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High-order harmonic generation as induced by a quantized field: Phase-space picture
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The interaction of matter with a quantized electromagnetic mode is considered. Representing a strong exciting
field, the mode is assumed to contain a large number of photons. As a result, the material response is highly
nonlinear: the completely quantized description results in generation of high harmonics. In order to understand
the essence of the physical processes that are involved, we consider a finite dimensional model for the material
system. Using an appropriate description in phase space, this approach leads to a transparent picture showing
that the interaction splits the initial, exciting coherent state into parts, and the rapid change of the populations of
these parts (that are coherent states themselves) results in the generation of high-order harmonics as secondary
radiation. The method we use is an application of the discrete lattice of coherent states that was introduced by
von Neumann.
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I. INTRODUCTION

The importance of high-order harmonic generation (HHG)
is unquestionable in recent development of high-field laser
science. The process itself provides fundamental information
on nonlinear light-matter interaction (see, e.g., Refs. [1,2]),
while, on the other hand, it has practical applications, e.g.,
in the production of ultrashort bursts of electromagnetic ra-
diation [3–5]. The appearance of HH frequencies has been
detected for the case of target materials ranging from gas
samples [6,7] via surfaces [8,9] to wide band-gap solids
[10,11].

Traditionally, the theoretical description of the phe-
nomenon of HHG relies on the semiclassical approximation,
i.e., on the assumption that the exciting radiation can be
treated as a classical, time-dependent field [12,13]. In fact,
usually the HH modes themselves are also considered to be
classical, despite the fact that they contain orders of magnitude
less photons than the excitation. A quantum optical analysis
of the harmonic modes was considered in Ref. [14], where the
time-dependent populations of these modes together with the
corresponding photon statistics were given.

However, there are experimental implications showing that
a completely quantized description is required for the full
understanding of the physical processes that are responsible
for HHG. As reported in Refs. [15,16], by measuring the
photon statistics of a strong, mid-IR pulse after the interaction
with a gas [15] or a solid [16] sample, one can identify
fingerprints of the harmonics. In other words, the backaction
of the material system on the exciting field is observable—on
the quantized level.

Considering theory, a general description of a free charged
particle interacting with a quantized mode has already been
given for both the relativistic [17] and the nonrelativistic
[18] cases. In fact, in Ref. [17] the very first nonperturbative
treatment of HHG in the nonlinear Compton process has

been given, in the frame of the fully quantized description.
Transitions between Volkov states have also been used for the
description of HHG process in atoms [19,20]. The theoret-
ical models developed in Ref. [21] and Ref. [16] for gases
and crystalline samples support the experimental findings
reported in Refs. [15,16]. However, there are still a number of
open questions, and besides experimental results, the detailed
physical understanding of the interaction between quantized
light and matter in the high-intensity regime requires further
theoretical investigations as well.

For the sake of clarity, in the following we consider an
approach that has already been proven to be very useful
for the description of traditional quantum optical problems.
By using the Jaynes-Cummings-Paul model (without rotat-
ing wave approximation), we show that a very transparent
interpretation of the process of the HHG can be given on
the phase space of the exciting mode. Let us note that this
model can directly be related to HHG in quantum wells [22],
where only a finite number of states get excited, or solid-
state HHG using the velocity gauge, where all transitions
are “vertical,” i.e., the dynamics of states with different k
are independent (see, e.g., Refs. [23,24]). Moreover, since
any numerical approach unavoidably uses a finite-dimensional
Hilbert space, our approach—that is based on von Neumann
lattice coherent sates [25]—points towards the development
of a general, efficient scheme for calculating the dynamics of
strong quantized fields that interact with matter.

In the current paper, first, in Sec. II, we present the model
to be used, and show how the Hamiltonian in the strong-field
approximation can be diagonalized. In Sec. III we expand the
initial state on the basis of the von Neumann lattice coherent
sates and show how Wigner functions can be calculated using
this expansion. The analysis of the process of HHG by the
aid of the corresponding Wigner functions is performed in
Sec. IV. HHG spectra are presented in Sec. V. Possible
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generalizations of our model are discussed in Sec. VI and the
conclusions are drawn in Sec. VII.

II. MODEL AND STRONG-FIELD APPROXIMATION

In order to see the essence of the interaction of strong,
quantized fields and matter, let us consider the case of a
two-level atom (a) and a single mode ( f ):

H = Ha + Hf + Ha f = h̄

2
ω0σz + h̄ωa†a + h̄�σx(a + a†).

(1)
Here the usual creation and annihilation operators (with
[a, a†] = 1) and the Pauli matrices appear. The eigenstates of
the atomic Hamiltonian will be denoted by |e〉 and |g〉, i.e.,
Ha|e〉 = h̄ω0/2|e〉, Ha|g〉 = −h̄ω0/2|g〉. We will also use |+〉
and |−〉, for which σx|±〉 = ±|±〉. The state of the field will
be described using the photon number eigenstates, Hf |n〉 =
h̄ωn|n〉. We use the convention for the order of factors in
tensor products as “atom, field,” e.g., |e〉|n〉. In the following
we focus on far off resonant excitation; for definiteness we
assume ω0/ω = 2.2, which corresponds to the ratio of the
band gap in ZnO [10] and the photon energy for commonly
used sources at 800 nm wavelength. (Note that this choice has
no qualitative effect on the results.)

Equation (1) above describes the well-known Jaynes-
Cummings-Paul model without using rotating-wave approxi-
mation (RWA). (Note that RWA does not allow the appearance
of high-order harmonics.) Unlike the case when RWA can
be applied (see, e.g., Ref. [26]), there is no known general
solution to this model. However, resolvent techniques [27,28]
were applied for the analysis of the problem, and the resulting
formulas allowed numerical calculations that showed that
RWA does not work precisely enough for strong coupling, not
even in the resonant case of ω0 = ω [28]. A comparison of the
solutions based on continued fractions to the case with RWA
was performed also in Ref. [29]. The eigenvalues of the infi-
nite matrix of H in the photon number eigenstate basis were
discussed in Ref. [30], while multiphoton generalizations of
the model were investigated, e.g., in Ref. [31]. In Ref. [32],
a path-integral approach to the non-RWA description of the
problem [as given by an interaction picture version of Eq. (1)]
was presented.

It is closely related to our present work that, by choosing
appropriate time-dependent parameters, the number of the
dynamical equations can become finite [33,34]. Davydov
Ansätze thus simplify the calculation of the time evolution
to a large extent; see, e.g., Ref. [35]. Additionally, methods
that use multi-Davydov Ansätze [36] are similar to the case
of solving the dynamics on the von Neumann lattice (to be
described hereafter). In this context, the relevance of using
the von Neumann lattice, which is a very universal concept,
stems from the possibility of generalizing the results.

Time evolution in the absence of the atomic Hamiltonian

We are to solve the dynamics induced by H for a given
initial state, which, in order to serve as a model for HHG,
corresponds to a high mean photon number. As we shall
see in the following, the sum of the second and third terms
in the Hamiltonian H can be diagonalized, and Ha can be

taken into account as an action additional to the strong-field
approximation described by

H̃ = H − Ha = h̄ωa†a + h̄�σx(a + a†). (2)

As a first step for the diagonalization of H̃ , let us define the
generalized displacement operator

D̃(γ ) = eσx(γ a†−γ ∗a), (3)

which is unitary, D̃−1(γ ) = D̃†(γ ) = D̃(−γ ). As we shall
see, it is sufficient for now to consider transformations with
real valued γ parameters only. Since

[σxγ (a − a†), a] = σxγ , [σxγ (a − a†), a†] = σxγ , (4)

and because the right-hand sides commute with the exponent
in D̃, we can use the identity eAB e−A = B + [A, B] to obtain

D̃†(γ )aD̃(γ ) = a + γ σx, D̃†(γ )a†D̃(γ ) = a† + γ σx, (5)

and

D̃†(γ )a†aD̃(γ ) = D̃†(γ )aD̃(γ )D̃†(γ )a†D̃(γ )

= a†a + γ σx(a + a†) + γ 2σ 2
x . (6)

By the aid of Eqs. (5) and (6), the transformation of H̃ reads

D̃†(γ )H̃D̃(γ ) = h̄ω
[
a†a + γ σx(a + a†) + γ 2σ 2

x

]
+ h̄�σx(a + a† + 2γ σx ). (7)

By collecting the coefficients of the products aσx and a†σx, we
can see that the choice γ = −�/ω reduces the transformed
Hamiltonian to

D̃†

(−�

ω

)
H̃D̃

(−�

ω

)
= h̄ω

(
a†a − �2

ω2
σ 2

x

)
. (8)

Note that so far we intentionally did not use the identity σ 2
x =

1. This means that the results are general in the sense that they
are valid for an arbitrary coupling operator that can replace σx,

which will be useful later on (see Sec. VI). However, in order
the see the most transparent results of the model, from now on
we use the special properties of the coupling operator σx. This
results in a transformed Hamiltonian (8) which is proportional
to the identity on the atomic subspace.

This means that

D̃†

(−�

ω

)
H̃D̃

(−�

ω

)
|φ〉|n〉 = En|φ〉|n〉, (9)

where En = h̄ω(n − �2

ω2 ), and surprisingly, in the current case,
|φ〉 can be an arbitrary atomic state. Moreover, since the
constant −�2

ω2 in En will only lead to an irrelevant global
phase in the time evolution, we will omit it in the following.
(Formally, this only means the redefinition of the zero level of
the energy.) Multiplying (9) by D̃ from the left, we obtain

H̃

[
D̃

(−�

ω

)
|φ〉|n〉

]
= En

[
D̃

(−�

ω

)
|φ〉|n〉

]
, (10)

i.e., the states D̃( −�
ω

)|φ〉|n〉 are eigenstates of H̃ .

Let us analyze the time evolution induced by H̃ alone.
For the sake of simplicity, |�〉(t ) will denote the solution of
ih̄ ∂

∂t |�〉 = H̃ |�〉, and we use γ = −�/ω. It is convenient to
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consider states that are eigenstates of σx, when D̃(γ ) acts as
the usual displacement operator D(γ ):

D̃(γ )|±〉|n〉 = D(±γ )|±〉|n〉
= |±〉e±(γ a†−γ ∗a)|n〉 = |±〉|n,±γ 〉, (11)

where displaced photon number eigenstates [37] appear on the
right-hand side. Any initial state can be expanded as

|�〉(0) =
∑

n

b+
n |+〉|n, γ 〉 + b−

n |−〉|n,−γ 〉, (12)

leading to the time evolution

|�〉(t ) =
∑

n

(
b+

n |+〉|n, γ 〉 + b−
n |−〉|n,−γ 〉)e−inωt . (13)

[Let us recall that the irrelevant global phase factor exp(i �2

ω2 t )
is ignored.]

As an important application, we calculate the time evo-
lution of |�〉(0) = |+〉|α〉 = D(α)|+〉|0〉. Note that the co-
herent state |α〉 = exp(−|α|2/2)

∑
αn/

√
n!|n〉 with a large

magnitude complex label α is the most appropriate description
for a laser mode with a high mean photon number (〈n〉 =
|α|2). By using the expansion above, Eq. (13) leads to

|±〉|α〉(t ) = eiδ±(t )|+〉|α±(t )〉, (14)

with α+(t ) = ±γ + (α ∓ γ )e−iωt and δ±(t ) = ±γ Im [α −
(α ∓ γ )e−iωt ]. (Recall that Imγ = 0.) For clarity, e.g.,
|+〉|α〉(t ) above denotes the H̃ -induced time evolution of the
initial state |+〉|α〉, which turns out to be exp iδ+(t ) times
the tensor product of |+〉 and a coherent state, whose time-
dependent index is given by α+(t ).

Clearly, α±(0) = α and the exponential prefactors in
Eq. (14) reduce to unity at t = 0. Similarly, for integer n,
|±〉|α〉(t = nT ) = |±〉|α〉(0), where T = ω/2π is the optical
cycle time. This means that the time evolutions of the coherent
states are periodic when Ha is omitted. Visually, as it is shown
by the top panel of Fig. 1, the time-dependent indices α±(t ),
as curves on the complex plane, describe two circles. It is
also interesting to observe how high harmonics appear in the
dynamics of the phases exp[iδ±(t )]: when we increase the
mean photon number (|α|2), the phases show more and more
complex behavior (see the bottom panel of Fig. 1). However,
if we assume, as usual, that it is the expectation value of the
dipole moment operator (∝σx in our case) that is the source
of the HH radiation, there are no observable harmonics in
the absence of Ha, since [H̃ , σx] = 0; thus the expectation
value of the dipole moment is constant. By superposition,
the solutions (14) allow us to calculate the H̃ -induced time
evolution of the most plausible initial state, i.e., when the atom
is in its ground state:

|�〉(0) = |g〉|α0〉 = 1√
2

(|+〉 + |−〉)|α0〉. (15)

In this case, in the top panel of Fig. 1, the purple full circle
represents the initial state, which periodically splits into the
coherent superposition of two parts that are visualized by the
red and blue curves.
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FIG. 1. Time evolution of coherent states as induced by H̃ . Top
panel: the labels α±(t ) of |±〉|α±(t )〉 as curves on the complex plane
(red circle: − sign; blue circle: + sign) for two different values of α0

that are denoted by the purple dots. Bottom panel: the imaginary part
of the phase exp[iδ+(t )] during two optical cycles. γ = 0.1 for both
panels.

III. VON NEUMANN LATTICE COHERENT STATES AND
WIGNER FUNCTIONS

A. Dynamics on the von Neumann lattice

Since [H̃ , Ha] �= 0, there is no system of common eigen-
states for these operators. Let us use the results of the previous
section and describe the dynamics by the aid of the eigenstates
of H̃ . Using photon number eigenstate expansion, a general
solution of the time-dependent Schrödinger equation |�〉(t )
for ih̄ ∂

∂t |�〉 = H̃ |�〉 is given by (13), where the complex co-
efficients b±

m are constant. When we use the complete Hamil-
tonian, the presence of Ha results in the time dependence of
these coefficients. Specifically, using Ha|±〉 = h̄ω0/2|∓〉, we
obtain

ih̄ḃ+
n = h̄ω0

2

∑
m

b−
m〈n|D(−2γ )|m〉e−iω(m−n)t ,

ih̄ḃ−
n = h̄ω0

2

∑
m

b+
m〈n|D(2γ )|m〉e−iω(m−n)t , (16)
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i.e., the time evolution is not diagonal in the index n; the time
derivative of b+

n (b−
n ) involves infinitely many coefficients b−

m
(b+

m). This means a severe technical difficulty, despite the fact
that the matrix elements on the right-hand side have analytic
expressions in terms of Laguerre polynomials [37]. As we
shall see, a finite number of coherent states (indexed by a
subset of the von Neumann lattice) is a convenient choice for a
basis the elements of which are not orthogonal, but practically
transform among themselves under the action of Ha on the
timescale of HHG.

Coherent states are known to form an overcomplete ba-
sis on the Hilbert space of a single mode, i.e., they obey
the closure relation, but not the entire complex plane as
the index of the states is needed for the expansion of an
arbitrary state (see, e.g., Ref. [38] for the case of a circle).
According to von Neumann [25], it is sufficient to use a dis-
crete subset {|α(mn)〉, Reα(nm) = m

√
π, Imα(nm) = n

√
π} with

n and m being integers. (For the proof of completeness, see
Refs. [39,40].) That is, any state can be written as |φ〉 =∑

mn cmn|α(nm)〉 in an unambiguous way. This lattice was
used in Ref. [41] to transform the operator equations for the
quantized modes into c-number equations. For an application
to the case of HHG, see Ref. [42].

In the following we demonstrate that the basis of von
Neumann lattice coherent states is also very convenient for
the calculation of the complete dynamics, as well as for the
visualization of the results on phase space.

Similar to the case of Eq. (15), let us focus on the realistic
initial state |g〉|α0〉 and use a finite subset of the von Neumann
lattice around α0 to expand the initial state. If n0 and m0 are
indices for which |α(m0n0 ) − α0| is minimal [i.e., we found
the integer indices (m0, n0) for which the corresponding von
Neumann lattice point α(m0n0 ) is the closest to α0], then a
grid of lattice points with m = −N + m0, . . . , m0, . . . , N +
m0, n = −N + n0, . . . , n0, . . . , N + n0 define an approxi-
mate basis. It is convenient to switch to a single index
k [e.g., by starting from one of the corners of the lattice
points and keeping row-continuous order; see Fig. 2(a), where
n0 = m0 = 0 for the sake of simplicity], and use the set
{|+〉|α(k)〉, |−〉|α(k)〉}(2N+1)×(2N+1)

k=1 for the expansion of the
initial state:

|�〉(0) = |g〉|α0〉 =
∑

k

c+
k |+〉|α(k)〉 + c−

k |−〉|α(k)〉. (17)

Clearly, for an exact expansion, all the coherent states of
the von Neumann lattice are needed. However, as it will
be underlined by a numerical example in Sec. IV, already
relatively small lattices (N ≈ 5) provide a precision that is
sufficient for most practical purposes.

In order to determine the complex coefficients c±
k , we

have to take into account that the overlap Ni j = 〈α(i)|α( j)〉 =
exp(α∗

i α j ) exp[−(|αi|2 + |α j |2)/2] is not zero. If we fix the
number of the lattice points (i.e., N), we obtain

c±
i =

∑
j

N−1
i j 〈±|〈α( j)|�〉(0), (18)

where the inverse of the (2N + 1) × (2N + 1) overlap matrix
appears on the right-hand side.

It is important that the time evolution of all the basis states
is known under the action of H̃ ; see Eq. (14). This allows us to

FIG. 2. von Neumann–lattice coherent states. Panel (a) a finite
set of lattice points with two different methods for generating the
indices. Panel (b) Wigner functions of coherent states centered at the
same lattice points. Panel (c) visualization of the time evolution of a
finite basis set {|±〉|α(k)〉(t ), k = 1, . . . , 25}.

calculate the complete dynamics (as induced by H = H̃ + Ha)
by letting the coefficients c±

k be time dependent:

|�〉(t ) =
∑

k

c+
k (t )|+〉|α(k)〉(t ) + c−

k (t )|−〉|α(k)〉(t ). (19)

Now it is worth defining the following four overlap matrices:

N±±
jm (t ) = 〈α( j)

± (t )|α(m)
± (t )〉

× exp i{δ±[α(m)
± (t )] − δ±[α( j)

± (t )]}, (20)

which are all equal to N at t = 0. Note that here the upper
indices, + or −, correspond to the lower ones they are situated
right above, e.g., N+−

jm is proportional to 〈α( j)
+ |α(m)

− 〉. Using
this notation, Eq. (18) is valid also in the time-dependent case
if we replace the matrix N by N++(t ) and N−−(t ) for c+

i (t )
and c−

i (t ), respectively.
The dynamical equations for c±

k (t ) are given by

ih̄
∑

k

N++
mk

d

dt
c+

k (t ) =
∑

k

N++
mk (t )c+

k (t )〈+|Ha|+〉

+
∑

k

N+−
mk (t )c−

k (t )〈+|Ha|−〉. (21)
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Recalling that the expectation value of Ha vanishes in the
states |±〉 [see before Eq. (16)], and using the inverse of the
overlap matrices, we obtain

ih̄
d

dt
c+

j (t ) =
∑
km

(
N++)−1

jm
(t )N+−

mk (t )c−
k (t )〈+|Ha|−〉. (22)

Similarly,

ih̄
d

dt
c−

j =
∑
km

(
N−−)−1

jm (t )N−+
mk (t )c+

k (t )〈−|Ha|+〉. (23)

Note that—apart from time instants that are integer multiples
of optical cycle time T —the matrix products (N++)−1N+−
and (N−−)−1N−+ are close, but not equal to unity. This
shows how the action of Ha slowly mixes different von
Neumann lattice coherent states.

The results above can be directly turned into a numer-
ical procedure for solving the time-dependent Schrödinger
equation using the von Neumann lattice. First we have to
determine the initial part of the lattice that will serve as
an approximate basis. [Clearly, this choice depends on the
index α0 of the initial state; see Eq. (17).] Then, at each
time instant, {|+〉|α(k)〉(t ), |−〉|α(k)〉}(2N+1)×(2N+1)(t )

k=1 have to
be determined [see Eqs. (14)], and also the overlap matrices
N±±(t ) should be updated. These calculations are completely
analytic. According to our numerical experience, relatively
small grids (N ≈ 5) are sufficient to reach convergence (i.e.,
no observable change in the results by further increasing
the value of N). The inverses of the overlap matrices can
conveniently be calculated by numerical means, and the time
derivative of the coefficients c±

j are given by Eqs. (22) and
(23). Using an appropriate integration routine (preferably with
adaptive step size), the norm

〈�|�〉(t ) =
∑
km

[c+
k (t )]∗N++

km (t )c+
m (t )

+
∑
km

[c−
k (t )]∗N−−

km (t )c−
m (t ) (24)

can be kept close to unity. This method is particularly efficient
when the mean photon number is large. Practically, for |α| >

10, working in photon number eigenstate basis [see Eqs. (16)]
becomes increasingly difficult, partly because of the increase
of the number of the basis elements that have to be taken
into account, but also because of the numerical difficulty of
handling the factorials that appear in the expansion coeffi-
cients 〈n|α〉. Besides the numerical efficiency, using the von
Neumann lattice has an additional benefit for the visualization
of the results on the phase space: as we shall see in the next
subsection, the Wigner function of the mode can be calculated
analytically in this basis.

B. Wigner functions

Since its introduction in 1932 [43], the Wigner function be-
came the central tool for describing quantum mechanics on the
phase space, allowing for the investigation of the connections
and most important differences between quantum mechanics
and classical statistical mechanics. Later on, especially in
the context of quantum optics, additional quasidistribution
functions were introduced [44–46], that can also describe

the quantum state of light. A detailed summary of these
distributions together with the discussion of a wide class of
problems on the quantum optical phase space can be found in
Ref. [47]. In the following we show how the von Neumann
lattice allows an elegant calculation of the Wigner function.

Let us note that although a joint Wigner function for the
atom-field system has already been constructed [48], in the
following we use the traditional approach, in which only
the field degrees of freedom are involved. For clarity, let us
note that disregarding atomic degrees of freedom is most
transparently described by a partial trace over atomic states:
for a complete atom-field state |�〉 we construct the density
operator ρa f = |�〉〈�| and use the reduced density operator
ρ f = Traρa f = 〈e|ρa f |e〉 + 〈g|ρa f |g〉 for the calculation of the
Wigner function. Since there is no additional reason for using
density operators in the following (there are no mixed states
involved), below we use a definition that is based on pure
states.

The Wigner function corresponding to a state |�〉 is essen-
tially the two-dimensional Fourier transform of the character-
istic function χ :

W� (α) = 1

π2

∫ ∫
χ� (α)eα∗α−αα∗

d2α, (25)

where χ� (α) is the expectation value of the displacement
operator D(α):

χ� (α) = 〈�|D(α)|�〉. (26)

For the case of t = 0, we can substitute the form of |�〉
given by Eq. (17) into the equation above. By using the
orthogonality 〈−|+〉 = 0, we can write

W� (α)

= 1

π2

∫ ∫ ∑
km

(c+
k )∗c+

m〈α(k)|D(α)|α(m)〉eα∗α−αα∗
d2α

+ 1

π2

∫ ∫ ∑
km

(c−
k )∗c−

m〈α(k)|D(α)|α(m)〉eα∗α−αα∗
d2α.

(27)

Note that, by using the reduced density operator, one would
obtain the same result. [This is due to the fact that the
displacement operator D(α) acts as the identity on the atomic
subspace.]

It is practical to apply the Baker-Campbell-Haussdorf iden-
tity to factorize the exponent in the displacement operator and
obtain

〈α(k)|D(α)|α(m)〉 = e−|α|2/2eα(α(k) )∗−α∗α(m)〈α(k)|α(m)〉. (28)

By explicitly using the real and imaginary parts of α, the result
above tells us that the Fourier transform of the summands in
Eq. (27) can be calculated analytically (since we are dealing
with shifted Gaussians). The generalization of the steps above
to the case of time-dependent von Neumann lattice coherent
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states is straightforward, and the final result is given by

W� (α) = 2

π

∑
km

(c+
k )∗N++

km c+
me−2(Imα−zkm

1 )2
e−2(Reα−zkm

2 )2

+ 2

π

∑
km

(c−
k )∗N−−

km c−
me−2(Imα−zkm

1 )2
e−2(Reα−zkm

2 )2
,

(29)

where the explicit notation of the time dependences of the
overlap matrices and the coefficients are omitted, and the
complex numbers in the exponents are given by

zkm
1 = 1

2

(
i Reα(k) + Imα(k) − i Reα(m) + Imα(m)

)
, (30)

zkm
2 = 1

2

(−i Imα(k) + Reα(k) + i Imα(m) + Reα(m)
)
. (31)

Note that for the special case when |�〉 corresponds
to a single lattice point, e.g., |�〉 = |+〉|α(k)〉, W� (α) =
2/π exp(−|α − α(k)|2), i.e., the well-known Wigner function
of a coherent state |α(k)〉 is recovered.

As we have seen in this subsection, having determined the
coefficients c±

k (t ), the Wigner function of the state |�〉(t ) can
be calculated analytically, without the need of fast Fourier
transform or any other numerical method.

IV. HHG ON PHASE SPACE

Before focusing on the physical consequences of the model
outlined before, it is worth summarizing earlier results that are
related. Interaction of a two-level system with a single quan-
tized mode is mostly discussed in the framework of rotating
wave approximation (RWA) [49], i.e., in the case when the
interaction part of the Hamiltonian Ha f is replaced by HRWA

a f =
h̄�(σ+a + σ−a†), where σ+|g〉 = |e〉, σ+|e〉 = 0, and σ− =
σ

†
+. When the initial state of the field is a coherent state,

|�〉(0) = |g〉|α〉, Rabi oscillations with different frequencies
dephase on a time scale that is proportional to 1/� (collapse)
and—because of the quantized nature of the radiation field—
they rephase again (revival). The characteristic time of the
revival process depends on the mean photon number as well,
it is |α| times longer than that of the collapse [50]. These
processes hae been discussed on phase space in detail in
Ref. [51]. As it was shown, the initially localized (Gaussian)
phase-space bump that corresponds to |α〉 falls into parts
during the time evolution (collapse) and the parts meet again
at the revival time. In the strict sense, these results are valid
only for the case of a Hamiltonian with RWA, but the time
scales for the processes can serve as rough estimations also for
the more general case without RWA. For typical experimental
situations, e.g., HHG on gas samples when the driving is in the
infrared region, the Rabi frequency is by orders of magnitudes
below ω. However, high harmonics are generated during a few
or a few times ten optical cycles only. Therefore, collapse and
revival are assumed to play minor roles on the time scale of
HHG. This is why a limited number of basis states centered
around the initial coherent state is sufficient to describe the
phenomenon.

In the following we focus on the process of HHG as repre-
sented on phase space. As one can check easily, RWA does not
allow the appearance of high harmonics; that is why we used
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t/T

FIG. 3. Figure corresponds to the complete time evolution with
|γ | = 0.001. Red and gray curves show the weights |c+

k |2 + |c−
k |2

of states whose index k correspond to positions on the von Neumann
lattice as it is shown by the dots in the inset. The initial state |g〉|α0〉 =
100

√
π is a coherent state at the center of the lattice (orange dot in

the inset), and the orange curve shows 1 − |c+
k0

|2 − |c−
k0

|2, indicating
that Eqs. (33) mean a good approximation for few optical cycles.

the Hamiltonian (1). As a systematic investigation shows, all
the terms of this Hamiltonian play a significant role in the
process. For the sake of completeness, let us recall the case
when the field is free, i.e., it does not interact with the atom.
As it is known, in this case the time evolution of an initial
coherent state |α〉 is given by |α e−iωt 〉. The corresponding
Wigner function will be a Gaussian that circulates clockwise
(with a circle time of T = 2π/ω) along a circle of radius |α|.

As it was shown in Sec. II, in the strong-field
approximation—when Ha is omitted and the time evolu-
tion is governed by H̃—the initial state |�〉(0) = |g〉|α〉 =
1/

√
2(|+〉 + |−〉|α〉 splits into two parts; see Eq. (14). Note

that this splitting is completely different from the one reported
in Ref. [51]: it appears in every optical cycle, much before
observable collapse appears. It is important to stress here that
H̃ commutes with the (dimensionless) dipole moment opera-
tor, σx, which means that the expectation value of the dipole
moment is constant in this case and no HH are generated when
the atomic Hamiltonian Ha is omitted.

Finally let us consider the complete time evolution, which
is governed by the full Hamiltonian H given by Eq. (1). The
question is to what extent the picture we have just discussed
changes by the presence of Ha. It is clear that |�〉(t ) is
not equal all the time to the superposition of |+〉|α〉(t ) and
|−〉|α〉(t ), but—in the strong-field limit—we expect little
deviation from this solution. Numerical calculations with re-
alistic parameters verify this assumption, at least in the sense
that state of the mode stays localized on phase space during
a few optical cycles. As the red and gray solid lines in Fig. 3
show, already for a lattice with N = 3, the populations of the
states at the edges of the grid (furthest away from the localized
part) are very low.

It is instructive to investigate the minimal case when we
estimate the state of the system by

|�〉(t ) = 1√
2

[c−(t )|−〉|α〉(t ) + c+(t )|+〉|α〉(t )], (32)
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where the time evolution of the states appearing in the right-
hand side is given by Eq. (14). Using this and the action of Ha

on the states |±〉, we obtain

ih̄ċ+ = c−〈α+(t )|α−(t )〉ei[δ−(t )−δ+(t )],

ih̄ċ− = c+〈α−(t )|α+(t )〉e−i[δ−(t )−δ+(t )]. (33)

Since |γ | 
 1, the inner product 〈α+(t )|α−(t )〉 is close
to unity. Additionally, the exponential terms on the right-
hand side turn out to have the time dependence of
exp(±αγ sin ωt ), which is typical for high harmonic genera-
tion. It is important to note that the crucial parameter here is
|αγ | = α�/ω. That is, the larger α is (the more photons the
exciting mode has) and the larger the ratio �/ω is, the more
harmonics will be generated. Although this result is based on
a strong approximation (the validity of which is shown by the
orange line in Fig. 3), it qualitatively holds also in the exact
case.

Figure 4 summarizes the results discussed so far. In the
top panel the Wigner function is shown at different time
instants for parameters that are ideal for the visualization of
the dynamics. The mean photon number is considerably larger
for the bottom panel, where the probability P+ of finding
the system in the state |+〉|α〉(t ) is shown. As we can see,
although the atomic Hamiltonian Ha induces fast transitions
between the states |+〉|α〉(t ) and |−〉|α〉(t ), at the beginning
of the time evolution the system remains in a superposition of
these two states to a very good approximation.

V. HHG SPECTRA

Besides the phase-space picture presented in the previous
section, it is also important to see HHG spectra, which are
probably the most distinctive signatures of the process. To this
end, we calculate the expectation value of the operator σx (that
is proportional to the dipole moment) in the time-dependent
solution of the problem as given by Eq. (19). Since σx|±〉 =
±|±〉, we have

〈σx〉(t ) =
∑

j,k

[c+
k (t )]∗c+

j (t )N++
jk (t )

−
∑

j,k

[c−
k (t )]∗c−

j (t )N−−
jk (t ). (34)

Once we obtained the coefficients c±
j and the overlap matrices

N±±
jk as functions of time, the expectation value above can

readily be calculated, and its power spectrum provides the
HHG spectrum that corresponds to the same initial conditions
as the solution |�〉(t ).

Figure 5 shows HHG spectra for different exciting in-
tensities as determined by the index of the initial coherent
state in |�〉(0) = |g〉|α0〉. The usual qualitative features of
high harmonic spectra are visible: (i) we have pronounced
peaks, (ii) a plateau region, and also (iii) a cutoff frequency,
which increases for stronger excitations. Unlike these general
properties of the spectra, the internal structure of the peaks
is specific to the case of the two-level system. In fact, the
description of the exciting field also affects these details:
comparing the model presented here and the case of classical,
time-dependent driving, we have seen that the general features
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-300000
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 300000
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P+ + P-
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Re α

Im α

FIG. 4. Wigner functions visualizing the time evolution induced
by the complete Hamiltonian. Top panel: the eight different localized
bumps correspond to W (α, t ) at t = 0, 1/8T, 2/8T, . . . , 7/8T (first
optical cycle). The parameters for this panel are |α0〉 = 10, γ = 0.5.

The bottom panel corresponds to the more realistic values of |α0〉 =
4 × 105, γ = 10−5 and shows the probability P+ that the system is
in the state |+〉|α〉(t ) along the corresponding phase-space trajectory
for the first optical cycle. The black curve on the top of this panel
shows P+ + P−, which, as we can see, is very close to unity.

(i)–(iii) are qualitatively the same (including the dependence
of the cutoff on the intensity). On the other hand, the detailed
structure of the HH peaks are different; in the classical case
we usually see twin peaks, which can be understood using
Floquet’s theorem [14], while these maxima in the spectra are
more structured in our case. Since our aim is to provide a clear,
instructive phase-space picture, the detailed analysis of this
difference is beyond the scope of the current paper.

VI. GENERALIZATION

So far we considered the case of a two-level system that
interacts with a quantized mode of electromagnetic radiation
that is initially in a coherent state with a high mean photon
number. In this section we discuss how more general material
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FIG. 5. HHG spectra for different initial states |�〉(0) = |g〉|α0〉,
where α0 is indicated in the subfigures, and γ = 10−5. The Fourier
transform of 〈σx〉(t ) were calculated using an interval of 20 optical
cycles.

systems and more complex fields can be described. This
helps in distinguishing between general and model-specific
properties of the physical picture that was delineated so far. At
some points, the treatment of this section will be qualitative
only, since, instead of describing specific detailed properties
of various physical systems, our intention is to focus on
general questions.

Let us first replace the two-level atom by an arbitrary
material system. This means considering

H ′ = H ′
a + Hf + H ′

a f = H ′
a + h̄ωa†a + h̄�D(a + a†),

(35)
where H ′

a and the coupling operator D (which, for the sake of
definiteness, will be called dipole moment operator) need not
be specified in more details. However, in order to simplify
the technical details, it is worth assuming that they act on
a finite-dimensional Hilbert space and, consequently, their
spectra are discrete. We will explicitly use only the eigenstates
and eigenvalues of the dipole moment operator: D|k〉 = dk|k〉,
where {dk}M

k=1 are real numbers. (The states |k〉 will be playing
the role of |+〉 and |−〉.) As we mentioned after Eq. (8),
all the discussion that led to Eq. (8) is valid also with the
replacement of σx by the more general operator D. That is,
once the eigenvalue problem of D is solved, H̃ ′ = Hf + H ′

a f
can be diagonalized, similar to the case of Sec. II. However,
in this case the atomic part of the diagonalized state cannot be
arbitrary, since generally D2 is not proportional to unity. That
is, the eigenstates H̃ ′ should also be one of the eigenstates of
D, e.g., |k〉, when the corresponding eigenenergy will contain
a term proportional to d2

k ; see the next paragraph.

Next, let us consider the interaction with a multimode field,
i.e.,

H ′′=H ′′
a + H ′′

f + H ′′
a f = H ′′

a +h̄
M∑

i=1

ωia
†
i ai + h̄�iD(ai + a†

i ),

(36)
where the coupling strength of the interaction can depend on
ωi, that is being taken into account by the index i of the Rabi
frequencies �i. As we can see, in this case the Hamiltonian
H̃ ′′ = H ′′ − H ′′

a factorizes

H̃ ′′ =
∑

i

H̃ ′′
i = h̄

∑
i

ωia
†
i ai + h̄�iD(ai + a†

i ), (37)

and [H̃ ′′
i , H̃ ′′

j ] = 0. This means that in the “strong-field ap-
proximation,” i.e., when the atomic Hamiltonian can be ne-
glected when compared to the sum of the free-field Hamilto-
nian and the interaction term, different modes of the quantized
fields are independent. Note that each operator H̃ ′′

i in the sum
above—apart from the index i—is the same as H̃ ′ that was
introduced earlier in this section. By using the multimode
displacement operator D̃({−�i/ωi}) = D̃(−�1/ω1) ⊗ · · · ⊗
D̃(−�M/ωM ) (where we retained explicit tensorial notation
for clarity), we can see that tensor products of displaced
number states

|k〉 ⊗ D̃(−�1/ω1)|n1〉 ⊗ · · · ⊗ D̃(−�M/ωM )|nM〉 (38)

are eigenstates of H̃ ′′ with the eigenvalues of
∑

i h̄ωi(ni −
d2

k �2
i /ω

2
i ). Additionally, the time evolution of a multimode

coherent state |k〉 ⊗ |{αi}〉 = |k〉 ⊗ |α1〉 ⊗ · · · ⊗ |αM〉 as gen-
erated by H̃ ′′ can also be calculated as a straightforward
generalization of Eq. (14).

That is, the general qualitative picture of the process
of high-order harmonic generation on phase space can be
described as follows: the dominant part of the complete
Hamiltonian (H, for the sake of simplicity without any prime)
is the one describing the free field and its interaction with
matter. The time evolution generated by these terms (strong-
field approximation) can be solved analytically. The Gaussian
Wigner functions that correspond to the initial coherent states
of the quantized modes fall apart and form as many Gaussian
peaks as the number of the eigenstates of the dipole moment
operator is needed to expand the initial state. At the end of
the optical cycle these separate Gaussians merge again, and
the process gets repeated periodically. The separation of these
different Gaussian peaks is determined by the strength of the
light-matter interaction.

The atomic Hamiltonian, Ha, is the weakest part of the
complete Hamiltonian H (e.g., its expectation value is much
less than that of H̃ = H − Ha). However, its presence is
necessary for the generation of the harmonics (in fact, any
radiation), since the dipole moment (expectation value) is
constant otherwise. Besides generating secondary radiation,
the fact that Ha does not commute with H̃ leads to transitions
between the states that correspond to different Gaussian parts
of the Wigner function that evolve independently for Ha = 0.

Moreover, the presence of Ha increases the size of the phase-
space regions on which the corresponding Wigner functions
are considerably different from zero for the various modes.
However, this broadening of the Wigner functions means a
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weak effect on the timescale of HHG; thus using finite parts
of the von Neumann lattices for each mode means an efficient
numerical approach also in the general cases.

VII. SUMMARY

The description of high-order harmonic generation on
quantum optical phase space was considered. For the sake of
simplicity, we discussed finite-dimensional systems and have
shown that in the strong-field limit (i.e., when the Hamiltonian
describing the material system can be omitted) the analytic so-
lution of the dynamics allows for clear phase-space interpre-
tation. The corresponding Wigner functions were determined
using the von Neumann lattice. The properties of the HHG
process allowed us to develop an efficient numerical method
that can solve the complete dynamics for arbitrarily large pho-
ton numbers. The roles of different terms in the Hamiltonian

were investigated systematically, and we saw that all of them
are needed for the appearance of high harmonics.
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