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Photon-matter quantum correlations in spontaneous Raman scattering
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We develop a Hamiltonian formalism to study energy and position (momentum) correlations between a single
Stokes photon and a single material excitation that are created as a pair in the spontaneous Raman scattering
process. Our approach allows for intuitive separation of the effects of spectral linewidth, chromatic dispersion,
and collection angle on these correlations, and we compare the predictions of the model to experiment. These
results have important implications for the use of Raman scattering in quantum protocols that rely on spectrally
unentangled photons and collective excitations.
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I. INTRODUCTION

Raman scattering is one of the most fundamental light-
matter interactions: an incident photon scatters inelastically
in a medium, transferring energy to, or gaining energy from, a
specific excited state. The lifetime of this excited state, which
is finite due to interaction with the environment, dictates the
Raman gain spectrum and affects the spatiotemporal structure
of the Raman-generated optical field [1–4] as well as its inten-
sity and fluctuations [1,5–8]. The equations of motion for the
optical field and medium excitation generated in the Raman
interaction have traditionally been solved in the Heisenberg
picture, where the temporal decay of the material excitation
is taken into account through a dissipation-fluctuation mech-
anism [1,2,8,9]. Using this formalism, an extensive body of
work has formed around exploration of the quantum proper-
ties of the spontaneously initiated optical field, including the
decomposition of the field into independent temporal coher-
ence modes [1,3] and decomposition of the excitation field
into corresponding orthonormal spatial modes [4,10]. Here we
investigate the quantum correlations (entanglement) between
modes of a single Stokes photon and its single material exci-
tation counterpart in the Schrödinger picture, focusing instead
on the spectral representation of these modes. Motivating this
work is the necessity of pure, uncorrelated photonic quantum
states for many quantum applications, which, in the case of
Raman scattering [11–13], occurs when no correlations exist
between the Stokes photon and medium excitation, apart from
their coexistence.

We begin by incorporating the environment degrees of
freedom into the system Hamiltonian and writing the Raman
interaction in terms of the eigenmodes of the medium, which
includes the environment. Our approach then provides an
intuitive understanding of photon-matter correlations arising
due to energy and momentum conservation in the same way
as those correlations arise in the photon-photon pairs created
in spontaneous parametric down-conversion (SPDC) [14] or
spontaneous four-wave mixing (SFWM) [15]. Our state for-
malism reveals photon-matter correlations that have a critical
effect on the quantum state of the photon and, consequently,

on its quantum-state purity and the photon statistics of the
Raman scattering.

We present one- and three-dimensional models of the
Raman interaction, corresponding, respectively, to flat-phase-
front (e.g., waveguided) and free-space propagation of pump
and Stokes pulses. We then present experimental data on the
degree of photon-matter correlation as a function of pump
bandwidth, as measured through second-order coherence of
the optical field. Our analysis predicts further correlations due
to collection geometry of the broadband Stokes photons, and
we confirm experimentally the generation of highly correlated
photon-excitation pairs produced when the photons are emit-
ted counterpropagating with the pump. Understanding these
correlations and the properties of the joint photon-excitation
state, especially in the low gain regime as studied here, is
key to controlling Raman emission and enabling new applica-
tions for quantum communication, computation, and sensing.
We anticipate this work to inform Raman scattering at the
quantum level in solid-state systems [16,17] as well as atomic
vapors [18,19], and thence on the implementation of quantum
protocols such as the Duan-Lukin-Cirac-Zoller protocol [11]
and Raman-based quantum memories [16,20–28].

II. ONE-DIMENSIONAL MODEL

The Raman interaction that we consider in this work is
shown in the three-level � system in Fig. 1(a). Given a
laser pump pulse traveling through a Raman-active medium
along the ẑ axis [Fig. 1(b)], the Hamiltonian of the system is
given by

Ĥ (t ) = ĤO + ĤM + V̂ (t ), (1)

where

ĤO =
∫

dωs h̄ωsâ
†(ωs)â(ωs) (2)

is the free Hamiltonian of the Stokes optical field gener-
ated in the Raman interaction, and â†(ωs) [â(ωs)] is the
creation [annihilation] operator for a photon of that field
with angular frequency ωs. We assume that the medium’s
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FIG. 1. (a) Relevant level structure of the Raman-active medium, where from ground state |a〉 a pump photon (of angular frequency ωp)
creates a single excitation (�) in the medium through far-detuned (�) intermediate state |e〉, leading to collective state |b〉 and an emitted
Stokes photon (ωs). (b) Schematic of one-dimensional propagation of Stokes photons, emitted forward or backward relative to the pump.
(c) Measured gain spectrum of our Raman medium (Al2O3), with a Lorentzian fit.

excited states form a bosonic field (Q field) of collective
excitations (CEs) [2] with associated creation and anni-
hilation operators Q̂†(z) and Q̂(z), respectively, that obey
the commutation relations [Q̂(z), Q̂(z′)] = [Q̂†(z), Q̂†(z′)] =
0 and [Q̂(z), Q̂†(z′)] = δ(z − z′). The Q field has a singular
frequency; this is the most common model for Raman scat-
tering [2,4–6,29,30] and arises from the discrete nature of
CEs in the absence of coupling (decay) to the environment.
In what follows, we consider the matter Hamiltonian ĤM that
describes the energy of the Q field, the environment, and the
coupling between the two, which we assume takes the form
[9,31]

ĤM = h̄�0

∫ L/2

−L/2
dz Q̂†(z)Q̂(z)

+
∫

d�

∫ L/2

−L/2
dz h̄�R̂†(�, z)R̂(�, z)

+
∫

d�

∫ L/2

−L/2
dz v(�)

[R̂†(�, z)Q̂(z) + R̂(�, z)Q̂†(z)], (3)

where �0 is the angular frequency of the Q field and the
environment is treated as a reservoir comprised of a spectral
continuum of localized harmonic oscillators with creation
(annihilation) operators R̂†(�, z) [R̂(�, z)] for an oscillator
with angular frequency � at point z, where v(�) is the
frequency-dependent coupling between the Q field and the
reservoir, which we take to be real for convenience, and is
responsible for the decay of the Q field and its finite lifetime.
The three-wave-mixing Raman interaction between the pump,
Stokes field, and the medium is given by

V̂ (t ) = γ

∫
dωs

∫ L/2

−L/2
dz Ep(z, t )â†(ωs)e−ik(ωs )zQ̂†(z)

+ H.c., (4)

where γ is a coupling constant dependent on the properties of
the Raman medium and the frequency of the Raman emission
[32], Ep(z, t ) is the electric-field amplitude of the strong pump
pulse at time t and point z along the medium, which we treat
classically, and k(ωs) is the wavevector of the Stokes photon.
In Eqs. (2)–(4), we consider one-dimensional propagation of
the optical fields, which is valid when the interaction medium

is a waveguide as well as in various bulk experimental geome-
tries with Fresnel number F = A/λL � 1, where A is the
cross-sectional area of a pencil-shaped beam of wavelength
λ incident on a Raman medium of length L [1,2,5,29]. In
Sec. III, we consider correlations within photon-CE pairs, in
both the forward- and backward-scattering one-dimensional
geometries shown in Fig. 1(b). In Sec. IV, we take into
account the spatial modes of the optical fields and verify the
limit on F under which this one-dimensional approximation
holds, in addition to considering off-axis emission and collec-
tion of the Stokes field.

We begin by examining the medium Hamiltonian in
Eq. (3); using the procedure in Ref. [33], one can write it in
terms of decoupled oscillators [31],

ĤM =
∫

d� h̄�

∫ L/2

−L/2
dz B̂†(�, z)B̂(�, z), (5)

where B̂(�, z) [B̂†(�, z)] is the annihilation [creation] opera-
tor associated with a CE (B field) at point z along the medium
with angular frequency �, and obeys boson commutation re-
lations. It is given by a linear combination of the Q and reser-
voir fields as B̂(�, z) = g(�)Q̂(z) + ∫

d�′ h(�,�′)R̂(�′, z),
where the general solutions for g(�) and h(�,�′) can be
found in Ref. [31]. For this work, it is only important to notice
that, inversely, we can express the Q-field operators in terms
of B-field operators as [31]

Q̂(z) =
∫

d� g∗(�)B̂(�, z), (6a)

Q̂†(z) =
∫

d� g(�)B̂†(�, z), (6b)

and that g(�) is a normalized function [
∫

d� |g(�)|2 = 1]. In
the case where the coupling in Eq. (3) is frequency indepen-
dent [i.e., v(�) = v0 where v0 is a constant], the Raman gain
is homogeneously broadened and

g(�) =
√

	/2π

(� − �0)2 + (	/2)2
(7)

takes the form of a Lorentzian lineshape [31], where 	 =
2π |v0|2 = 1/(cτ0) is the full width at half maximum band-
width of the Raman-gain spectral intensity in wavenumbers,
where c is the speed of light and τ0 is the 1/e CE lifetime. In
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the eigenbasis of ĤM [Eq. (5)], the interaction term in Eq. (4)
is written as

V̂ (t ) = γ

∫
d�dωs

∫ L/2

−L/2
dz Ep(z, t )â†(ωs)e−ik(ωs )z

× g(�)B̂†(�, z) + H.c., (8)

which couples the Stokes field to a spectral continuum of dis-
tinct oscillators (B field), with coupling amplitude γ g(�). In
effect, Eq. (8) mathematically treats homogeneous broadening
as inhomogeneous broadening with a Lorentzian lineshape;
such equivalence has been found empirically in the analysis
of the statistical properties of the optical field operators as
derived in the fluctuation-dissipation approach (that is, writing
the Heisenberg equations of motion with the Q-field opera-
tors) in Ref. [34]. We note, however, that unlike the case of
inhomogeneous broadening where the lineshape is dictated
by the (Gaussian) distribution of the density of states, here
the spectral distribution of the density of states is uniform,
while the coupling strength [|γ g(�)|2] is responsible for the
lineshape.

Transforming Eq. (8) into the interaction picture, after
the rotating wave approximation, we arrive at the interaction
Hamiltonian

ĤI (t ) = γ

∫
dωpdωsd�

∫ L/2

−L/2
dz [E (ωp)g(�)

× ei[k(ωp)−k(ωs )]ze−i�ωt â†(ωs)B̂†(�, z)] + H.c., (9)

where we have written the classical pump field in the spectral
domain as Ep(z, t ) = ∫

dωp E (ωp)ei[k(ωp)z−ωpt] + H.c., with
the spectral amplitude E (ωp) and wavenumber k(ωp). The
frequency mismatch of the three fields is �ω = ωp − ωs − �

and, for simplicity, we assume the pump and Stokes modes
have the same dispersion relation; it is straightforward to
expand our treatment when this is not the case.

III. PHOTON-CE PAIR STATE

We assume that prior to the pump pulse entering the
medium, the Stokes and CE fields are both in their respective
vacuum states, which we write in the combined Stokes-CE
system as |vac〉. In this work, we restrict our discussion to
the low-gain limit, assuming that the interaction is weak
and perturbative expansion of the resulting state is allowed.
Once the interaction ceases, the lowest-order nonvacuum state
of this system [14], |�〉 = N

∫ +∞
−∞ dt ĤI (t )|vac〉, describes a

joint quantum state of a single Stokes photon and collective
excitation, where N is a normalization factor. In the one-
dimensional case, the resulting photon-CE pair state is |�〉 =
N

∫
dωsd�

∫ L/2
−L/2 dz f1D(ωs,�, z)|ωs; �, z〉, where the joint

amplitude (JA) for the photon-CE pair is given by

f1D(ωs,�, z) = E (ωs + �)g(�)ei[k(ωs+�)−k(ωs )]z (10)

≈ E
(
ω0

p + ν + δ
)
g(�0 + δ)ei(�τ/L)νz

× eiβpδzei[k(ω0
p)−k(ω0

s )]z, (11)

and |ωs; �, z〉 = â†
s (ωs)B̂†(�, z)|vac〉 represents a photon-CE

pair state with Stokes photon angular frequency ωs and
CE with angular frequency � created at point z along the

interaction medium. Here we define the center frequency of
the pumping light ω0

p, which is set by experiment, and the
center frequency of the CE mode �0, which is determined by
the properties of the Raman medium and in turn defines the
center frequency of the Stokes light, ω0

s = ω0
p − �0, through

energy conservation. The variations about the center fre-
quencies, ν = ωs − ω0

s , δ = � − �0, and linear expansions,
k(ωs + �) − k(ω0

s + �0) ≈ βp(ν + δ) and k(ωs) − k(ω0
s ) ≈

βsν, where βp(s) = ∂k/∂ω|ω0
p(s)

is the inverse group velocity
of the pump (Stokes) pulse, lead to the approximate form in
Eq. (11), where �τ = (βp − βs)L is the group delay between
pump and Stokes pulses acquired during propagation in a
dispersive medium.

We have decomposed Eq. (11) into terms with differ-
ent physical roles: the E (ω0

p + ν + δ) term manifests energy
conservation via the pump spectral envelope, the lineshape
g(�0 + δ) puts constraints on the value of the CE energy,
ei(�τ/L)νz is responsible for correlations between the point at
which the CE is created and the arrival time of the Stokes
photon [4], and the eiβpδz term describes correlations due to
the fact that a CE created at one point in the medium has
evolved and decayed more than those created later. This latter
term raises correlations between the position and energy of
the CE and thus affects the CE internal state, but has no effect
on the state of the Stokes photon. The term ei[k(ω0

p)−k(ω0
s )]z

represents a global phase accumulation and does not possess
any correlations.

With the Fourier transform of the CE creation operator
b̂†(�, kCE) = (2π )−1

∫
dz B̂†(�, z)eikCEz, where kCE = k0

CE +
κ is the CE wavevector with variation κ about its center,
k0

CE = k(ω0
p) − k(ω0

s ), the k-space JA is given by

f̃1D(ωs,�, kCE) = E (ωs + �)g(�)

× sinc

{
L

2

[
k(ωs + �) − k(ωs) − kCE

]}
(12)

≈ E
(
ω0

p + ν + δ
)
g(�0 + δ)

× sinc

[
�τ

2
ν + L

2
(βpδ − κ )

]
. (13)

The joint amplitudes in Eqs. (10)–(13) capture the spectral
and momentum correlations between the spontaneous Stokes
photon and CE in one dimension, including those arising
from the CE linewidth and group-velocity dispersion in the
medium.

The quantum state of the Stokes photon created in this
interaction is given by the reduced density matrix

ρ̂s = TrCE|�〉〈�|

= N 2
∫

dωsdω′
sd�dz f1D(ωs,�, z) f ∗

1D(ω′
s,�, z)

× |ωs; �, z〉〈ω′
s; �, z|, (14)

where TrCE represents the partial trace over the CE degrees
of freedom, � and z. The quantum-state purity of the Stokes
photon, P = Trρ̂2

s , amounts to the degree to which the photon
and CE are in pure rather than mixed states, and is a critical
figure of merit in quantum protocols that rely on two-photon
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FIG. 2. Joint intensity (JI) of photon-CE pairs in the one-dimensional regime. (a) At fixed position, the constraints imposed by the pump
envelope and excitation linewidth with the resulting JI are plotted as a function of Stokes photon wavelength (λs) and collective excitation
(CE) shift (νCE) at varying pump envelope FWHM bandwidth, showing the effect of excitation linewidth. (b) At fixed CE frequency (�0), the
constraints imposed by the pump envelope and phase matching with the resulting JI are plotted as a function of Stokes photon wavelength
(λs) and CE wavelength (λCE), showing the effect of chromatic dispersion. FWHM is the pump spectral full width at half maximum, 	 is the
linewidth of the relevant excitation, �τ is the group delay between Stokes and pump pulses for a bulk Al2O3 Raman medium, and PE and PM

are the frequency (energy)- and momentum-state purities corresponding to each joint intensity, respectively.

interference [35]. In particular, the photon-CE pair state that
leads to unit purity of the Stokes photon is the factorable
state, where the JA can be written as independent functions
of the Stokes and CE degrees of freedom: f (ωs,�, z) =
fs(ωs) fCE(�, z). Conversely, when the photon and CE are
spectrally entangled, f (ωs,�, z) is not factorable, P < 1, and
the photon and CE are individually in mixed states.

In general, all three degrees of freedom of the photon-CE
pair are entangled. In order to characterize this entanglement,
we consider correlations between the photon frequency and
each degree of freedom of the CE in turn. These two forms of
entanglement arise mainly from two separate physical effects,
which we explore in the following sections. To enumerate
these correlations, unless otherwise stated we consider a
single-crystal, c-axis, bulk sapphire (Al2O3) Raman medium
of length L = 8 mm, with measured 746.6 cm−1 Raman shift
and Lorentzian lineshape with full width at half maximum
(FWHM) 	 = 11.0 cm−1 [see Fig. 1(c)] corresponding to
(21̄1̄0)Eg optical phonon creation in the medium [36,37]. We
consider pump pulses centered at 775 nm and approximate
chromatic dispersion in the bulk with the Sellmeier equation
of Ref. [38]. We stress, however, that the results of our model
can be applied to any Raman medium.

A. Effect of excitation linewidth

To isolate the effect of a finite CE linewidth on spectral
correlations between photon and excitation, which exist on
the local level of the CE (i.e., for each fixed location z = z0),

we write the components of the JA that capture these energy
correlations as

f E
1D(ωs,�) = E (ωs + �)g(�). (15)

Figure 2(a) shows the components of the photon-CE joint
intensities (JIs) | f E

1D(ωs,�)|2 for pump pulses around the in-
termediate regime FWHM ∼	, where FWHM is the spectral
intensity full width at half maximum of a Gaussian pump
envelope. We plot these JIs with respect to photon wavelength
λs = 2πc/ωs and CE shift νCE = �/(2πc), where c is the
speed of light. The results of Fig. 2(a) show an increase in
pair correlations with decreasing pump spectral width. This
increase in correlations between photon and CE corresponds
to JIs that are less factorable, and this is accompanied by
decreasing purity of the Stokes photon. Physically, this in-
dicates energy entanglement between photon and CE: in the
limit of a monochromatic pump, the linewidth of the CE
allows for a distribution of Stokes photons in frequency,
with each frequency entangled with an excitation through
energy conservation. For larger bandwidths or narrower CE
linewidths, this entanglement is diminished. As a figure of
merit, we also include in Fig. 2(a) the energy-state purity
PE = Trρ̂2

s,E (where ρ̂s,E is the reduced energy-state density
matrix of the Stokes photon, given by the trace of ρ̂s only
over CE frequency � at fixed z0) corresponding to each JI
and calculated photon-CE state. In the absence of further
momentum-state correlations, PE = P is the quantum-state
purity of the Stokes photon.
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B. Effect of chromatic dispersion

As derived in previous work in the time domain [4], chro-
matic dispersion leads to entanglement between the Stokes
frequency and the location or momentum of the CE in the
Raman medium. Figure 2(b) shows the JI components in k
space for pump-pulse durations varying about the group delay
between Stokes and pump pulses, which is �τ ≈ 32 fs for the
medium considered here. To isolate the correlations between
photon frequency and CE momentum (kCE), we write the JA
at fixed CE frequency,

f̃ M
1D(ωs, kCE) = E (ωs + �0)φ(ωs, kCE), (16)

where φ(ωs, kCE) = sinc{[k(ωs + �0) − k(ωs) − kCE]L/2} is
the phase-matching function. In Fig. 2(b), | f̃ M

1D(ωs, kCE)|2
is plotted against photon (λs) and CE wavelength (λCE =
2π/kCE), showing the effect of chromatic dispersion in the
absence of those correlations considered in Fig. 2(a). For a
given interaction length, the group delay between pump and
Stokes pulses leads to momentum correlations between the
photon and CE, due to the temporal walk-off between pulses
that serves to distinguish the spatial location of photon-CE
pair creation. For larger pump bandwidths (shorter coherence
lengths), the distinguishability of Stokes pulses increases, in-
creasing the photon-CE correlations. Conversely, for smaller
medium lengths, the accumulated group delay between Stokes
and pump pulses and the resulting correlations decrease. We
include in Fig. 2(b) the momentum-state purity (PM = Trρ̂2

s,M ,
where ρ̂s,M is given by the trace of ρ̂s only over CE position z
at fixed �0) corresponding to each pair state.

The competing effects of excitation linewidth and chro-
matic dispersion in general lead to a maximum Stokes photon
purity (minimum photon-CE entanglement) at finite pump
bandwidth. Within this one-dimensional model, the magni-
tude of this maximum purity along with the corresponding
pump settings are dependent only on three parameters: the dis-
persion relation in the medium, the linewidth of the excitation,
and the interaction length. In practice, while the dispersion
relation and linewidth of an excitation are not easily modified
parameters for a given Raman medium, the interaction length
is. In Fig. 3, then, we show the dependence of the spontaneous
Stokes photon purity on pump spectral bandwidth for varying
interaction length, along with the isolated effects of finite
excitation linewidth and chromatic dispersion, to show the
general behavior of the photon purity.

C. Backward collection

As spontaneous Stokes scattering is generally emitted over
solid-angle 4π , we extend our one-dimensional treatment to
backward emission of spontaneous Stokes photons [Fig. 1(b)].
We find the pair state joint amplitude,

f ←
1D (ωs,�, z) = E (ωs + �)g(�)ei[k(ωs+�)+k(ωs )]z. (17)

In general, this modification serves to increase photon-CE
correlations via temporal walk-off by an argument analogous
to that of chromatic dispersion in the previous section, though
they are, to be clear, independent effects: Even in the absence
of dispersion, the temporal delay between Stokes photons gen-
erated at the input versus the output face of the medium under

FIG. 3. Stokes photon purities calculated within a one-
dimensional model (see text) as a function of pumping spectral full
width at half maximum (FWHM) for varying interaction lengths of a
bulk Al2O3 Raman medium. Effects on the photon purity due to the
collective excitation (CE) linewidth (solid) and chromatic dispersion
(dotted) are isolated for a given length, showing their contribution to
each convolution (dash-dotted) representing the total photon purity.

consideration is �τ← = (βp + βs)L ≈ 26 ps. This timing in-
formation serves to distinguish photon-CE pairs and decrease
the state purity of the photon, and normally has a significantly
stronger effect on the photon purity than chromatic dispersion.
Here we note that whereas for Raman-active atomic vapors the
effect of excitation linewidth and chromatic dispersion may
be negligible, for the same media, collection in the backwards
direction [19,39] can strongly affect the correlations between
broadband photon and excitation.

IV. THREE-DIMENSIONAL MODEL:
FREE-SPACE PROPAGATION

In the case of bulk optics and free-space propagation of
the optical fields, we consider a TEM00 Gaussian pump beam
focused into the Raman medium that reaches its minimal
beam-waist radius wp at the center of the medium (see Fig. 4).
While the subsequently generated Stokes field is generally
emitted in all directions, here we consider the quantum state
of only the fraction of photons that are collected by a lens and
coupled into a single-mode fiber. In this three-dimensional

FIG. 4. Configuration assumed for collinear three-dimensional
calculations. A pump beam (green) is focused by a lens (L1) into
the Raman medium (S). Stokes photons are generated, collected by a
lens (L2), pass through a spectral filter (F) that removes the pump
light, and are coupled by a coupling lens (L3) to a single-mode
fiber (SMF), projecting the photons onto an approximately Gaussian
collection mode (red).
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case, we cannot neglect correlations in the transverse degrees
of freedom of the photon and CE [30,40–43]. To include
these correlations, we rewrite the pump, CE, and Stokes fields
with the additional cylindrically symmetric degree of freedom
ρ = (x, y): The Q-field operators take the form

Q̂†(ρ, z) =
∫

d�d2qCE g(�)e−iqCE ·ρB̂†(�, qCE, z), (18)

where the CE field with creation operator B̂†(�, qCE, z) now
also includes the CE transverse wavevector (qCE) as an addi-
tional degree of freedom. We assume that the spatial mode
supported by the single-mode fiber (into which the Stokes
photons are collected) can also be well approximated by a
TEM00 Gaussian mode such that the Stokes collection con-
figuration of Fig. 4 projects the optical field onto the Gaussian
state, |u f (ωs)〉 = Â†(ωs)|vac〉, with beam waist w f , which we
assume to also occur at the center of the Raman medium,
where

Â†(ωs) = (
4π/w2

f

) ∫
d2qs e−w2

f |qs|2/4â†
qs

(ωs) (19)

and â†
qs

(ωs) is the creation operator of a Stokes photon
with transverse wavevector qs and angular frequency ωs.
The resulting projected state is then given by |�〉proj

3D =
N3D

∫
dωsd�d2qCE

∫ L/2
−L/2 dz f3D(ωs,�, z, qCE)Â†

s (ωs)B̂†(�,

qCE, z)|vac〉 (for a more detailed calculation, see the
Appendix). Here, N3D is the appropriate normalization
factor and we find the three-dimensional JA can be expressed
in terms of the one-dimensional JA [Eq. (10)] as

f3D(ωs,�, z, qCE) = β(qCE, z) f1D(ωs,�, z), (20)

where

β(qCE, z) =
exp

{−i Cp(z)C∗
s (z)

2[Cp(z)−C∗
s (z)] |qCE|2}

Cp(z) − C∗
s (z)

, (21)

and Cp(z) = (z + izR,p)/k(ω0
p) and Cs(z) = (z + izR, f )/k(ω0

s )
for pump and fiber collection modes with Rayleigh ranges
zR,p = k(ω0

p)w2
p/2 and zR, f = k(ω0

f )w2
f /2, respectively. We

ignore the slow spectral dependence of β(qCE, z) in consid-
ering only central wavevectors k(ω0

s ) and k(ω0
p) = k(ω0

s +
�0). We define the Fresnel numbers of the pump and fiber
modes in terms of their respective Rayleigh ranges as Fp =
2zR,p/L and F f = 2zR, f /L, respectively. As expected, for
interaction lengths much smaller than the Rayleigh ranges,
i.e., Fp, F f � 1, the correction in Eq. (21) reduces to a
constant and the one-dimensional calculations hold. In the
three-dimensional case, the reduced density matrix of the
Stokes photon is then given by

ρ̂s = N 2
3D

∫
dωsdω′

sd�dz α(z) f1D(ωs,�, z) f ∗
1D(ω′

s,�, z)

× |ωs; �, z〉〈ω′
s; �, z|, (22)

where

α(z) =
∫

d2qCE |β(qCE, z)|2

= 8π3

w2
pw

2
f

{
z2 + z2

R, f[
w f k

(
ω0

s

)]2 + z2 + z2
R,p[

wpk
(
ω0

p

)]2

}−1

(23)

is a Lorentzian function along z that manifests an effective
apodization of the interaction length and therefore has the
effect of decreasing correlations between the Stokes photon
and the spatial (or momentum) degree of freedom of the CE
[in comparison to the one-dimensional (1D) case].

Off-axis collection of Stokes photons

We now generalize the above treatment to include off-axis
collection of Stokes photons at angle ϕ from the ẑ axis within
the free-space model. We assume that the dispersion relation is
independent of propagation angle, a condition that is satisfied
for isotropic media such as atomic vapors, or for uniaxial
crystalline media with pump and Stokes polarizations along
the ordinary axis. It is straightforward to include emission
modes with different dispersion relations when this condition
is not met. We further assume that the collection and pumping
modes share a focal point. Under these assumptions, the
photon-CE JA is given by Eq. (20) with a generalized form
of Eq. (21):

β(qCE, z, ϕ)

= exp

{
i
Cp(z)

2

[|qCE|2 − k
(
ω0

s

)2
sin2 ϕ−2k

(
ω0

s

)
qy

CE sin ϕ
]}

×
exp

(
i {Cp(z) cos ϕ[qy

CE−k(ω0
s ) sin ϕ]+z sin ϕ}2

2[C′∗
s (z)−Cp(z)(2 cos2 ϕ−1)]

)√
C′∗

s (z) − Cp(z)(2 cos2 ϕ − 1)

×
exp

{
i [Cp(z)qx

CE]2

2[C′∗
s (z)−Cp(z) cos2 ϕ]

}√
C′∗

s (z) − Cp(z) cos2 ϕ
, (24)

where C′
s(z) = (z cos ϕ + izR, f )/k(ω0

s ) and qx
CE (qy

CE) is the
transverse momentum component of the CE along the x
(y) axis. Similarly, the Stokes photon density matrix takes
the same form as Eq. (22) with the generalized apodization
function [Eq. (23)]

α(z, ϕ) = exp

{
− 2z2 sin2 ϕ

w2
f + [

� 2
f (z) + � 2

p (z) + w2
p

]
cos2 ϕ

}
× ({[

� 2
f (z) + � 2

p (z) + w2
p

]
cos2 ϕ + w2

f

}
× [

� 2
f (z) cos2 ϕ + � 2

p (z) + w2
p + w2

f

])−1/2
,

(25)

where � f (z) = w f z/zR, f and �p(z) = wpz/zR,p.

Equation (25) has a Lorentzian form in the copropagating
case (ϕ = 0) and approaches a Gaussian as ϕ approaches 90◦.
The FWHM of the apodization function—the effective length
from which photons are collected—decreases considerably
with increasing collection angle up to collection perpendicular
to the pump (ϕ = 90◦), after which it increases symmetrically
until the counterpropagating case (ϕ = 180◦), when again the
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FIG. 5. Stokes photon purity (a) as a function of collection angle
(ϕ) for varying pump bandwidth at Fresnel number F = 0.1, and
(b) for varying Fresnel number at fixed pump FWHM = 7 nm. All
calculations are performed within a three-dimensional model (see
text).

form is Lorentzian (see the Appendix). In general, for a fixed
medium length and collection angle, a more tightly focused
pump beam will generate a narrower apodization function.
The effect of this apodization function on the photon purity is
shown in Fig. 5(a) as a function of collection angle for varying
pump bandwidths, plotted for Fresnel number F = Fp =
F f = 0.1. We note that in this case, for tightly focused beams,
the photon purity is robust to small changes in collection
angle about ϕ = 0. In Fig. 5(b), however, we plot the photon
purity for varying Fresnel number at fixed pump bandwidth
FWHM = 7 nm and note that for loosely focused beams, the
purity becomes more sensitive to changes in collection angle.
For some media (including bulk Al2O3 presented here) and
Fresnel numbers, this interaction length apodization can lead
to a maximal photon state purity at nonzero collection angle,
as shown in the inset of Fig. 5(b).

V. EXPERIMENTAL RESULTS

In its simplest form, the interaction in Eq. (4) describes
a two-mode squeezing operation of the Stokes and Q fields,
which leads to thermal photon-number statistics of the Stokes
field created spontaneously through the Raman interaction
[44]. It was previously found that correlations due to chro-
matic dispersion in the Raman medium and correlations due to
the finite lifetime of the Q-field excitations both independently
lead to a multimode nature of this squeezing [1,4], affecting
the photon-number statistics which become more Poissonian
as the number of squeezed modes increases [44,45]. As we
have derived, collection geometry and pump focusing also
affect the entanglement of photon and CE and thence the
photon purity, multimode nature of the squeezing, and the
photon statistics.

Stokes photon second-order coherence g(2) measurements
are performed with the Hanbury Brown and Twiss inter-
ferometers shown in Figs. 6(a) and 6(b), for which g(2) =
N12R/N1N2, where N12 represents coincident detection of two
Stokes photons in both arms of the interferometer, R the
number of pump pulses over which the counts are taken, and
N1 (N2) the counts in arm 1 (2). In the multimode squeezing
process as described, the g(2) autocorrelation function takes
the form g(2) = 1 + 1/K , where K is the effective number of
squeezed modes and is related to the purity of the photons by
P = 1/K [44,45].

In our experiments, pump pulses of duration 100 fs from a
mode-locked Ti:sapphire laser at 80 MHz repetition rate pass
through a 4 f spectral pulse shaper before they are focused by
a lens of focal length 5 cm, generating spontaneous Stokes
photons from a room-temperature, single-crystal, bulk sap-
phire medium (Ted Pella, Inc.) of length 8 mm centered on the
beam waist. The Stokes photons are collected by another (the
same) 5 cm focal length lens in the co-(counter)propagating
configuration and are separated from the pump with long-
and short-pass interference filters (Semrock LP02-808RE,
TSP01-887, and LP02-830RU) that result in a 9 nm bandpass
window around the Stokes center wavelength, before being
coupled into a single-mode fiber. The beam waist of our
pumping light is 9.5 μm, and the waist of our collection
mode is 9 μm, corresponding to Fresnel numbers of the pump
and collection modes F (= Fp,F f ) = 0.1. The scattered
photons are registered by Excelitas SPCM-AQ4C avalanche
photodiodes and an IDQuantique time-to-digital converter.
Figure 6(c) shows the results of Stokes photon purity mea-
surements P = g(2) − 1 and our theoretical predictions for
two collection schemes: copropagating [with setup depicted in
Fig. 6(a)] and counterpropagating [Fig. 6(b)] Stokes and pump
pulses. We attribute the source of the discrepancy between
our theoretical predictions and experimental data to collection
of fluorescent photons in the measurement process, which
arise from defects in the crystal lattice and whose emission
mode overlaps with the Stokes mode. Taking into account
the effect of fluorescence on the measured photon purity will
require further experimental and theoretical investigation on
the fluorescence behavior.

Stokes photons collected counterpropagating from the
pump have almost zero purity, indicating strong correlations
and spatial entanglement with their corresponding excitations,
in agreement with the predictions of our model.

Figure 7 shows the results of our photon purity measure-
ments as a function of collection angle for 7 nm pump spectral
FWHM. Again, the deviation from theoretical prediction is
attributed to background fluorescent photons, which are also
emitted over solid angle 4π . Error bars in Fig. 7 and in
Fig. 6(c) are calculated assuming Poissonian photon-counting
statistics.

VI. CONCLUSIONS

We have developed a Hamiltonian formalism to de-
scribe the interaction between a pump laser pulse, Stokes
field, and collective excitations in Raman media. Using a
one-dimensional model, we have derived the general form
of joint photon-CE states created in the low-gain regime of
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FIG. 6. Experimental diagrams of (a) co- and (b) counterpropagating collection of Stokes photons. L1–L3: lenses; S: Raman sample;
F: spectral filter; B: fiber beam splitter; APD: avalanche photodiode; TDC: time-to-digital converter; D: dichroic. (c) Stokes photon purity
measurements and theory for the two collection geometries at varying pump bandwidth. The inset shows in more detail the theory and
experimental results for the counterpropagating geometry.

spontaneous Raman scattering. We have found that the CE
linewidth creates energy entanglement between the daughter
bosons of the pair and through a separate physical mech-
anism group delay between pump and Stokes pulses (due
to chromatic dispersion in the medium) creates momentum
(spatial) entanglement; together these two effects lead, in
general, to a maximal photon state purity at finite pumping
bandwidth. This one-dimensional model is expanded to in-
clude the collection of Stokes photons counterpropagating
with the pump, in which case we find timing information
is available that has a much more substantial effect than
does chromatic dispersion, and results in stronger photon-CE
spatial entanglement and degradation of the photon purity. We
have extended our theory to include photon-CE pair creation
in three dimensions with arbitrary Fresnel numbers of the
pump and collected Stokes beams, where we find the Stokes
photon quantum state differs from the one-dimensional case
only by an effective z-dependent correction that serves to
apodize the interaction length. Finally, we have derived the
correlations between photon and CE in the case of off-axis

FIG. 7. Stokes photon purity measurements for varying collec-
tion angle (ϕ) at pump FWHM = 7 nm, along with predictions of the
three-dimensional off-axis theory (see text) for pump and collection
mode Fresnel numbers F = 0.1 corresponding to the experimental
parameters.

collection of Stokes photons, revealing nontrivial dependence
of the photon purity on both collection angle and the focusing
of the pump beam. The theory we have developed in this
paper has important consequences for Raman-based quantum
protocols that rely on spontaneous scattering and two-photon
interference [11,35,46].

We compare the predictions of our model with experiment
and confirm the presence of non-negligible correlations be-
tween photon and CE due to a finite excitation linewidth, and
strong dependence of the scattered photon purity on collection
angle, where photons collected counterpropagating with the
pump are found in nearly completely mixed states.
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APPENDIX: PHOTON-EXCITATION PAIR GENERATION
IN THREE DIMENSIONS

In our three-dimensional treatment, we consider a focused
classical pump beam with Gaussian paraxial field given by
a collection of plane waves with transverse wavevector qp =
(qx

p, qy
p) as

Ep(ρ, z, t ) = 4π

w2
p

∫
dωpd2qp

[
E (ωp)e−w2

p|qp|2/4eiqp·ρ

× ei[k(ωp)−|qp|2/2k(ωp)]ze−iωpt
] + H.c., (A1)

for Gaussian beam waist wp.
While the Stokes field propagates in all directions, we

consider the physical case of collection of photons emitted
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only around a small range of angles about the axis ẑs, where
we use the following coordinate transformation relative to the
ẑ axis defined by the pump:

xs = x, (A2)

ys = y cos ϕ + z sin ϕ, (A3)

zs = z cos ϕ − y sin ϕ, (A4)

shown schematically in Fig. 8(a), where ρs = (xs, ys), and the
transverse photon wavevector in the off-axis coordinate sys-
tem is qs = (qx

s , qy
s ). In order to develop the three-dimensional

theory, instead of the Stokes photon creation operator con-
sidered in the text here, we consider the negative-frequency
component of the paraxial Stokes field operator, defined as

Ê (−)
s (ρs, zs) = −i

√
h̄ωs/2Vε0

∫
dωsd

2qs â†
qs

(ωs)e−iqs·ρs

× e−i[k(ωs )−|qs|2/2k(ωs )]zs , (A5)

for quantization volume V and vacuum permittivity ε0. Then,
using the transformation in Eqs. (A2)–(A4), we rewrite the
Stokes field operator in the original basis as Ê (−)

s (ρ, z).
We write the interaction term in Eq. (4), including the

transverse degrees of freedom, as

V̂3D(t ) = γ3D

∫
d2ρ

∫ L/2

−L/2
dz Ep(ρ, z, t )Ê (−)

s (ρ, z)

× Q̂†(ρ, z) + H.c., (A6)

with the coupling constant γ3D associated with the amplitude
of the interaction locally, and Q̂†(ρ, z) given by Eq. (18)
with transverse wavevector qCE = (qx

CE, qy
CE). We apply this

interaction perturbatively to the vacuum state to find the
photon-CE joint state in the paraxial approximation,

|�〉par = Npar

∫ L/2

−L/2
dz

∫
dωsd

2qsd�d2qCE fpar

× (ωs, qs,�, qCE, z)

×â†
qs

(ωs)B̂†(�, qCE, z)|vac〉, (A7)

where we have assumed that the transverse extent of the
Raman medium is much larger than the transverse extent
of the focused pump beam, thus recovering the transverse
momentum conserving relations qx

p = qx
s + qx

CE and qy
p =

qy
s cos ϕ − [k(ωs) − |qs|2/2k(ωs)] sin ϕ + qy

CE. Here, Npar is
a normalization factor . Keeping terms of O[|qs|2/k(ωs)2]
consistent with the paraxial approximation, the JA is given by

fpar(ωs, qs,�, qCE, z) = μ(ωs, qs,�, qCE, z) f1D(ωs,�, z),
(A8)

where

μ(ωs, qs,�, qCE, z) = exp

[
−w2

p

4

(
qx

s + qx
CE

)2

]
exp

[
−w2

p

4

(
qy

s cos ϕ + qy
CE

)2

]

× exp

{
−w2

p

4
[k(ωs)2 − |qs|2] sin2 ϕ

}
exp

[
w2

p

2
k(ωs)

(
qy

s cos ϕ + qy
CE

)
sin ϕ

]

× exp

[
−i

(
qx

s + qx
CE

)2

2k(ωs + �)
z

]
exp

[
−i

(
qy

s cos ϕ + qy
CE

)2

2k(ωs + �)
z

]
exp

{
−i

[k(ωs)2 − |qs|2] sin2 ϕ

2k(ωs + �)
z

}

× exp

[
i
k(ωs)

(
qy

s cos ϕ + qy
CE

)
sin ϕ

k(ωs + �)
z

]
exp

{
i

[ |qs|2 cos ϕ

2k(ωs)
− qy

s sin ϕ

]
z

}
exp {i[k(ωs) − k(ωs) cos ϕ]z},

(A9)

and f1D(ωs,�, z) is given by Eq. (10) for the one-dimensional
case. Considering the physical case of Stokes photons col-
lected by a lens and coupled to a single-mode fiber, assuming
that the projection of the spatial mode supported by the fiber
onto free space by the lens can be well approximated by
a Gaussian, this configuration projects the scattered Stokes
photons onto a state with creation operator Â†

s (ωs) given in
Eq. (19). Letting |u f (ωs)〉 = Â†

s (ωs)|vac〉, the projection of the

emitted state onto this concentric collection mode, given by
normalizing the state

∫
dωs |u f (ωs)〉〈u f (ωs)|�〉par, results in

a state with the joint amplitudes given by Eqs. (20) and (24).
In the three-dimensional case, this collection scheme leads

to the apodization function in the reduced density matrix of
the Stokes photon α(z, ϕ) given in Eq. (25). The behavior of
the apodization function FWHM for varying Fresnel number
is shown in Fig. 8(b) for the same bulk Al2O3 medium
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considered in the text. For a fixed medium length and collec-
tion angle, a more tightly focused pump beam will generate a

narrower apodization function, resulting in the increase of the
collected photon purity.
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