to fight decoherence [15].

We recently demonstrated a photon-photon quantum gate
based on Rydberg interactions [16]. The gate required a fairly

high atomic density of 2 × 1012 cm−3 because light had to
accumulate a π phase shift in a single pass through the block-
ade volume. Correspondingly, atom-atom interactions caused
a decay of coherence on a timescale of a few microseconds,
which was the key limiting factor for the overall performance
of the gate. Much better performance of a photon-photon gate
should be achievable using Rydberg blockade in an atomic
ensemble inside an optical resonator of moderate finesse
(Rydberg cavity gate) [17–19] because, among other things,
light passing many times through a blockade volume can
accumulate a large effect even at low atomic density, where
decoherence should be much slower.

Here, we present an experiment in which we extend the 1/e
decay time of Rydberg EIT retrieval from the 80S state in 87Rb
to 30 μs in free expansion. This is achieved by operating at a
low peak atomic density of 5 × 1010 cm−3 to make atom-atom
interactions negligible and at a low temperature of 0.2 μK to
reduce the effect of net photon recoil. We combine this with
an experimental study of the dependence of the decay time on
temperature. In addition, we overlap the retrieved light with
a local oscillator and measure a visibility above 90%. This is
a considerable improvement over the 66% visibility that we
previously measured at a peak density of 2 × 1012 cm−3 [16].
If the dipole trap with a wavelength of 1064 nm is left on
during the experiment, the 1/e decay time is reduced to 13 μs.

Our experimental work is accompanied by a theoretical
analysis of the decay of the EIT retrieval efficiency for
light stored in a gas of noninteracting atoms. The model
is applicable to EIT-based storage in �-type or ladder-type
level schemes. The retrieval efficiency can be calculated from
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single-particle properties. We show that the resulting expres-
sions are analogous to expressions for the decay of the fringe
visibility in Ramsey spectroscopy as a function of dark time.
We also note that the EIT retrieval decay is equivalent to the
decay of the read efficiency in single-photon sources based on
the inherently probabilistic Duan-Lukin-Cirac-Zoller (DLCZ)
protocol [20]. In addition, we show that when applying the
model to photon recoil during storage combined with thermal
atomic motion, the decay of retrieval efficiency can be re-
garded as a direct experimental probe of the spatial first-order
coherence function of the gas.

We apply this model to study several scenarios: (i) photon
recoil during storage combined with thermal atomic motion
[13,21–23], (ii) a harmonic differential light-shift potential
[15,23–26], and (iii) release from a harmonic trap [23]. Ac-
cording to the model, photon recoil combined with thermal
motion is one of the dominant limitations for the observed
1/e time of 30 μs. This model also agrees well with the
temperature dependence of the decay time measured here. The
observed reduction of the 1/e time to 13 μs in the dipole
trap is explained by the model when taking into account
the differential light shift and the gravitational sag of the
atomic cloud in the trapping potential. The model predicts that
producing the same harmonic trapping potential with 532-nm
light should make the light-shift contribution to the decay
irrelevant compared to the presently observed 30 μs.

This paper is organized as follows. In Sec. II we present
experimental results and compare with results from a model.
This model is introduced in Sec. III and applied to several
experimentally relevant situations in Sec. IV.

II. EXPERIMENT

This section presents experimental results of the decay
of the retrieval efficiency during the dark time. It begins
with a description of the experimental setup and procedure
in Sec. II A, which is followed by Sec. II B presenting an
experimental study of the decay of the retrieval efficiency in
free expansion. The results agree largely with results from
a model taking into account photon recoil combined with
thermal atomic motion. In Sec. II C we observe that the decay
becomes faster if the optical dipole trap is left on during the
dark time. In Sec. II D we investigate to which degree the
retrieved light is coherent.

A. Experimental procedure

Our experiment is based on a double magneto-optical trap
(MOT) system. 87Rb atoms are collected in a first MOT from
a background vapor and then transferred to a second MOT at
much lower background pressure. After polarization-gradient
cooling and optical pumping, the atoms are transferred into
a Ioffe-Pritchard magnetic trap. Radiofrequency (rf) induced
evaporative cooling in the magnetic trap allows it to reach sub-
microkelvin temperatures. The atoms are finally transferred
into an optical dipole trap. In the past, we produced BECs
in this apparatus [27]. In recent years, however, we have
used the apparatus to study Rydberg EIT, for which the high
atomic density in a BEC of typically 1014 cm−3 is disadvan-
tageous because atom-atom interactions would produce fast
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FIG. 1. (a) Scheme of the beam geometry. Trapping light at
1064 nm creates a radially confining optical dipole trap for the atomic
ensemble. 532 nm light sheets provide a boxlike longitudinal optical
dipole potential. 780 nm signal light copropagates with the 1064 nm
trapping light. 480 nm EIT coupling light counterpropagates the
signal light to minimize the net photon recoil in the two-photon
transition |g〉 ↔ |r〉. (b) Scheme of the atomic levels and transitions.
A weak signal light field with vacuum Rabi frequency 2gR drives
the transition |g〉 ↔ |e〉. Strong EIT coupling light with Rabi fre-
quency �c drives the transition |e〉 ↔ |r〉. (c) Scheme of the timing
sequence. The storage pulse consists of incoming signal and coupling
light. Storage of the signal light is achieved by switching off the
coupling light. Because of imperfections, some signal light leaks
through the atomic ensemble, thus appearing at the output with some
group delay. The storage is followed by a dark time, after which the
coupling light is switched back on. This causes the stored signal light
to be retrieved.

dephasing; see, e.g., Ref. [12]. To avoid this, we operate at
much lower atomic densities. Technically, we achieve this by
deliberately loading much fewer atoms than possible. As a
result, the typical temperatures of a few hundred nanokelvin
are far above quantum degeneracy.

The dipole trap is made of a horizontally propagating light
beam with a wavelength of 1064 nm and a beam waist (1/e2

radius of intensity) of 140 μm; see Fig. 1(a). At a power of
3.7 W, the trap depth is estimated to be kB × 18 μK, where
we used the dynamical polarizability of the ground state at
1064 nm of 687.3 a.u. [28]. Here, kB is the Boltzmann con-
stant, and one atomic unit is 1.649 × 10−41 J/(V/m)2. This
beam provides a radial confinement with a harmonic trapping
frequency of ω/2π = 96 Hz estimated from the beam waist
and power. This agrees fairly well with the measured value of
87(8) Hz. The axial confinement resulting from the divergence
of the 1064 nm beam is estimated to be below 0.1 Hz, which
is negligible. The gravitational acceleration of g = 9.8 m/s2

causes a gravitational sag of xg,s = g/ω2 = 27 μm. In the
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radial direction, the one-dimensional (1D) root-mean-square
(rms) radius is σx =

√
kBT/mω2, where m is the atomic mass,

yielding, e.g., σx = 7 μm for T = 0.2 μK.
In the axial direction, a boxlike potential is produced using

two light sheets at a wavelength of 532 nm with beam waists
of 55 μm along gravity and 14 μm orthogonal thereto, similar
to Ref. [16]. Adjusting the power of the 532 nm light sheets
allows for evaporative cooling in the dipole trap without
changing the radial confinement provided by the 1064 nm
light. The resulting temperature depends on the power of the
light sheets. The separation of the centers of the light sheets is
typically 0.43 mm. Combining this number with the temper-
ature and with the dynamical polarizability of −250 a.u. [29]
for the ground state at 532 nm, we can estimate the length of
the medium L (full width at half-maximum).

For example, for T = 0.2 μK and a typical power of
25 mW for each light sheet we estimate L = 0.40 mm.
Combining this with an atom number of, e.g., N = 1 × 104

yields a peak atomic density of �0 = 8 × 1010 cm−3 and
a peak phase space density of �0λ

3
dB = 6 × 10−3, where

λdB = h̄
√

2π/mkBT is the thermal de Broglie wavelength. As
�0λ

3
dB � 1, the temperature is far above quantum degeneracy.

The atomic sample is prepared in the stretched spin state
|g〉 = |5S1/2, F = mF = 2〉 of the atomic ground state, where
F, mF are the hyperfine quantum numbers. The quantization
axis is chosen along the wave vector of the 1064-nm light
beam. A magnetic field of 24 μT applied along the quanti-
zation axis preserves the spin preparation of the sample.

The sample can be illuminated with an EIT signal-light
beam with a beam waist of w = 8 μm and a wavelength of
λeg = 780.24 nm, resonantly driving the |g〉 ↔ |e〉 transition,
where |e〉 = |5P3/2, F = mF = 3〉. A scheme of the atomic
levels and transitions is shown Fig. 1(b). The EIT signal-light
beam copropagates with the 1064 nm dipole trapping beam. In
addition, the sample can be illuminated with an EIT coupling-
light beam with a beam waist of 29 μm and a wavelength
of λre = 480 nm, resonantly driving the |e〉 ↔ |r〉 transition,
where |r〉 = |nS1/2, F = mF = 2〉 is a Rydberg state with
principal quantum number n. The EIT coupling-light beam
counterpropagates the EIT signal-light beam to minimize the
net photon recoil of the two-photon transition from |g〉 to
|r〉. Note that the states |g〉 and |r〉 experience, to a good
approximation, the same linear Zeeman effect.

We use the following timing sequence, schematically
shown in Fig. 1(c), to achieve EIT-based storage and retrieval
of the signal light. First, the EIT coupling light is turned on.
Next, a pulse of EIT signal light is sent onto the sample.
The incoming EIT signal pulse has a rectangular temporal
shape. Unless otherwise noted, its duration is 0.5 μs. Because
of EIT, the signal light becomes a Rydberg polariton when
inside the sample. The pulse experiences a much-reduced
group velocity, which causes a drastic spatial compression
of the pulse in the longitudinal direction upon entering the
sample [6]. When the signal pulse is inside the medium,
the coupling light is switched off. Hence, the signal light is
converted into a stationary Rydberg excitation [2,3]. After a
variable dark time t , the coupling light is switched back on.
This couples the population in state |r〉 to the state |e〉 from
where spontaneous emission into state |g〉 can occur. There is
interference between the light emitted from the large number

of atoms in the ensemble. Ideally, the interference is such that
the signal light pulse resumes propagation with an unchanged
form of the longitudinal and transverse wave packet. This
retrieval can, to a good approximation, be regarded as the
time-reversed process of the storage.

In practice, various physical effects can cause deviations
from this ideal retrieval scenario. While a possible change in
the longitudinal wave packet could, in principle, be compen-
sated by shaping the temporal profile of the coupling light
pulse during retrieval, a change in the transverse profile is
typically hard to compensate. Hence, the fraction η of the
incoming light which is emitted into the original transverse
mode is an important figure of merit. η is the combined
efficiency of the storage-and-retrieval process. For brevity, we
refer to η as the retrieval efficiency throughout this work. To
measure η, we focus the light emitted from the atomic sample
into a single-mode optical fiber and measure the light intensity
behind the fiber. In the absence of the atomic ensemble, we
achieve a fiber-coupling efficiency of 45% for coupling the
signal light, impinging at the position where the atoms would
usually be, into the optical fiber. In our present work, we are
not interested in the retrieval efficiency η at short dark time.
Instead, we focus on the decay of the retrieval efficiency η as
a function of the dark time t between storage and retrieval.

The incoming EIT signal pulse is derived from a
continuous-wave laser using an acousto-optical modulator for
pulse shaping. To a good approximation, it can be modeled as
a coherent state with a Poissonian photon number distribution.
The average number of photons is approximately one. Hence,
the probability of having more than one incoming photon is
not negligible. Nonetheless, the probability that two stored
Rydberg excitations interact with each other during the dark
time is negligible. This is partly because the storage efficiency
is fairly low, typically between 10% and 20%, and partly
because the spatial compression of the EIT signal pulse inside
the medium is moderate, giving it a length of several hundreds
of micrometers, which is large compared to the radius over
which the van der Waals interaction between two stationary
Rydberg excitations is noticeable.

To avoid decay of η resulting from the differential light
shifts created by the dipole trapping potential, we switch
the dipole trap off before sending the EIT signal light pulse
into the sample. Hence, each storage-and-retrieval experiment
takes place during free expansion. As the preparation of the
atomic sample is time-consuming, we perform many repeti-
tions of the experiment on the same atomic sample. To do
so, we recapture the atomic ensemble by switching the dipole
trap back on 35 μs after switching it off. This is well after the
retrieval is over.

The number of repetitions that we can perform on one
sample is limited by heating caused, first, by spontaneous
emission of 780 nm photons that were absorbed because
of imperfect EIT, and secondly, and most importantly, by
periodically switching the dipole trapping light on and off. We
choose to perform 1000 repetitions of the experiment for each
atomic sample. During the course of these 1000 repetitions
for one atomic sample, we typically observe a 20% increase
in temperature. Because of spontaneous evaporation over the
532-nm light sheet barriers, this is accompanied by a 20%
decrease in atom number. We separate these repetitions by
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1 ms from one another. On the one hand, this gives possibly
left-behind Rydberg excitations time to decay spontaneously
to the ground state. On the other hand, this means that the
35 μs during which the trap is off has a negligible time-
averaged effect. So, the 1000 repetitions take a total time
of 1 s, after which we prepare a new atomic sample, which
takes between 13 and 19 s depending on the choice of the
final temperature. Clearly, it would be desirable to avoid the
periodic release and recapture because without it, the heating
would be much reduced, allowing it to perform typically ten
times as many repetitions of the experiment before needing
to prepare a new atomic sample. This would increase the
time-averaged data acquisition rate by an order of magnitude
when choosing the separation between repetitions to 100 μs
as in Ref. [16].

Compared to our previous experiments [16], we operate
at lower atomic density, which increases the group velocity
for the EIT signal light pulse. Hence, a lower EIT coupling
Rabi frequency would be needed to achieve a similar group
velocity. This is partly compensated by the longer medium
for which a somewhat higher group velocity is needed for
optimal storage efficiency. We choose the power of the EIT
coupling beam to be between 5 and 25 mW depending on
atomic density and principal quantum number. The EIT cou-
pling Rabi frequency ranges between 3 and 12 MHz. The
repulsive potential that the 480 nm EIT coupling light causes
for the ground-state atoms has a negligible effect because it is
typically on only 0.3% of the time, similar to Refs. [12,16].

B. Decay caused by photon recoil combined with
thermal motion

An important mechanism that causes decay of the retrieval
efficiency is thermal atomic motion combined with the net
photon recoil h̄kR transferred during storage on the two-
photon transition from |g〉 to |r〉. According to Eq. (51),
this mechanism is expected to cause a decay of the retrieval
efficiency governed by

η(t )

η(0)
= e−t2/τ 2

R , τR = 1

kR

√
m

kBT
. (1)

Hence, η(t ) is expected to exhibit a Gaussian decay as a
function of dark time t with 1/e time τR.

To test the prediction of a Gaussian decay, we consider
the measurement of η as a function of t displayed in Fig. 2.
The data span from t = 0.7 to 31.5 μs. The line is a fit of the
Gaussian decay from Eq. (1) to the data. The vertical axis in
the figure is logarithmic and the horizontal axis shows t2. With
these axes, the Gaussian decay becomes a straight line. The fit
agrees well with the data. To analyze the data in Fig. 2 from
a different perspective, we fit η(t ) = η(0) exp[−(t/τ )p] with
free fit parameters p, τ , and η(0) to these data, obtaining the
best-fit value p = 2.0(1). Again, this shows that a Gaussian
models the situation well.

For comparison, Ref. [21] observed an exponential decay
of the retrieval efficiency for ground-state EIT in an uncon-
densed cloud of sodium atoms with a 1/e time that is a factor
of 0.7 shorter than the expectation from Eq. (1). It is difficult
to explain this in hindsight without performing additional
experimental tests on that setup.

FIG. 2. Retrieval efficiency η as a function of the square of the
dark time t for the 70S state at T = 2.0 μK in free expansion.
The data cover two orders of magnitude in η. The line is a fit of
a Gaussian decay according to Eq. (1), which agrees well with the
experimental data. With a logarithmic vertical axis and t2 on the
horizontal axis, the fit curve is a straight line.

To study how the 1/e time τ extracted from the fit depends
on temperature T , we record a series of data sets similar to the
one shown in Fig. 2 and extract τ by fitting the Gaussian of
Eq. (1) to each data set. The resulting values of τ are shown in
Fig. 3. The data cover an order of magnitude in T . Different
symbols represent different principal quantum numbers. The
rightmost data point for the 70S state represents the data set
from Fig. 2.

To change the temperature, we varied the power of
each light sheet between 25 and 320 mW. We estimate L

FIG. 3. Inverse decay time squared 1/τ 2 of the retrieval effi-
ciency in free expansion as a function of temperature T . Data points
with different symbols correspond to different principal quantum
numbers n. There is no discernible dependence on n in the parameter
range studied here. According to Eq. (1), all data in this figure are
expected to fall onto a straight line through the origin. A straight-line
fit to all data yields a slope that agrees well with the expectation from
Eq. (1). For small T , the fit reveals an additional decay mechanism
of presently unclear origin. Extrapolating the straight line to T =
0 yields τ = 38(2) μs. The in-trap peak atomic density is �0 �
1.7 × 1011 cm−3 for all these data so that atom-atom collisions are
negligible.
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between 0.39 and 0.40 mm and �0 between 5 × 1010 and
1.7 × 1011 cm−3 for all data in Figs. 2 and 3. By varying the
atomic density in additional measurements not shown here,
we experimentally verified that for these principal quantum
numbers, a density dependence of τ appears only for notice-
ably higher density, which means that atom-atom interactions
have a negligible effect in Figs. 2 and 3.

As Fig. 3 shows 1/τ 2 versus T , Eq. (1) predicts that all data
should fall onto a straight line through the origin. The line in
Fig. 3 is a straight-line fit to the data. The fit agrees well with
the data. The slope can be expressed in terms of a best-fit
value for the wavelength of the spin wave λR = 2π/kR =
1.23(3) μm. This agrees well with the λR = (λ−1

re − λ−1
eg )−1 =

1.25 μm expected in the counterpropagating geometry of
our experiment. Hence, for large enough T the temperature
dependence of τ agrees well with the prediction from Eq. (1).

In the limit T → 0, however, the fit extrapolates to τ =
38(2) μs instead of τ → ∞ expected from Eq. (1). This indi-
cates that there is an additional decay mechanism becoming
relevant at low temperature. The physical origin thereof is
presently unclear [30].

C. Decay caused by dipole-trapping light

Another important mechanism that causes decay of the
retrieval efficiency is a spatially inhomogeneous difference of
the potentials experienced by states |g〉 and |r〉. The 1064 nm
dipole trapping light creates an attractive potential for the
ground state with dynamical polarizability αg = 687.3 a.u.;
see above. For the Rydberg state, the dynamical polarizability
is well approximated by that of a free electron (see, e.g.,
Ref. [29]), yielding αr = −550 a.u. at 1064 nm. If this light
is left on during the experiment, this will cause a dark-time
decay of η because the differential light shift depends on the
atomic position.

To study the size of this effect, we recorded the experimen-
tal data shown in Fig. 4. While the blue circles represent data
taken in free expansion after switching the trap off, the orange
squares represent data taken in the dipole trap. A Gaussian fit
according to Eq. (1) yields a 1/e decay time of τ = 30(1) μs
for the free-expansion data. Clearly, the in-trap data decay
much faster.

To model the in-trap decay time, we approximate the radial
confinement produced by the 1064-nm light as harmonic,
we assume that the sample is axially homogeneous, and we
neglect the presence of the 532-nm light sheets. According to
Eqs. (66) and (69), this yields an algebraic decay

η(t )

η(0)
= 1

1 + t2/τ 2
κ

, τκ = 4h̄

w2
r |κg − κr | , (2)

where κg and κr are the spring constants of the harmonic
potentials Vg(x) = 1

2κg(x2 + y2) and Vr (x) = 1
2κr (x2 + y2) ex-

perienced by atoms in states |g〉 and |r〉, respectively, and the
radial sizes are w = 8 μm for the signal beam waist, 2σx =√

4kBT/mω2 = 14 μm for the ground-state atom cloud, and,
according to Eq. (65),

wr =
(

1

4σ 2
x

+ 1

w2

)−1/2

(3)

FIG. 4. Retrieval efficiency as a function of the dark time for
the 80S state. Blue circles represent data taken after release from
the trap. Orange squares represent data taken in the 1064-nm dipole
trap. According to Eqs. (1) and (4), we expect a Gaussian decay in
either case. Gaussian fits (lines) yield 1/e times of τ = 30(1) and
12.5(6) μs with the trap off and on, respectively. Data were taken
at a low temperature of 0.2 μK to keep the dephasing rate caused
by photon recoil combined with thermal motion small and at a low
in-trap peak atomic density of 5 × 1010 cm−3 to avoid dephasing
caused by atom-atom interactions.

for that part of the atom cloud that was transferred into
state |r〉 during storage. Experiments on EIT-based storage
and retrieval are typically operated in the regime w � 2σx

because otherwise some part of the light would transversely
miss the atomic ensemble, resulting in low storage efficiency.
Hence, typically wr ≈ w.

As the differential potential Vr − Vg depends quadratically
on the radial position in this model, it imprints a phase onto
the retrieved light, which depends quadratically on the radial
position. This is equivalent to inserting a lens. Hence, the
dark-time decay of the amount of light coupled into the single-
mode fiber is not caused by dephasing in the sense that the
phase evolution of different atoms would fluctuate as a result
of a fluctuating external parameter. Instead, this dark-time
decay is caused by changing the focusing of the retrieved
light. For fixed dark time, one could compensate this, in
principle, by changing the alignment of the single-mode fiber.

For the parameters of Fig. 4, this model predicts a 1/e time
of τκ

√
e − 1 = 120 μs. This would suggest that this addi-

tional mechanism for trap-induced decay should be negligible
compared to the 30 μs decay time from the free-expansion
data. However, the experimental in-trap data clearly decay
much faster.

This discrepancy is resolved when taking into account
gravitational sag, i.e., the fact that gravity shifts the equi-
librium position of the atomic cloud away from the center
of the dipole trapping beam. As a result, the differential
potential Vr − Vg between states |r〉 and |g〉 varies linearly in
position when moving away from the cloud center, whereas in
the absence of gravitational sag, it would vary quadratically.
Hence, gravitational sag causes the finite-size atomic cloud to
sample larger values of the differential potential.

In our experiment, the radius of the atomic cloud σx =
7 μm at T = 0.2 μm is much smaller than the gravitational
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sag xg,s = 27 μm. Hence, the curvature of the potential be-
comes negligible, and according to Eqs. (65) and (71) we
expect η to decay as

η(t )

η(0)
= exp

(
− t2

τ 2
F

)
, τF = 2h̄

wr |F | , (4)

where F = −∇(Vr − Vg) is the differential force, to be taken
at the cloud center. Note that taking into account the finite
size wr of the atomic cloud transferred to state |r〉 is crucial
here, because in the limit wr → ∞, Eq. (4) yields τF → 0.
The plausibility of this is discussed in Sec. IV D.

As the differential potential depends linearly on the po-
sition along gravity in this model, it imprints a phase onto
the retrieved light that depends linearly on the position along
gravity. This is equivalent to inserting a prism. Hence, the
dark-time decay of the amount of light coupled into the single-
mode fiber is not caused by dephasing but by changing the
direction of the wave vector of the retrieved light beam. For
fixed dark time, one could compensate this, in principle, by
changing the alignment of the single-mode fiber.

A fit of the Gaussian model Eq. (4) to the in-trap data
in Fig. 4 agrees well with the data. It yields a best-fit value
for the 1/e time of τF = 12.5(6) μs, in good agreement with
the prediction 11.8 μs from Eq. (4). In principle, the faster
decay of η in the presence of the dipole trap could also be
caused by photoionization of the Rydberg state by the trapping
light. Quantitatively, however, photoionization is expected to
be much slower than the timescale observed here [30].

While release and recapture solves the problem of the re-
duced in-trap decay time, it causes heating, which drastically
reduces the time-averaged data acquisition rate, as discussed
above. This limitation could be overcome by operating in
blue-detuned or magic-wavelength dipole traps [15,29,31–
33]. To obtain a quantitative estimate for the parameters of
our experiment, we consider

τF = 2h̄

mgwr

∣∣1 − αr
αg

∣∣ (5)

from Eq. (67). Hence, apart from wr , the only relevant
quantity here is |1 − αr

αg
|. For 1064 nm, the above-quoted

values of the polarizabilities yield |1 − αr
αg

| = 1.8. For 532 nm,
however, the polarizabilities are αg = −250 a.u., see above,
and αr = −140 a.u. estimated from a free electron. This yields
|1 − αr

αg
| = 0.45. Hence, if we replaced the 1064-nm dipole

trap by a 532-nm hollow-beam dipole trap, we would expect
an approximately fourfold increase of τF to 50 μs. Hence, τF

would have a negligible effect compared to the observed 30 μs
decay time.

Note that similarly if κg is unchanged, then according to
Eq. (67) τκ will also improve by a factor of approximately 4
when making the transition to a 532 nm trap, meaning that τκ

remains irrelevant.

D. Visibility

In addition to the efficiency, the retrieved light has another
crucial property, namely the degree to which it is coherent.
To quantify this, one can overlap the light with a reference
beam, vary the phase of the reference beam, and quote the

FIG. 5. Dependence of the visibility V on the dark time t . V
characterizes how coherent the retrieved light is. It is measured by
overlapping the retrieved light with reference light. For short dark
time, V reaches values above 90%. There is a discernible decay
as a function of t for the 70S data, but not for the 50S data.
Data are normalized with respect to the technical detection limit
V0 in the present setup. The in-trap peak atomic density is roughly
2 × 1011 cm−3 for all data in this figure.

fringe visibility V = (Imax − Imin)/(Imax + Imin) of the result-
ing sinusoidal interference pattern, where Imax and Imin denote
the maximum and minimum of the intensity. To character-
ize the coherence of the retrieved light, one will of course
quote the value of V for a parameter setting in which the
powers of the two light fields are balanced.

As directed retrieval is a coherent phenomenon, η is also
some measure of coherence in the atomic system at the time
of retrieval. Hence, one might wonder whether they react
identically to experimental imperfections. However, that does
not have to be the case. To give an example of a mechanism
onto which they react quite differently, we consider shot-to-
shot fluctuations of the energy of the Rydberg state. This
would cause shot-to-shot fluctuations of the phase of the
retrieved light. When taking an ensemble average over many
shots, these phase fluctuations would yield a decay of V as a
function of the dark time t . But the same fluctuations would
have no effect whatsoever on η.

In our experiment, we measure V with a slightly different
technique. We overlap the left-hand circularly polarized signal
light beam with a copropagating right-hand circularly polar-
ized reference light beam at the same frequency. Polarization
tomography reveals the normalized Stokes vector. Here, V is
the length of the projection of the normalized Stokes vector
onto the plane which contains all linear polarizations; see,
e.g., Ref. [34]. Again, the powers of the signal and reference
light must be balanced to avoid underestimating the degree
to which the retrieved light is coherent. In the absence of
atoms, we measure a visibility of V0 = 97.3(6)%. This is
caused, e.g., by imperfections in the polarization tomography,
in balancing the beam powers, and in the active stabilization
of the differential phase between signal and reference light. V0

sets the technical detection limit of our present measurement.
Figure 5 shows V as a function of dark time t for storage

in Rydberg states 50S and 70S after release from the dipole
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trap. The values are normalized to the technical detection limit
V0, which is not related to the physics in the atomic system.
The data in Fig. 5 were taken at in-trap peak atomic densities
between �0 = 1.7 × 1011 and 2.4 × 1011 cm−3, temperatures
between 0.3 and 0.4 μK, and L = 0.39 mm.

The input signal pulse is rectangular and has a duration of
4.5 μs out of which only a small fraction near the end of the
pulse is stored. This somewhat exaggerated length of the input
pulse provides ample time for possible transients to decay.
Such transients may result from switching on the pulse. The
retrieved pulse has an approximately exponentially decaying
shape with a 1/e time of typically 0.8 μs, suggesting that the
stored part of the input pulse might have had a similar length.
As mentioned above, we overlap the left-hand circularly
polarized retrieved light with righthand circularly polarized
reference light. For simplicity, we use a rectangular pulse
shape for the reference light. We process data only in a time
interval with a duration of typically 0.5 μs, because outside
this interval, the beam powers would be poorly balanced.

For short dark time, V reaches values above 90% in
Fig. 5. This is a big improvement over the 66(2)% that we
reported in Ref. [16] for a measurement for t = 4.5 μs, �0 =
2 × 1012 cm−3, and storage in state 69S. The much lower
atomic density in the present measurement is crucial for this
improvement [30].

For storage in the 50S state, we observe no discernible
decay of V (t ) in the time interval studied here. Measuring
for much longer times would become cumbersome because
there would be only a small retrieved signal. For storage in the
70S state, there clearly is a decay of V (t ) but not a very fast
one. As the decay depends on the principal quantum number,
and as we confirmed in an additional measurement that it does
not improve when lowering the atomic density [30], the most
likely explanation for the observed decay of V (t ) seems to
be a fluctuating Stark shift of the Rydberg state caused by
fluctuating stray electric fields.

III. MODEL

Here, we develop a model for the dark-time decay of
the efficiency η in EIT-based storage and retrieval of light.
Our model ignores the loss of photons during storage and
during the propagation of light inside the medium. Instead,
it focuses on the decay of the efficiency as a function of
the dark time between storage and retrieval. We start with a
brief description of dark polaritons in Sec. III A. This is a
straightforward generalization of a similar treatment [3] that
did not take photon recoil into account. It sets the stage for
the following discussion. In Sec. III B, we use this formalism
to derive an expression for the efficiency η for a separa-
ble initial state, which may be pure or mixed. The result
simplifies if the initial state is uncorrelated, as discussed in
Sec. III C. The results can be simplified even further in the
frequently encountered situation in which the Hamiltonian for
ground-state atoms is identical before and after the storage,
as discussed in Sec. III D. The treatment up to that point
assumes for simplicity that the mode of the incoming EIT
signal field u(x) is a plane wave. A generalization beyond this
assumption is discussed in Sec. III E. The relation to DLCZ
sources and to Ramsey spectroscopy is discussed in Sec. III F.

A generalization to entangled initial states is discussed in
Appendix C.

A. Dark polaritons

We consider EIT-based storage and retrieval in an en-
semble of noninteracting, identical, three-level atoms with
a ladder-type energy level scheme. A straightforward gen-
eralization to �-type energy level schemes is discussed in
Appendix A. The internal state of an atom has a basis of
energy eigenstates that in order of ascending energies are
|g〉, |e〉, and |r〉. In addition, the atom has an external state
describing its center-of-mass motion. We assume that a signal
(coupling) light field is resonant with the |g〉 ↔ |e〉 (|e〉 ↔
|r〉) transition; see Fig. 1(b). The coupling light is assumed to
be a plane wave eikc·x with wave vector kc. We consider only
a single mode of the EIT signal light with mode function u(x)
normalized to

∫
V d3x|u(x)|2 = 1, where V is the quantization

volume. We abbreviate v(x) = u(x)eikc·x. This is normalized
to

∫
V d3x|v(x)|2 = 1. For simplicity, the following description

assumes that u(x) is a plane wave u(x) = eiks·x/
√
V with

wave vector ks. A generalization beyond this assumption is
discussed in Sec. III E. h̄kR with kR = ks + kc is the recoil
momentum transferred to an atom in the two-photon transition
from |g〉 to |r〉.

While the initial state |g〉 and final state |r〉 of the storage
process are assumed to be long-lived, the intermediate state
|e〉 is subject to decay to state |g〉 with a rate coefficient e

accompanied by emission of a photon. The desired part of
these emissions produces photons in mode u(x). The remain-
ing part produces photons in spatial modes orthogonal to u(x).
We refer to the latter process as spontaneous emission.

We define the number of excitations as the number of
signal photons in mode u(x) plus the number of atoms in
states |e〉 and |r〉. In the absence of spontaneous emission, the
number of excitations is conserved. As a result, the subspaces
of Hilbert space describing states with a given number of
excitations are invariant under time evolution as long as spon-
taneous emission is ignored. In the presence of spontaneous
emission, the number of excitations can only decrease. In our
experiment, the number of stored excitations is typically less
than one. Hence, we restrict our model to the subspaces with
one or zero excitations. The zero-excitation subspace is trivial,
so we focus on the single-excitation subspace.

Hence, EIT-based storage starts with one photon in mode
u(x) and all atoms in internal state |g〉. The external initial
state, however, is often a mixed state. The initial N-atom state
can generally be described by a density matrix ρN,in, where
the subscript “in” indicates the initial state before storage.
For simplicity, we restrict the discussion here to situations
in which ρN,in is separable. The model is easily extended to
entangled initial states, see Appendix C. As the density matrix
ρN,in is separable, it can be written as (see, e.g., Ref. [35])

ρN,in =
∑

n

Pn|�g,n,in〉〈�g,n,in|, (6)

where each of the initial N-atom pure states |�g,n,in〉 is
separable, i.e., a product of N single-atom states. The prob-
abilities Pn fulfill Pn � 0 and

∑
n Pn = 1. Obviously, the

storage-and-retrieval efficiency for the initial state ρN,in of
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Eq. (6) is

η(t ) =
∑

n

Pnηn(t ), (7)

where t is the dark time and ηn(t ) denotes the storage-and-
retrieval efficiency that would be obtained if the initial state
was the pure state |�g,n,in〉.

To calculate ηn(t ) we note that, as stated above, the pure
state |�g,n,in〉 is assumed to be a product state with all
atoms in internal state |g〉. Hence, it has the form |�g,n,in〉 =⊗N

i=1 |ψg,n,i(0), gi〉, where |ψg,n,i(0)〉 and |gi〉 are the initial
external and internal states of the ith atom, respectively. The
argument (0) in |ψg,n,i(0)〉 refers to zero dark time. Through-
out this paper, N-atom states (external single-atom states)
are represented by uppercase Greek letters (lowercase Greek
letters).

It is easy to show that the three-dimensional (3D) subspace
of Hilbert space spanned by the orthonormal set of N-atom
states,

|�g,n,in, 1s〉 = |1s〉
N⊗

i=1

|ψg,n,i(0), gi〉, (8a)

|�e,n(0)〉 = 1√
N

N∑
i=1

|ψe,n,i(0), ei〉
N⊗

i′ = 1
i′ �= i

|ψg,n,i′ (0), gi′ 〉, (8b)

|�r,n(0)〉 = 1√
N

N∑
i=1

|ψr,n,i(0), ri〉
N⊗

i′ = 1
i′ �= i

|ψg,n,i′ (0), gi′ 〉, (8c)

is invariant under application of the atom-light interaction
Hamiltonian Val detailed in Appendix A. Here, |1s〉 is the
single-photon Fock state of the mode u(x) of the signal light.
The external single-atom states |ψe,n,i(0)〉 and |ψr,n,i(0)〉 have
the position representations

ψe,n,i(x, 0) =
√
Vu(x)ψg,n,i(x, 0), (9a)

ψr,n,i(x, 0) =
√
Vv(x)ψg,n,i(x, 0) (9b)

and are properly normalized because u(x) and v(x) are prop-
erly normalized plane waves. The N-atom states |�e,n(0)〉 and
|�r,n(0)〉 are singly excited Dicke states, in which we omitted
multiplication with the vacuum state |0s〉 of the signal mode
for brevity.

For later use, we introduce an operator R†
i acting on the

external degree of the ith atom with position representation

R†
i (x) =

√
Vv(x). (10)

Hence Eq. (9b) can be rewritten as

|ψr,n,i(0)〉 = R†
i |ψg,n,i(0)〉. (11)

As v(x) is a plane wave, R†
i is unitary. A related single-particle

operator S†
r,i = R†

i ⊗ |ri〉〈gi| acting on the external and internal
degrees of freedom of the ith atom is studied in Ref. [30].

It is easy to show that with respect to the orthonormal
basis [|�g,n,in, 1s〉, |�e,n(0)〉, |�r,n(0)〉] of the 3D invariant
subspace, the atom-light interaction Hamiltonian Val has the

matrix representation

Val = h̄

2

⎛
⎝ 0 2gR

√
N 0

2gR

√
N 0 �c

0 �c 0

⎞
⎠, (12)

where 2gR is the vacuum Rabi frequency of the signal mode
and �c is the Rabi frequency of the EIT coupling light. The
factor

√
N comes about because gR causes transitions between

a product state and a Dicke state.
Obviously, the N-atom state

|�d,n(ϑ )〉 = cos ϑ |�g,n,in, 1s〉 − sin ϑ |�r,n(0)〉 (13)

with mixing angle ϑ given by

tan ϑ = 2gR

√
N

�c
(14)

is an eigenstate of Val. Hence, for signal light in vacuum
with �c �= 0, one obtains ϑ = 0. If we were to extend our
formalism to a signal light pulse instead of a plane wave,
then ϑ = 0 would be the initial value before the pulse enters
the medium and the final value after the retrieved pulse left
the medium. Conversely, for a pulse inside the medium with
�c = 0 during the dark time between storage and retrieval,
one would obtain ϑ = π/2.

The state |�d,n〉 is dark in the sense that it shows no
spontaneous emission when spontaneous emission into modes
orthogonal to u(x) is added to the model, because 〈ei|�d,n〉 =
0 for all i. For 0 < ϑ < π/2, the state |�d,n〉 describes a su-
perposition of a photon and a copropagating atomic excitation,
which is why it is called a dark polariton. For ϑ = 0, however,
it describes a single photon and for ϑ = π/2 it describes the
Dicke state |�r,n(0)〉, which is commonly referred to as a spin
wave.

The other two eigenstates of Val in Eq. (12) are bright
states because they rapidly decay by spontaneous emission
into modes orthogonal to u(x). In our model, these bright
states that couple to u(x) never become populated because we
will assume below that the population adiabatically follows
the dark state |�d,n〉.

B. EIT-based storage and retrieval

In an experiment, a signal light pulse of finite duration is
stored in an atomic medium of finite length. Aiming at large
storage efficiency would entail a nontrivial treatment of the
longitudinal wave function of the signal light pulse, particu-
larly when entering and leaving the medium. In addition, one
would need to address the question of whether the complete
light pulse fits into the medium longitudinally. If that is not
the case, this will lead to leakage of signal light through the
medium during the time of storage. Furthermore, there is the
issue of residual absorption because of imperfect EIT while
the pulse propagates inside the medium before storage and
after retrieval. The residual absorption can be caused, e.g.,
by dephasing or by the nonzero frequency width of the light
pulse which results from its finite duration. Such issues have
been addressed in the literature in detail; see, e.g., Ref. [36].
We do not attempt to model leakage and residual absorption
here because these issues tend to affect the efficiency in a
way that is independent of the dark time. In Eq. (18), leakage
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and residual absorption will be subsumed in an empirical
correction factor η0.

To describe storage, we use a model quite similar to
Refs. [2,3]. In this model, the medium is homogeneous along
the z axis with a quantization length Lz. Hence, the signal-light
pulse cannot enter or leave the medium and no spatial pulse
compression occurs, which drastically simplifies the model.
The experimental initial situation with a light pulse outside the
medium is modeled by starting with a very large value of �c,
which results in ϑ ≈ 0. Along with this, the system is assumed
to be prepared in the dark state |�d,n〉 = |�g,n,in, 1s〉. Next,
�c is ramped to 0. We assume that this ramp is slow enough
that the population, to a good approximation, adiabatically
follows the dark state. The time evolution during the ramp,
which can be fairly complicated in general, is thus simply
modeled as adiabatic following, much like in Ref. [3]. After
this ramp, ϑ = π/2 so that the dark state has evolved into
|�d,n〉 = |�r,n(0)〉, which means that storage in the form of
a spin wave has been achieved. The assumption of adiabatic
following means that no spontaneous emission into modes
orthogonal to u(x) occurs during storage.

As an aside, we note that in an experiment, the rotation of ϑ

occurs almost exclusively when the pulse enters the medium.
When the pulse is inside the homogeneous part of the medium,
typically ϑ ≈ π/2. The actual temporal ramp of �c in the
experiment changes ϑ only by a small amount, bringing it all
the way to π/2.

Now, we deviate from Refs. [2,3]. We further simplify the
model by assuming that u(x) is a plane wave. As a result,
keeping track of the longitudinal properties of the signal light
becomes trivial.

We now turn to the dark time t between storage and
retrieval. As the Hamiltonian is time-independent during the
dark time, it yields a time-evolution operator of the simple
form Ud (t ) = e−iHd t/h̄, where Hd is the N-atom dark-time
Hamiltonian. For simplicity, we restrict our model to a sit-
uation in which Hd = ∑N

i=1 Hd,i is a sum of single-atom
Hamiltonians Hd,i of the form

Hd,i = Hg,i ⊗ |gi〉〈gi| + Hr,i ⊗ |ri〉〈ri|, (15)

where Hg,i and Hr,i are operators acting on the external state
of the ith atom. Hence, the atoms are noninteracting and the
internal state of each atom is unchanged during the dark time.
We abbreviate

Ug,i(t ) = e−iHg,it/h̄, |ψg,n,i(t )〉 = Ug,i|ψg,n,i(0)〉, (16a)

Ur,i(t ) = e−iHr,it/h̄, |ψr,n,i(t )〉 = Ur,i|ψr,n,i(0)〉. (16b)

Throughout this paper, N-atom (single-atom) operators other
than the density matrix are represented by uppercase calli-
graphic (italic) letters.

Hence, the N-atom state at the end of the dark time reads

|�r,n(t )〉 = Ud (t )|�r,n(0)〉

= 1√
N

N∑
i=1

|ψr,n,i(t ), ri〉
N⊗

i′ = 1
i′ �= i

|ψg,n,i′ (t ), gi′ 〉. (17)

Typically, the term Hd in the Hamiltonian will also be present
during storage and retrieval. But for simplicity, we assume

that the dynamics during storage and retrieval are dominated
by Val so that Hd has a negligible effect during storage and
retrieval.

After the dark time, the EIT coupling light is turned back
on for retrieval. Ideally, this will cause directed retrieval of
the photon into the original spatial mode u(x) as a result
of interference of light emitted from the large number N of
atoms [2,3]. The write-read efficiency η is the ratio of the
average number of photons retrieved into the original mode
u(x) divided by the average number of incoming photons
before storage. Again, we neglect a variety of experimental
complications, e.g., the fact that after the finite-duration signal
light pulse resumes propagation, it experiences some residual
absorption before leaving the finite-length medium. Instead,
we model the retrieval process by assuming that �c is slowly
ramped back up from zero, where ϑ = π/2, to a very large
value of �c, finally resulting in ϑ ≈ 0. We study the final
number of photons in the plane-wave mode u(x), which
remains inside the homogeneous medium and does not expe-
rience absorption in our model because it is monochromatic
and meets the two-photon resonance condition.

Hence, much like the storage process, we model the re-
trieval as an adiabatic passage, but now with ϑ evolving back
from π/2 to 0. For zero dark time, the considerations can
be restricted to the 3D invariant subspace given by Eq. (8),
and the retrieval is simply the time-reversed process of the
storage. For nonzero dark time, however, things become more
complicated. If retrieval is successful, then by definition the
excitation reappears in the mode u(x) of the signal light,
which obviously implies that all atoms are finally in internal
state |g〉. But for nonzero dark time it is not immediately clear
what the final external N-atom state will be.

To include this aspect in our calculation, let Hext denote
the Hilbert space containing all external N-atom states. Note
that the fact that Hext is a Hilbert space implies that it
contains product states and entangled states. Let Wu denote the
subspace of spin-wave states obtained when applying storage
with mode function u(x) to Hext. Let us temporarily assume
that the state after the dark time |�r,n(t )〉 is an element of
Wu. Hence, there exists an N-atom state |� f 〉 that would turn
into |�r,n(t )〉 upon storage. As we treat the retrieval as the
time-reversed version of storage, it is now clear that the state
|�r,n(t )〉 causes retrieval with 100% efficiency into mode u(x)
with final atomic state |� f 〉. In this way, we found the possibly
nontrivial final N-atom state |� f 〉.

Now we turn to a general state |�r,n(t )〉, which does not
have to be an element of Wu. We use Pu to denote the
orthogonal projector onto the subspace Wu and use this to de-
compose this state into Pu|�r,n(t )〉 and (1 − Pu)|�r,n(t )〉. As
Pu|�r,n(t )〉 is an element of Wu, it causes retrieval into mode
u(x) with perfect efficiency, as explained above. Conversely,
as (1 − Pu)|�r,n(t )〉 is orthogonal to Wu it does not couple to
the mode u(x) for reasons discussed in Appendix B. Hence,
the efficiency is

ηn(t ) = η0‖Pu|�r,n(t )〉‖2, (18)

where ‖ · · · ‖ denotes the norm of a vector and we included a
constant factor η0 with 0 � η0 � 1, which serves to represent
imperfections during storage and retrieval, such as leakage,
residual absorption, and imperfections in the adiabaticity
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when rotating ϑ . We assume that η0 is independent of n.
In the following we always consider N � 1, because this
is a necessary condition for making the directed emission
dominate over spontaneous emission in random directions.

As detailed in Appendix B, Eq. (18) with N � 1 yields for
a separable pure initial state

ηn(t )

η0
= 1

N2

∣∣∣∣∣
N∑

i=1

Qn,i(t )

∣∣∣∣∣
2

(19)

with

Qn,i(t ) = 〈ψg,n,i(t )|Ri|ψr,n,i(t )〉
= 〈ψg,n,i(0)|U †

g,i(t )RiUr,i(t )R†
i |ψg,n,i(0)〉. (20)

Note that Eq. (11) combined with 〈ψr,n,i(0)|ψr,n,i(0)〉 = 1
implies Qn,i(0) = 1 so that ηn(0)/η0 = 1. In addition, the
unitarity of Ri implies |Qn,i(t )|2 � 1 for all times so that
ηn(t )/η0 � 1 for all times.

Equation (19) for a separable pure initial state can equiva-
lently be written as

ηn(t )

η0
= |〈�n(t )|�r,n(t )〉|2 (21)

with a properly normalized Dicke state

|�n(t )〉 = 1√
N

N∑
i=1

(R†
i |ψg,n,i(t ), ri〉)

N⊗
i′ = 1
i′ �= i

|ψg,n,i′ (t ), gi′ 〉,

(22)

which turns out to be an element of Wu. In the language of
quantum information processing, ηn(t )/η0 in Eq. (21) is the
fidelity [37] of the states |�n(t )〉 and |�r,n(t )〉.

The N-atom state |�r,n(t )〉 is obtained from the state
|�g,n,in, 1s〉 by storage followed by dark-time propagation,
whereas the N-atom state |�n(t )〉 would be obtained if the
temporal order were reversed, namely if the dark-time propa-
gation were followed by storage. Equation (20) features analo-
gous quantities on the single-particle level, because |ψr,n,i(t )〉
is obtained from |ψg,n,i(0)〉 by storage followed by dark-time
propagation, whereas R†

i |ψg,n,i(t )〉 would be obtained by dark-
time propagation followed by storage.

Equation (19) is immediately applicable to a gas of nonin-
teracting bosons at T = 0, because in that case one obtains a
pure BEC so that all atoms initially occupy the same single-
particle wave function. In this situation, we drop the indices
n, i from the notation and obtain

ηBEC(t )

η0
= |Q(t )|2. (23)

More generally, inserting Eq. (19) into Eq. (7), one imme-
diately finds η(t ) for the arbitrary separable initial state of
Eq. (6), which may be mixed.

C. Uncorrelated initial state

We now concentrate on a special case, which is experimen-
tally relevant and allows for further simplifications, finally
giving a simple expression. Specifically, we assume that the

initial N-atom density matrix

ρN,in = ρ̃in ⊗ ρ̃in ⊗ · · · ⊗ ρ̃in︸ ︷︷ ︸
N times

(24)

is a tensor product of N identical copies of a single-atom
density matrix ρ̃in. As all atoms are initially in internal state
|g〉, we obtain ρ̃in = ρin ⊗ |g〉〈g|, where ρin describes only
the external state of a single atom. Note that ρin can be
diagonalized as

ρin =
∑

n

pn|ψg,n(0)〉〈ψg,n(0)| (25)

with probabilities pn. Inserting this into Eq. (24) shows that
ρN,in is separable so that the above formalism is applicable.

As we assumed that the particles are identical, Eq. (24)
holds if and only if all particles are uncorrelated, which is the
case, e.g., if ρN,in describes a noninteracting gas of identical
particles in thermal equilibrium at a temperature far above
quantum degeneracy. In that case, pn is given by Eq. (46) and
the external single-atom states |ψg,n(0)〉 are the eigenstates
of the Hamiltonian before storage. Note that a noninteracting
pure BEC at T = 0 is also an example of the uncorrelated
initial state in Eq. (24). In that case, ρin is a pure state.

In addition, as we assumed that the particles are identical,
we obtain Hg,i = Hg,1 and Hr,i = Hr,1 for all i. As a result, the
problem factorizes and all properties of the N-atom problem
can be expressed in terms of properties of only the first par-
ticle. In this situation, we drop the index i from the notation,
writing, e.g., Hg = Hg,1 and Qn(t ) = Qn,1(t ).

The fact that all properties of the N-atom problem can
be expressed in terms of the properties of only the first
particle drastically simplifies the problem. A straightforward
calculation based on Eq. (19) yields for an uncorrelated initial
state and N � 1

η(t )

η0
= |C(t )|2 (26)

with

C(t ) =
∑

n

pnQn(t ). (27)

This is a complex number, which we call the coherence. Note
that Qn(0) = 1 for all n implies

C(0) = 1 (28)

as long as u(x) is a plane wave. Inserting Qn(t ) from Eq. (20)
yields

C(t ) =
∑

n

pn〈ψg,n(0)|U †
g (t )RUr (t )R†|ψg,n(0)〉

= tr[ρinU
†
g (t )RUr (t )R†]. (29)

Before proceeding, we note for later use that if

R = 1 and Hg = Hr, (30)

then Eq. (20) obviously yields Qn(t ) = 1 for all n, t and we
obtain η(t )/η0 = 1 for all t .

In addition, we note for later use that there are a number
of situations in which the problem separates in Cartesian
coordinates. Specifically, if the time-evolution operator fulfills
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Ug(p, x) = Ug,x (px, x)Ug,y(py, y)Ug,z(pz, z) and if an analo-
gous statement holds for Ur (p, x), v(x), and ψg,n(x, 0) for all
n and if the probabilities fulfill pn = pnx pny pnz for all n, then
according to Eq. (20) Qnx,ny,nz (x) = Qnx,x(x)Qny,y(y)Qnz,z(z)
and according to Eqs. (26) and (27)

η(t )

η0
= ηx(t )

ηx,0

ηy(t )

ηy,0

ηz(t )

ηz,0
. (31)

D. Same ground-state Hamiltonian before and during
the dark time

To further simplify the model, we assume that the initial
N-atom density matrix ρN,in commutes with the dark-time
Hamiltonian Hg = ∑N

i=1 Hg,i for N atoms in internal state |g〉,
[Hg, ρN,in] = 0. (32)

This equation holds, e.g., in the frequently encountered situa-
tion in which ρN,in is in thermal equilibrium before storage and
the ground-state Hamiltonian Hg is identical before storage
and during the dark time.

Equation (32) implies that all the |ψg,n,i(0)〉 can be chosen
such that they are eigenstates of Hg,i. Let the corresponding
eigenvalues be denoted as Eg,n,i. This yields

|ψg,n,i(t )〉 = e−iEg,n,it/h̄|ψg,n,i(0)〉 (33)

so that using Eq. (10), we find that Eq. (20) simplifies to

Qn,i(t ) = eiEg,n,it/h̄〈ψr,n,i(0)|ψr,n,i(t )〉. (34)

The corresponding Eq. (21) for N-atom states simplifies to

ηn(t )

η0
= |〈�r,n(0)|�r,n(t )〉|2. (35)

The last equation has been used previously, e.g., in
Refs. [13,14,22] without much justification.

A particularly simple example is obtained if additionally
the |ψr,n,i(0)〉 for all n are eigenstates of the dark-time Hamil-
tonian Hr,i with eigenvalues Er,n,i. This yields

|ψr,n,i(t )〉 = e−iEr,n,it/h̄|ψr,n,i(0)〉 (36)

so that Eq. (34) simplifies to

Qn,i(t ) = ei(Eg,n,i−Er,n,i )t/h̄〈ψr,n,i(0)|ψr,n,i(0)〉. (37)

As long as u(x) is a plane wave, 〈ψr,n,i(0)|ψr,n,i(0)〉 = 1, as
discussed above.

E. Beyond a plane-wave signal light field

The formalism discussed so far can be extended to situ-
ations in which the mode function u(x) of the signal light
is not a plane wave, as detailed in Appendix D. Here, we
briefly summarize the central results of that treatment. This
treatment is experimentally relevant because typically wr ≈
w, as pointed out in the context of Eq. (3). Hence, the finite
signal beam waist w is crucial for correctly modeling the
radius wr of the part of the atom cloud that was transferred
into state |r〉 during storage.

The quantities |ψg,n,i(t )〉, |ψr,n,i(t )〉, R†
i , Qn,i(t ), and C(t )

are still defined by Eqs. (9), (10), (16), (20), and (27). In
addition to imprinting the phase factor that represents the
net photon recoil, the operator R†

i now also imprints the

finite beam waist w onto the part of the atom cloud that
was transferred into state |r〉 during storage. But now the
operator R†

i is no longer unitary and the single-particle state
R†

i |ψg,n,i(t )〉 that appears in the definition (20) of Qn,i(t ) is
no longer properly normalized. Instead, calculating its norm
squared yields a dimensionless real number

Mn,i(t ) = 〈ψg,n,i(t )|RiR
†
i |ψg,n,i(t )〉

= V
∫
V

d3x|u(x)ψg,n,i(x, t )|2, (38)

which describes how well the mode u(x) overlaps with the
atomic wave function ψg,n,i(x, t ). Note that combination with
Eq. (11) yields 〈ψr,n,i(0)|ψr,n,i(0)〉 = Mn,i(0).

As shown in Appendix D, Eq. (23) generalizes to

ηBEC(t )

η0
= |Q(t )|2

M(0)M(t )
. (39)

We turn to the uncorrelated state of Eq. (24). As shown in
Appendix D, Eq. (26) generalizes to

η(t )

η0
= |C(t )|2

μ(0)μ(t )
, (40)

where

μ(t ) =
∑

n

pnMn(t ) = V
∫
V

d3x|u(x)|2�g(x, t ) (41)

is the average of all the Mn(t ) and

�g(x, t ) =
∑

n

pn|ψg,n(x, t )|2 (42)

is the spatial density distribution of a single atom, normalized
to

∫
V d3x�g(x, t ) = 1. Note that μ(0) = C(0) according to

Appendix D.
If Eq. (32) holds, typically because the Hamiltonian

is identical before and after storage, then according to
Appendix D we obtain μ(t ) = μ(0) so that Eq. (40) simplifies
to

η(t )

η0
=

∣∣∣∣C(t )

C(0)

∣∣∣∣2

(43)

and Eqs. (34) and (37) remain unchanged, now with
〈ψr,n(0)|ψr,n(0)〉 = Mn(0) according to the text below
Eq. (38).

F. Relation to DLCZ sources and Ramsey spectroscopy

The central results of Secs. III B–III E also apply to single-
photon sources based on the DLCZ protocol [20]. This is
because the write pulse of a DLCZ source, while using
a somewhat different mechanism, prepares the Dicke state
|�r,n(0)〉 of Eq. (8c). The subsequent time evolution during
the dark time and during the DLCZ read pulse is largely
identical to the dark time and the retrieval in EIT-based storage
and retrieval. Hence, processes that cause the efficiency to
decay as a function of dark time affect DLCZ sources and
EIT-based storage and retrieval in the same way.

Furthermore, as shown in Ref. [30], an appropriately de-
signed Ramsey experiment with the purely kinetic dark-time
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Hamiltonian of Eq. (47) has fringe visibility

V (t ) =
∣∣∣∣C1(t )

C1(0)

∣∣∣∣ (44)

with C1(t ) defined in Ref. [30]. This equation holds for a
plane-wave signal beam u(x) and an arbitrary initial state. Al-
ternatively, it also holds if the pulse area of the Ramsey pulses
is small and ρN,in commutes with the dark-time Hamiltonian.
For an uncorrelated initial state or for Ramsey spectroscopy
performed on a single atom, C1(t ) becomes identical to C(t )
from Eq. (29).

For an uncorrelated initial state with a plane-wave signal
beam, Eqs. (26) and (28) hold and combination with Eq. (44)
and C1(t ) = C(t ) yields

η(t )

η0
= V 2(t ). (45)

Alternatively, if the initial state is uncorrelated, and ρN,in

commutes with the dark-time Hamiltonian, then Eq. (43)
holds and combination with Eq. (44) and C1(t ) = C(t ) yields
Eq. (45). Hence, in both of these situations, the analysis of the
processes that cause the visibility in Ramsey spectroscopy and
the efficiency in EIT-based storage and retrieval to decay as a
function of dark time are equivalent. Studying whether this
equivalence holds for other initial states is beyond the present
scope.

IV. APPLICATIONS OF THE MODEL

In this section, we apply the above model to a few se-
lected situations. The first situation, discussed in Sec. IV A,
deals with the decay of η caused by photon recoil during
storage combined with thermal atomic motion. This situation
is closely related to the spatial first-order coherence function
of the gas, as pointed out in Sec. IV B. In Sec. IV C, we use
the Raman-Nath approximation to derive an expression for the
decay of η resulting if atoms in states |g〉 and |r〉 experience
different potentials Vg(x) and Vr (x) during the dark time. In
Sec. IV D, we apply this expression to a situation in which
both Vg(x) and Vr (x) are harmonic, and gravitational sag is
taken into account.

A. Photon recoil and thermal motion

Here we discuss the decay of η caused by nonzero total
photon recoil h̄kR during storage combined with thermal
atomic motion at a temperature T far above quantum degen-
eracy. For simplicity, we assume that the EIT signal light
mode u(x) is a plane wave. According to Eq. (27), we only
need to consider single-particle properties. The |ψg,n(0)〉 are
the eigenstates of the Hamiltonian Hg before storage. The
probability of occupying the nth single-particle state is

pn = 1

Z
e−βEg,n , (46)

where the normalization constant Z = ∑
n e−βEg,n is the

canonical partition function and β = 1/kBT .

We assume that the single-atom Hamiltonian before and
after storage is

Hg = Hr = p2

2m
, (47)

where p and m are the momentum and the mass of the
atom, i.e., the single-particle potentials vanish before and
after storage, Vg(x) = Vr (x) = 0. Hence, the |ψg,n(0)〉 have
the position representation

ψg,n(x, 0) = eikn·x
√
V

(48)

with wave vectors kn meeting periodic boundary conditions.
The external states ψr,n(x, 0) = ei(kn+kR )·x/

√
V created during

storage are eigenstates of the dark-time Hamiltonian so that
Eqs. (27) and (37) apply with

Eg,n = h̄2k2
n

2m
, Er,n = h̄2(kn + kR)2

2m
. (49)

In Eq. (27),
∑

n pn expresses the thermal average. For
high enough temperature T or for large enough quantization
volume V , we approximate the parameter kn as continuous
with probability density

p(k) = e−k2/2σ 2
k(

2πσ 2
k

)3/2 , σk =
√

mkBT

h̄
=

√
2π

λdB
. (50)

Equation (27) with
∑

n pn approximated as
∫

d3kp(k) yields
C(t ) = e−ih̄k2

Rt/2me−t2/2τ 2
R so that Eq. (26) yields (see also

Refs. [13,22,23])

η(t )

η0
= e−t2/τ 2

R , τR = 1

kRσv

, (51)

where σv = h̄σk/m = √
kBT/m is the 1D rms width of the

thermal velocity distribution. η(t )/η0 displays a Gaussian de-
cay with 1/e time τR. The expression for τR can be interpreted
as the condition that the typical distance σvτR traveled because
of thermal motion equals the reduced wavelength λR/2π =
1/kR of the spin wave.

B. Relation to the spatial coherence function

Alternatively, τR in Eq. (51) can be written as (see also
Ref. [13])

τR = λdB

vR

√
2π

, (52)

where vR = h̄kR/m is the recoil velocity associated with kR.
This can be interpreted as the condition that the distance vRτR

traveled because of the photon recoil equals the coherence
length lc = λdB/

√
2π = 1/σk of the gas. The latter is obtained

from the spatial first-order coherence function g(1)(r), which
has the property [38]

|g(1)(r)|2 = e−2πr2/λ2
dB (53)

for a homogeneous, noninteracting gas with T far above
quantum degeneracy.

The appearance of g(1)(r) in this problem is not a coinci-
dence. In fact, as shown in Ref. [30], the situation considered
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here with the purely kinetic dark-time Hamiltonian of Eq. (47)
and a plane-wave signal beam u(x) yields

η(t )

η0
= |g(1)(vRt )|2. (54)

As discussed in Ref. [30], this holds for an uncorrelated state,
such as a noninteracting pure BEC at T = 0 or a thermalized
gas with T far above quantum degeneracy. In addition, it
holds for arbitrary separable pure initial states. For other
initial states, there might be deviations from this relation, as
alluded to in Ref. [30], but a detailed study of such deviations
is beyond the present scope. The idea that there is some
relation between η and spatial coherence has previously been
discussed qualitatively, e.g., in Refs. [21,39]. But we are not
aware of a previous derivation of Eq. (54).

For a pure BEC, η(t ) decays on a timescale in which vRt
reaches the sample size, as observed, e.g., in Refs. [21,39].
A much shorter decay time in a gas with a temperature
slightly above the critical temperature TC for BEC has been
observed in Ref. [21]. For nonzero temperatures below TC ,
the coexistence of a BEC and an uncondensed fraction lead to
the observation of a bimodal decay [39], qualitatively agree-
ing with the expectation for the spatial coherence function.
However, to our knowledge, quantitative agreement with any
model for such a bimodal decay of the retrieval efficiency has
not been reported yet.

Equation (45) relates the fringe visibility V (t ) in Ramsey
spectroscopy to the efficiency η(t ) in EIT-based storage and
retrieval. Combination with Eq. (54) suggests that V (t ) should
be related to |g(1)(vRt )|. Indeed, it is well known that there is
some relation between Ramsey spectroscopy and first-order
spatial coherence. For example, Ref. [40] used photon recoil
in a Ramsey experiment to study the first-order spatial coher-
ence of a BEC, and later Ref. [41] quantitatively derived and
experimentally studied the relation between g(1)(vRt ) and the
population transferred after two resonant Ramsey pulses. In
Ref. [30], we derive the more general relation

V (t ) = |g(1)(vRt )| (55)

for the fringe visibility V in Ramsey spectroscopy. This holds
for a noninteracting gas as long as the dark-time Hamiltonian
is purely kinetic and u(x) is a plane wave. It applies to
arbitrary initial states.

C. Raman-Nath approximation

We turn to a situation in which atoms in states |g〉 and
|r〉 experience different potentials Vg(x) and Vr (x). The cor-
responding single-atom dark-time Hamiltonians read

Hg = p2

2m
+ Vg(x), Hr = p2

2m
+ Vr (x). (56)

In our experiment, the potentials Vg(x) and Vr (x) are light
shifts created if the dipole trap is left on during the dark
time, but in general this could also be other potentials,
e.g., inhomogeneous Zeeman shifts. Even if both potentials
are approximated as harmonic, this is a nontrivial problem,
some parts of which have previously been addressed, e.g., in
Refs. [15,23–26,42].

In principle, we could calculate C(t ) using Eqs. (27) and
(34). However, the resulting calculation will typically become
nontrivial because the time evolution of |ψr,n(t )〉 is not given
by a trivial phase factor as in Eq. (36). Hence, while Eqs. (27)
and (34) can be useful for tackling the problem numerically,
that approach will typically not produce a simple analytic
result.

Instead, we consider Eq. (29) and apply the Raman-Nath
approximation [43] during the dark time. Conceptually, this
approximation means that we ignore the distance that an atom
travels during the dark time. Technically, this approximation
consists in replacing the kinetic-energy operator by a constant
real number during the dark time; see, e.g., Ref. [44]. Hence,
Eq. (29) becomes

C(t ) =
∑

n

pnei(Ekin,g,n−Ekin,r,n )t/h̄〈ψg,n(0)|eiVgt/h̄R

× e−iVrt/h̄R†|ψg,n(0)〉, (57)

where Ekin,g,n and Ekin,r,n denote the expectation value of the
kinetic-energy operator calculated for the states |ψg,n(0)〉 and
R†|ψg,n(0)〉, respectively. The remaining operators Vg, Vr , and
R are diagonal in the position representation so that

C(t ) =
∑

n

pnei(Ekin,g,n−Ekin,r,n )t/h̄V

×
∫

d3x|v(x)ψg,n(x, 0)|2ei[Vg(x)−Vr (x)]t/h̄. (58)

We assume that for those states |ψg,n(0)〉, which contribute no-
ticeably to the thermal average, we can approximate Ekin,g,n =
Ekin,r,n because the typical kinetic energy in state |g〉 exceeds
other effects, namely the kinetic energy associated with the to-
tal photon recoil and with the finite signal-beam waist because
of the position-momentum uncertainty relation. Hence

C(t ) = V
∫

d3x�g(x, 0)|v(x)|2ei[Vg(x)−Vr (x)]t/h̄, (59)

with �g(x, t ) from Eq. (42). The efficiency η(t ) is calculated
by inserting μ(t ) from Eq. (41) and C(t ) from Eq. (59) into
Eq. (40). The energy eigenstates of the potential Vg(x) no
longer appear individually in Eqs. (41) and (59). Instead, only
�g(x, t ) appears, thus often allowing for a simple analytic
solution.

To illustrate the plausibility of this result, we consider
a Ramsey experiment in which the atoms are subject to a
differential potential. For high enough temperature, one can
regard the atoms as having classical trajectories. For short
enough dark time t between the two Ramsey pulses, one can
assume that the position of each atom is time-independent.
In this situation, an atom at position x will pick up a differ-
ential phase factor ei[Vg(x)−Vr (x)]t/h̄. Averaging over the atomic
positions yields a Ramsey pattern with fringe visibility V (t ) =
| ∫ d3x�g(x)ei[Vg(x)−Vr (x)]t/h̄|. Obviously, this is closely related
to Eq. (59) when keeping Eq. (44) in mind.

D. Harmonic potential and gravitational sag

We now apply the Raman-Nath approximation to a situa-
tion in which both potentials Vg(x) and Vr (x) can be approxi-
mated as harmonic and in which Vg(x) is identical before and
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after storage and the system is in thermal equilibrium with T
far above quantum degeneracy before storage. As previously
discussed in Sec. II C, gravitational sag of the cloud in the
trapping potential is a crucial aspect because it causes the
position dependence of the differential light shift at cloud
center to be linear, which leads to much faster decay of the
retrieval efficiency compared to a purely quadratic differential
potential.

We assume that both potentials Vg(x) and Vr (x) are light-
shift potentials created by a traveling Gaussian light beam
with wave vector along the z axis used for dipole trapping the
ground state. We obtain light-shift potentials [45] Vj,light(x) =
−α j I (x)/2ε0c, where α j is the dynamical polarizability of
state j ∈ {g, r}, I (x) is the trapping-light intensity, ε0 is the
vacuum permittivity, and c is the vacuum speed of light.
A harmonic approximation around the trap center yields
Vj,light(x) = Vj,0 + κ j (x2 + y2)/2, where Vj,0 = Vj,light(0) is
the peak value of the trapping potential, κ j = −4Vj,0/w

2
t is

the spring constant, and wt is the beam waist of the dipole
trapping beam. Here, we neglected the divergence of the
Gaussian dipole-trapping beam.

Adding the gravitation potential mgx, we obtain the total
potentials Vj (x) = κ j[(x + x j,s)2 + y2]/2, where x j,s = mg/κ j

is the gravitational sag and we used an interaction picture to
reset the zero of energy for each internal state individually. We
now reset the coordinate origin along the x axis to obtain

Vg(x) = κg

2
(x2 + y2), (60a)

Vr (x) = κr

2
[(x − x0)2 + y2], (60b)

where x0 = xg,s − xr,s is the differential gravitational sag. Note
that an atom in state |r〉 localized at x = 0 experiences a force

F = κrx0 = κr − κg

κg
mg (61)

along x.
We assume that before storage the system is in thermal

equilibrium at temperature T . This requires κg � 0, whereas
κr may have either sign. We assume that T is far above quan-
tum degeneracy. Hence, the single-particle atomic density is

�g(x, 0) = 1

2πσ 2
x Lz

e−(x2+y2 )/2σ 2
x (62)

with σx = (βκg)−1/2.
We assume that the signal-beam profile is Gaussian,

u(x) = 1√
VG

e−(x2+y2 )/w2
eiksz, (63)

where w is the beam waist and VG = πw2Lz/2 a normal-
ization factor with the dimension of a volume. Here, we
consider a cuboidal quantization volume V with edge lengths
Lx, Ly, and Lz, and we assumed w � Lx = Ly. In addition,
we neglected the divergence of the Gaussian signal beam, the
curvature of the wave fronts, and the Gouy phase, all based
on the assumption that zR � Lz, where zR = ksw

2/2 is the
Rayleigh length.

Using the Raman-Nath approximation (59) in this situation
and combining it with Eq. (43) yields

η(t )

η0
= 1

|ζ1|2 exp

(
− t2

τ 2
F

1

|ζ1|2
)

, (64)

where we abbreviated

τF = 2h̄

wr |F | , wr =
(

1

4σ 2
x

+ 1

w2

)−1/2

(65)

and

ζ1(t ) = 1 − i
t

τκ

, τκ = 4h̄

w2
r |κg − κr | . (66)

wr is the radius of the part of the atom cloud that is transferred
to the state |r〉. If w and 2σx differ by a large factor, then wr

equals the smaller of these quantities. For later reference, we
use κr/κg = αr/αg and Eq. (61) to rewrite

τκ = 4h̄

wrκg

∣∣1 − αr
αg

∣∣ , τF = 2h̄

mgwr

∣∣1 − αr
αg

∣∣ . (67)

Note that taking the finite value of wr into account is
crucial here, because in the limit wr → ∞, Eq. (67) yields
τκ → 0 and τF → 0. To make this plausible, note that co-
herent directed retrieval will be possible if the momentum
spread of a pure single-atom state |ψr,n(0)〉 is larger than the
differential change in momentum experienced during the dark
time in the presence of the potential. Otherwise, the single-
atom states |ψr,n(t )〉 and R†|ψg,n(t )〉 have poor overlap in
momentum space, causing Qn(t ) and C(t ) to vanish according
to Eqs. (20) and (27). For a finite wr , the position-momentum
uncertainty relation enforces a nonzero momentum spread
2h̄/wr of each state |ψr,n(0)〉, thus causing a nonzero time for
the decay of |C(t )|. Note that only the differential potential
Vr (x) − Vg(x) is relevant for the directed retrieval because
only this appears in Eq. (59). In an experiment, the finite
value of wr has contributions from the initial size σx of the
ground-state sample and from the transverse beam profiles of
the signal and coupling beams. In EIT storage experiments,
the signal beam waist typically is the smallest of these length
scales because otherwise one cannot achieve high storage
efficiency. Note that this is why we approximate the coupling
beam as a plane wave throughout this work.

The Raman-Nath approximation is a good approximation
as long as the distance that an atom travels during the dark
time is small. In a harmonic differential potential, the dark
time must be short compared to an oscillation period in the
differential potential

t � 2π

√
m

|κr − κg| . (68)

In addition, the Raman-Nath approximation neglects the dis-
tances traveled because of the initial thermal velocity, the
net photon recoil, and the kinetic energy associated with the
finite signal-beam waist because of the position-momentum
uncertainty relation. This additionally requires t � wr/2σv ,
t � wr/2vR, and t � mw2

r /4h̄.
If the gravitational sag is much smaller than the cloud

size xg,s � wr/2, then the gravitational sag has a negligible
effect. In this case, the model can be simplified by setting
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F = 0. In general, for F = 0 we would expect the differential
potential to excite the monopole mode, also known as the
breathing mode, of the atomic cloud. If the spring constant
should be negative, then the breathing mode would have
imaginary frequency corresponding to exponential decay or
growth instead of an oscillation. The short-time behavior of
this is captured by the Raman-Nath approximation.

For F = 0, Eq. (64), which relies on the Raman-Nath
approximation, yields an algebraic decay

η(t )

η0
= 1

1 + t2/τ 2
κ

. (69)

A previous analysis of the F = 0 scenario by Kuhr et al. [24]
used a different approximation, which holds in a parameter
regime different from ours and yields a different result, as
detailed in Ref. [30].

To make the decay time τκ from Eq. (66) appearing in
Eq. (69) plausible, we consider an atom in state |r〉 that has
a certain momentum and a certain position with y = 0 and
arbitrary x at the beginning of the dark time. According to
Eq. (60), it experiences a differential force along the x axis of

−∂x(Vr − Vg) = (κg − κr )x + F (70)

with F from Eq. (61). After the dark time t , the differential
atomic momentum has changed by (κg − κr )xt , where we
used F = 0 and assumed that x is unchanged because of the
Raman-Nath approximation. Equating the modulus of this
momentum change with the momentum width 2h̄/wr of state
|ψr,n(0)〉 and replacing x by the typical value wr/2 yields
t = τκ .

Conversely, if we assume that the gravitational sag is much
larger than the cloud size, then the harmonic part of the differ-
ential potential has little effect and we expect the differential
potential to excite the dipole mode, also known as the sloshing
mode, of the atomic cloud. Again, the short-time behavior of
this is captured by the Raman-Nath approximation.

The condition that the gravitational sag is much larger than
the cloud size wr/2 � xg,s is equivalent to τF � τκ . This is
plausible because if the cloud size wr/2 is much smaller than
the gravitational sag xg,s, then the atomic cloud in state |r〉
essentially experiences a constant force F , i.e., the term ∝x
in Eq. (70) in negligible. If we consider τF � τκ , then the
initial decay of η(t )/η0 in Eq. (64) from unity to a value much
smaller than unity will be well approximated by

η(t )

η0
= exp

(
− t2

τ 2
F

)
. (71)

This is a good approximation except for the long-time tail
of the decay, which is often of little interest because here
η(t )/η0 � 1 anyway.

To make the decay time τF appearing in Eq. (71) plausible,
we consider an atom in state |r〉 which has a certain momen-
tum at the beginning of the dark time. After the dark time,
its momentum has changed by Ft . Equating the modulus of
this with the momentum width 2h̄/wr of state |ψr,n(0)〉 yields
t = τF .

For the parameters of our experiment, the gravitational
sag is larger than the size of the cloud so that the linear
potential dominates and the atoms hardly sample the curvature

of the differential potential. Hence, Eq. (71) is applicable and
the quadratic potential has a negligible effect. Neglecting the
quadratic potential from the start drastically simplifies the
original problem and makes it possible to solve the problem
analytically without resorting to the Raman-Nath approxi-
mation. In particular, this allows it to take the two-photon
recoil h̄kR and the nonzero initial temperature T of the atomic
cloud into account, which we neglected in the Raman-Nath
approximation. This is detailed in Ref. [30].

We note that it might be tempting to associate the in-trap
decoherence with a Markovian process driven by random
motion of atoms in the trap. However, that ansatz would
predict an exponential decay in time, which is in conflict with
Eq. (64). The Markovian ansatz is not a good approximation
because the atomic motion is not truly randomized on a short
enough timescale.

V. CONCLUSIONS

To conclude, we studied the dark-time decay of
the retrieval efficiency for light stored using Rydberg
EIT. We experimentally demonstrated a 1/e time of 30 μs
in free expansion at low atomic density and low temperature.
Our experimental data, both inside the dipole trap and in
free expansion, agree well with a model that we presented
that showed that it bears analogies to DLCZ single-photon
sources and to the decay of fringe visibility in Ramsey spec-
troscopy. We also experimentally studied the decay of the
degree to which the retrieved light is coherent. The model
suggests that the trap-induced part of the decay of the retrieval
efficiency should become negligible when moving from the
present red-detuned 1064 nm dipole trap to a blue-detuned
532 nm dipole trap. This prediction is promising for future
experiments aiming for a Rydberg cavity gate.

Another interesting perspective would be to extend the the-
oretical and experimental studies regarding the spatial coher-
ence function and Ramsey spectroscopy beyond uncorrelated
states. Thermalized correlated states might be particularly in-
teresting, i.e., a noninteracting ensemble of identical fermions
at zero temperature or a noninteracting thermalized gas of
bosons or fermions at a nonzero temperature, which is not far
above quantum degeneracy.
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APPENDIX A: ATOM-LIGHT INTERACTION
HAMILTONIAN

In this Appendix, we present details regarding the atom-
light interaction Hamiltonian Val appearing in Eq. (12). We
assume that a signal (coupling) light field with angular fre-
quency ωs > 0 (ωc > 0) and single-photon detuning �s =
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ωs − ωeg (�c = ωc − ωre) is near resonant with the |g〉 ↔ |e〉
(|e〉 ↔ |r〉) transition with dipole matrix element deg (dre)
and atomic resonance angular frequency ωeg (ωre). We de-
scribe the coupling light field as a classical plane wave with
Ec(x, t ) = 1

2 Ec,0e−iωct+ikc·x + c.c. with wave vector kc, com-
plex amplitude Ec,0, and Rabi frequency �c = −dreEc,0/h̄.

The signal light field, however, must be quantized to obtain
a useful description of EIT-based storage because it is crucial
that an atomic excitation from state |g〉 to |e〉 has a backaction
onto the signal light field, reducing its photon number by
1. We include only a single monochromatic optical mode
of the signal field in our model. The operator describing
its electric field is Ê (x) = Ê (+)(x) + H.c., where Ê (+)(x) =
Eωs

√
Vu(x)âs would become the positive-frequency compo-

nent if one used the Heisenberg picture, Eωs = √
h̄ωs/2ε0V

is the field amplitude, V is the quantization volume, u(x) is
the spatial mode function normalized to

∫
V d3x|u(x)|2 = 1,

and âs is the annihilation operator for a photon in this mode
with bosonic commutation relation [âs, â†

s ] = 1. Using Eωs

one introduces gR = −degEωs/h̄, which is half the vacuum
Rabi frequency.

We use an interaction picture and the rotating-wave
approximation. We find that the Hamiltonian for the ith
atom contains a modified internal-energy term Hint,i =
h̄�s|gi〉〈gi| − h̄�c|ri〉〈ri| together with the potential Val,i de-
scribing the atom-light interaction with position representa-
tion,

Val,i(xi ) = h̄gR

√
Vu(xi )âs|ei〉〈gi| + h̄

2
�ceikc·xi |ri〉〈ei| + H.c.

(A1)

The total atom-light interaction Hamiltonian is Val =∑N
i=1 Val,i. Spontaneous emission from state |e〉 into modes

orthogonal to u(x) is not included in Val. In the following, we
always assume that gR and �c are real and that �s = �c = 0.
Reference [3] uses the notation �, where we use �c/2.

Had we considered a �-type level scheme instead of the
ladder-type level scheme, i.e., if state |r〉 had an energy lower
than the energy of state |e〉, then we would have to replace
�c �→ �∗

c and along with it kc �→ −kc and �c �→ −�c. Ev-
erything else would remain unchanged.

Note that, strictly speaking, the positive-frequency
component of the quantized electric field is Ê (+)(x) =∑

m Eωm

√
Vum(x)âm, where the um(x) form an orthonormal

basis of mode functions. Each um(x) must be a monochro-
matic solution to the wave equation in classical electrody-
namics. The corresponding angular frequency is ωm, and
this yields Eωm = √

h̄ωm/2ε0V . Additionally, each um(x) must
meet some boundary condition imposed by the quantization
volume. Apart from that, one can choose the um(x) in an ar-
bitrary fashion. The âm are the corresponding bosonic photon
annihilation operators.

As in Ref. [3], we keep only one term in this sum, namely
the one with u(x). The special treatment of this mode is
justified because upon retrieval this term gives rise to directed
emission because of constructive interference. The collection
of all other modes gives rise to undirected retrieval. As we
are not interested in the fate of those photons emitted in an
undirected fashion, we can trace over them. This leaves us
with a corresponding term in the dissipator of a quantum

master equation, describing the atomic decay with rate coef-
ficient e which accompanies the spontaneous emission into
those modes.

As a further approximation, we use the resulting Hamilto-
nian with just one term even when u(x) is a Gaussian beam
that solves the wave equation only in paraxial approximation
and also meets the boundary condition only in an approximate
fashion. This is justified as long as the waist is much larger
than the wavelength of the signal light because otherwise the
paraxial approximation becomes poor.

APPENDIX B: RETRIEVAL EFFICIENCY

In this Appendix, we derive the central result (19) for
the retrieval efficiency for a separable pure initial state. For
brevity, we drop the thermal averaging index n from the
notation throughout this Appendix. We start by constructing
an explicit expression for the projector Pu. To this end,
we consider an orthonormal basis of external states of the
ith atom (|φ1,i〉, |φ2,i〉, |φ3,i〉, . . . ). Hence, the product states⊗N

i=1 |φ ji,i〉 form an orthonormal basis of the Hilbert space
Hext of all external N-atom states. Similarly, the product states

|�g, j1, j2,..., jN , 1s〉 = |1s〉
N⊗

i=1

∣∣φ ji,i, gi
〉

(B1)

form an orthonormal basis of the subspace of states with one
signal photon and zero atomic excitations. Likewise, the states
|φ ji,i, ri〉

⊗N
i′=1,i′ �=i |φ ji′ ,i′ , gi′ 〉 form an orthonormal basis of the

subspace of states with one Rydberg excitation. Note that
there are N options for which of the atoms is excited. Since
Ri is unitary, we can alternatively use the states

(
R†

i

∣∣φ ji,i, ri
〉) N⊗

i′ = 1
i′ �= i

∣∣φ ji′ ,i′ , gi′
〉

(B2)

as an orthonormal basis of the subspace of states with one
Rydberg excitation. Again, there are N options for which of
the atoms is excited.

For a given u(x), each of the states |�g, j1, j2,..., jN , 1s〉 has a
3D invariant subspace with a single excitation associated with
it in analogy to Sec. III A. Within each of these 3D subspaces,
there is a symmetric Dicke state with one Rydberg excitation,

∣∣�r, j1, j2,..., jN

〉 = 1√
N

N∑
i=1

(
R†

i

∣∣φ ji,i, ri
〉) N⊗

i′ = 1
i′ �= i

∣∣φ ji′ ,i′ , gi′
〉
. (B3)

The states |�r, j1, j2,..., jN 〉 form an orthonormal basis of the
subspace Wu. Hence

Pu =
∑

j1, j2,..., jN

∣∣�r, j1, j2,..., jN

〉〈
�r, j1, j2,..., jN

∣∣. (B4)

Note that the dimension of the subspace Wu is a factor of N
smaller than the dimension of the subspace spanned by the
states in Eq. (B2) because among the N options for which
of the atoms is excited, only one superposition is realized,
namely the symmetric Dicke state that couples to mode u(x).

To determine the retrieval efficiency based on Eq. (18), we
first need to calculate Pu|�r (t )〉. We facilitate this calculation
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by choosing the orthonormal basis (|φ1,i〉, |φ2,i〉, |φ3,i〉, . . . ) in
a way that is adapted to the problem. Specifically, we construct
this basis such that

|φ1,i〉 = |ψg,i(t )〉 (B5)

and that Ri|ψr,i(t )〉 lies in the two-dimensional (2D) subspace
spanned by |φ1,i〉 and |φ2,i〉. We denote the corresponding
expansion coefficients as Qi(t ) and Gi(t ), defined by

Ri|ψr,i(t )〉 = Qi(t )|φ1,i〉 + Gi(t )|φ2,i〉. (B6)

Note that this agrees with the definition of Qi(t ) in Eq. (20). In
addition, as Ri is unitary and |ψr,i(t )〉 is properly normalized,

|Qi|2 + |Gi|2 = 1. (B7)

Combining Eqs. (17), (B3), (B5), and (B6) yields〈
�r, j1, j2,..., jN

∣∣�r (t )
〉

= 1

N

N∑
i=1

〈
φ ji,i|Ri

∣∣ψr,i(t )〉︸ ︷︷ ︸
=Qiδ1, ji +Giδ2, ji

N∏
i′ = 1
i′ �= i

〈
φ ji′ ,i′

∣∣ψg,i′ (t )
〉

︸ ︷︷ ︸
=δ1, ji′

. (B8)

Insertion into Eq. (B4) yields

Pu|�r (t )〉 = |�r,1,...,1〉 1

N

N∑
i=1

Qi

+
N∑

i=1

∣∣�r,1,...,1, ji=2,1,...,1
〉 1

N
Gi. (B9)

Combining with Eq. (18) yields

η(t )

η0
= 1

N2

∣∣∣∣∣
N∑

i=1

Qi

∣∣∣∣∣
2

+ 1

N2

N∑
i=1

|Gi|2. (B10)

For N � 1 this yields Eq. (19) because 1
N2

∑N
i=1 |Gi|2 �

1
N maxi |Gi|2 = O( 1

N ). As a result, the only term in Pu|�r (t )〉
that gives a non-negligible contribution to η(t ) for N � 1
comes from |�r,1,...,1〉, which equals |�(t )〉 from Eq. (22).
Hence for N � 1,

Pu|�r (t )〉 = |�(t )〉〈�(t )|�r (t )〉. (B11)

Inserting this into Eq. (18) yields Eq. (21).
In principle, the state in Eq. (B9) is entangled and it would

remain entangled during the adiabatic passage from ϑ = π/2
to 0, but for N � 1 we obtain Eq. (B11), which becomes a
product state |�g,1,...,1, 1s〉 during the adiabatic passage from
ϑ = π/2 to 0. Hence, as a byproduct of our calculation, we
obtained the final N-atom state after retrieval, at least for those
cases in which retrieval occurs into mode u(x).

In our experiment, we use an optical fiber for transverse
mode selection of the retrieved light. However, we do not
select the longitudinal mode. Within our model, this lack of
longitudinal mode selection has no effect on the efficiency.
To see this, we use the fact that u(x) has a plane-wave-type
dependence on z, and we assume that Vg(x) and Vr (x) are in-
dependent of z. Hence, starting from thermal equilibrium, the
initial atomic wave function ψg,n,i(x, 0) has a plane-wave-type
dependence on z. Hence, the longitudinal mode along z is un-
changed when calculating U †

g,i(t )RiUr,i(t )R†
i |ψg,i(0)〉, which is

relevant for Eq. (20). In essence, this reflects conservation
of linear momentum along z because the momentum added
during the transition |g〉 → |r〉 is removed in the transition
|r〉 → |g〉.

The following consideration will show why a state orthog-
onal to Wu does not couple to the mode u(x). We start by
considering the state |�g,in, 1s〉 of Eq. (8a). Taking photon
recoil for a given u(x) into account, it is obvious that a
transition of the ith atom from internal state |gi〉 to |ri〉 must
change its external state from |ψg,i(0)〉 to |ψr,i(0)〉. When
considering N atoms, there is a corresponding N-dimensional
subspace with one Rydberg excitation. It is spanned by the
orthonormal basis |ψr,i(0), ri〉

⊗N
i′=1,i′ �=i |ψg,i′ (0), gi′ 〉 with i ∈

{1, 2, . . . , N}. However, Val couples the mode u(x) only to the
symmetric Dicke state of Eq. (8c). The (N − 1)-dimensional
subspace orthogonal thereto does not couple to the mode u(x).
For an arbitrary initial state, this statement generalizes to
the fact that a state orthogonal to Wu does not couple to the
mode u(x).

The state after storage, |�r (0)〉, is an element of Wu.
The dark-time evolution rotates this state inside the subspace
spanned by the states in Eq. (B2). Whenever η(t ) < η0, this
rotated state |�r (t )〉 has a nonzero component orthogonal to
Wu. When the coupling light is turned back on for retrieval,
this component causes spontaneous emission into modes or-
thogonal to u(x). The fate of those excitations is beyond the
scope of the present paper. They are simply regarded as lost.

APPENDIX C: ENTANGLED INITIAL STATES

This Appendix discusses a straightforward generalization
of the model to arbitrary initial states. Again, the initial
density matrix can be expanded as in Eq. (6) but now each
pure state |�g,n,in〉 can be entangled, i.e., nonseparable. This
expansion is possible because ρN,in is Hermitian so that it can
be diagonalized.

Hence, Eq. (7) still holds but we need to generalize the
calculation of ηn(t ) to entangled pure states. To this end, we
expand the entangled pure state |�g,n,in〉 in an orthonormal set
of separable pure states |�g,n,m,in〉 as

|�g,n,in〉 =
∑

m

cn,m|�g,n,m,in〉 (C1)

with

〈�g,n,m,in|�g,n,m′,in〉 = δm,m′ . (C2)

Hence, the complex expansion coefficients cn,m fulfill∑
m |cn,m|2 = 1. This expansion is possible because any

Hilbert space has an orthonormal basis of separable pure
states.

The treatment of storage and retrieval for each separable
pure initial state |�g,n,m,in〉 is identical to the above. In partic-
ular, Eq. (B11), which holds for N � 1, now simply picks up
an additional index m, thus becoming

Pu|�r,n,m(t )〉 = |�n,m(t )〉〈�n,m(t )|�r,n,m(t )〉, (C3)

where |�r,n,m(t )〉 and |�n,m(t )〉 are defined in analogy to the
above, starting from the separable pure state |�g,n,m,in〉. For
clarity, Eq. (C3) explicitly includes the index n, which was
omitted in Appendix B for brevity. Note that Ri is unitary
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and that the dark-time evolution is unitary. Hence, Eq. (C2)
implies

〈�n,m(t )|�n,m′ (t )〉 = δm,m′ . (C4)

The discussion leading to Eq. (18) relies on adiabatic
following but it is irrelevant whether the initial pure state is
entangled. Hence, Eq. (18) is applicable here for calculating
ηn(t ) for the possibly entangled pure state |�g,n,in〉. In addi-
tion, it is applicable for calculating ηn,m(t ) for the separable
pure state |�g,n,m,in〉. Combining this with Eqs. (C1), (C3), and
(C4) and with the fact that Pu is linear yields

ηn(t ) =
∑

m

|cn,m|2ηn,m(t ). (C5)

This is the weighted average of the efficiencies ηn,m(t ).
For the special case of a thermalized initial state of nonin-

teracting atoms, each |�g,n,in〉 is a bosonically symmetrized
or fermionically antisymmetrized version of one separable
pure state. Hence, all the values of ηn,m(t ) for a given n are
independent of m, and the averaging in Eq. (C5) becomes
trivial.

There is a caveat here. If one considers a degenerate
Fermi gas, which is an example of an entangled state, then
Eq. (18) might become a poor approximation for the retrieval
efficiency. This is because if just before retrieval an external
single-atom state is already occupied by a ground-state atom,
then Pauli blocking will prohibit the transition of another atom
to this final state. This might result in a suppression of the
directed retrieval.

APPENDIX D: BEYOND PLANE WAVES

In this Appendix, we present details regarding the gener-
alization beyond a plane-wave signal light field, which was
only briefly summarized in Sec. III E. The main difference
will be the appearance of several nontrivial normalization
factors. Apart from that, the treatment is largely analogous.
The main reason for discussing this aspect in an Appendix
is that the main text becomes more transparent because the
relevant physics is not obscured by a lengthy discussion of all
the normalization factors.

We assume that the mode function is of the form u(x) =
u⊥(x, y)eiksz/

√
Lz, in which the longitudinal mode function re-

mains that of a plane wave but there might be some nontrivial
transverse mode function u⊥(x, y), such as the Gaussian of
Eq. (63). Hence, the longitudinal properties of the signal light
remain trivial.

We still define the single-particle states |ψe,n,i(0)〉 and
|ψr,n,i(0)〉 by Eq. (9). Hence, Eq. (11) still holds. But now
these single-particle states are no longer properly normalized.
Instead, calculating their norm squared yields the dimension-
less real number

Mn,i(0) = 〈ψe,n,i(0)|ψe,n,i(0)〉 = 〈ψr,n,i(0)|ψr,n,i(0)〉

= V
∫
V

d3x|u(x)ψg,n,i(x, 0)|2, (D1)

which describes how well the mode u(x) overlaps with the
atomic wave function before storage ψg,n,i(x, 0).

Using these states, we can easily generalize two of the N-
atom states of Eq. (8) to

|�e,n(0)〉 = 1√
Nn(0)

N∑
i=1

|ψe,n,i(0), ei〉
N⊗

i′ = 1
i′ �= i

|ψg,n,i′ (0), gi′ 〉

(D2a)

and

|�r,n(0)〉 = 1√
Nn(0)

N∑
i=1

|ψr,n,i(0), ri〉
N⊗

i′ = 1
i′ �= i

|ψg,n,i′ (0), gi′ 〉.

(D2b)

The only difference from Eq. (8) is the appearance of the
dimensionless normalization factor Nn(0) instead of the atom
number N . The definition of |�g,n,in, 1s〉 remains unchanged.
The N-atom states |�e,n(0)〉 and |�r,n(0)〉 in Eq. (D2) are
properly normalized because we choose

Nn(0) =
N∑

i=1

Mn,i(0), (D3)

which can be regarded as the effective number of atoms
coupled to the EIT signal light.

Compared to a plane wave u(x), the situation here is con-
ceptually a little more subtle because the 3D subspace spanned
by states [|�g,n,in, 1s〉, |�e,n(0)〉, |�r,n(0)〉] is no longer invari-
ant under application of the atom-light interaction potential
Val. This is because a transition |g〉 → |e〉 is accompanied
by multiplication with u(x)

√
V whereas the reverse transition

|e〉 → |g〉 is accompanied by multiplication with u∗(x)
√
V .

If and only if u(x) is a plane wave, then these factors can-
cel, which makes the 3D subspace invariant. As argued in
Appendix E, we can safely ignore this subtlety and restrict
our considerations to only this 3D subspace.

The state after storage is again |�r,n(0)〉. The dark-time
evolution proceeds as in the plane-wave case. In particular,
Eq. (16) still holds and Eq. (17) becomes

|�r,n(t )〉 = Ud (t )|�r,n(0)〉

= 1√
Nn(0)

N∑
i=1

|ψr,n,i(t ), ri〉
N⊗

i′ = 1
i′ �= i

|ψg,n,i′ (t ), gi′ 〉.

(D4)

Again, this differs from the plane-wave case only in the nor-
malization factor Nn(0). Note that the unitary time evolution
during the dark time implies that the norm of each |ψr,n,i(t )〉
is time-independent, which is why the normalization factor
Nn(0) appearing in |�r,n(t )〉 is also time-independent.

The retrieval is also treated as in the plane-wave case. In
particular, Eqs. (18) and (21) remain unchanged and the Dicke
state of Eq. (22) is generalized to

|�n(t )〉 = 1√
Nn(t )

N∑
i=1

(R†
i |ψg,n,i(t ), ri〉)

N⊗
i′ = 1
i′ �= i

|ψg,n,i′ (t ), gi′ 〉.

(D5)
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Again, the only difference from the plane-wave case is that the
single-atom state R†

i |ψg,n,i(t )〉 is not normalized, which yields
the normalization factor for the N-atom state

Nn(t ) =
N∑

i=1

Mn,i(t ) (D6)

with the dimensionless real number

Mn,i(t ) = 〈ψg,n,i(t )|RiR
†
i |ψg,n,i(t )〉

= V
∫
V

d3x|u(x)ψg,n,i(x, t )|2. (D7)

In the limit t → 0, the last three equations coincide with
Eqs. (D2b), (D3), and (D1). Hence Eq. (21) yields ηn(0)/η0 =
1. In addition, note that 0 � Mn,i(t ) � 1. For the special
case in which u(x) or ψg,n,i(x, t ) is a plane wave, we obtain
Mn,i(t ) = 1, and if this applies to all i, then Nn(t ) = N .

We also find that Eq. (19) is generalized to

ηn(t )

η0
= 1

Nn(0)Nn(t )

∣∣∣∣∣
N∑

i=1

Qn,i(t )

∣∣∣∣∣
2

(D8)

and Eq. (20) remains unchanged. In particular, for t = 0 we
combine Eqs. (11), (20), and (D1) to obtain

Qn,i(0) = Mn,i(0), (D9)

which again yields ηn(0)/η0 = 1.
For a pure BEC, Eq. (D8) simplifies to

ηBEC(t )

η0
= |Q(t )|2

M(0)M(t )
. (D10)

We turn to the uncorrelated state of Eq. (24). Wanting to
average ηn(t ) over n, we are facing the difficulty that in
Nn(t ) = ∑N

i=1 Mn,i(t ) the sum over i appears in the denomi-
nator in Eq. (D8). To solve this problem, we note that Nn(t ) =∑N

i=1 Mn,i(t ) for N � 1 is the sum over a large number N of
uncorrelated random variables Mn,i(t ), which each have the
same mean value

μ(t ) =
∑

n

pn,iMn,i(t ) =
∑

n

pn,1Mn,1(t ) (D11)

and the same standard deviation because the particles are
identical. The central limit theorem states that 1

N Nn(t ) is a
normally distributed, random variable with mean value μ(t )
and a standard deviation of order O(N−1/2). We consider N �
1 and neglect this standard deviation, i.e., we replace Nn(t ) by
Nμ(t ) and Nn(0) by Nμ(0). Hence, Eq. (26) generalizes to

η(t )

η0
= |C(t )|2

μ(0)μ(t )
, (D12)

where Eq. (27) remains unchanged. The quantities C(t ) and
μ(t ) are obtained from Qn(t ) and Mn(t ) by averaging over n.
As mentioned below Eq. (25), a pure BEC is an example of an
uncorrelated state. Hence, Eq. (D12) reproduces Eq. (D10) if
the initial state is a pure BEC. Note that Eq. (D9) yields

C(0) = μ(0). (D13)

If Eq. (32) holds, i.e., typically because the Hamiltonian is
identical before and after storage, then Mn,i(t ) = Mn,i(0) so
that μ(t ) = μ(0) and

η(t )

η0
=

∣∣∣∣C(t )

C(0)

∣∣∣∣2

(D14)

and Eqs. (27), (34), and (37) remain unchanged, now with
〈ψr,n,i(0)|ψr,n,i(0)〉 = Mn(0) according to Eq. (38).

APPENDIX E: NON-INVARIANCE OF THE SUBSPACE

As mentioned in Appendix D, if u(x) is not a plane wave,
then the 3D subspace spanned by the states [|�g,n,in, 1s〉,
|�e,n(0)〉, |�r,n(0)〉] is no longer invariant under application
of the atom-light interaction potential Val. In this Appendix,
we argue why this is not a major concern.

As an example, we consider application of Val to any vector
in this 3D subspace. This will create a vector in a 4D subspace
spanned, e.g., by the above three vectors combined with

∣∣� (1)
g,n, 1s

〉 = 1√
N (1)

g,n,i(0)
|1s〉

N∑
i=1

RiR
†
i |ψg,n,i(0), gi〉

N⊗
i′ = 1
i′ �= i

|ψg,n,i′ (0), gi′ 〉 (E1)

with some normalization factor N (1)
g,n,i(0). Applying Val to any

vector in this 4D subspace yields a vector in a 5D subspace,
etc. In this way, we obtain an infinite hierarchy of subspaces.

If we consider the 4D subspace rather than the 3D sub-
space, then we obtain a negligible correction to the final
result ηn(t ) of our calculation because the single-atom state of
only one atom in |� (1)

g,n, 1s〉 differs from |�g,n,in, 1s〉. All other
single-atom states are identical. Assuming that the number
of coupled atoms is large Nn(0) � 1, this difference has a
negligible effect. The same applies if we extend the model
to the 5D subspace and so forth, unless the number k of appli-
cations of Veg = ∑N

i=1 h̄gR

√
Vu(xi )âs|ei〉〈gi| + H.c. becomes

comparable to Nn(0).
Now, the number k of applications of Veg that we need to

consider is set by the duration ts of the storage pulse. The
typical value of k that needs to be taken into account is twice
the number of |g〉 ↔ |e〉 Rabi flops that the Bloch vector
can undergo during time ts. Let ϕR = √

Nn(0)gRts denote
the pulse area. Then the number of Rabi flops is ϕR/2π .
All states obtained by a much larger number of applications
of Veg have negligible amplitude in the state after storage.
To achieve adiabatic following in the dark state during the
storage process, we need 1 � ϕR/π . But typically Nn(0) is
large enough that this leaves enough room to choose ts such
that 1 � ϕR/π � Nn(0). We assume that such a choice was
made. Hence, it suffices to restrict k to k ≈ ϕR/π � Nn(0).
A similar argument applies to the adiabatic passage during
retrieval.
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