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Nondispersive wave packets in planar helium
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Two-electron wave packets found in driven planar helium follow a classical periodic orbit without spreading
and are localized in nonlinear resonance islands of the classical phase space. The general mechanism that
produces these nondispersive wave packets is the near-resonant coupling between highly correlated, asymmetric,
and doubly excited states of the atom with an external periodic electromagnetic field. We provide a full
characterization of these two-electron nondispersive wave packets found in the Floquet spectrum of driven
planar helium. This includes the characteristic energy spectrum, relatively long lifetimes, and the identification
of the resonance states of helium that are responsible for their formation. This is achieved with the help of an
efficient quantum treatment of driven planar helium which combines Floquet theory, complex rotation, and the
representation of the Hamiltonian in a set of four coupled harmonic oscillators.

DOI: 10.1103/PhysRevA.101.013414

I. INTRODUCTION

The correlated electron dynamics plays an important role
in nonequilibrium processes in atomic [1,2], molecular [3–5],
and solid-state physics [6–8]. Controlling the electronic dy-
namics in such systems is therefore essential for further
developments. This is, however, not an easy task since the
dynamical processes in the atomic and molecular world occur
very fast. Nevertheless, important advances in this direction
have been achieved: chemical reactions [9–11] and the ioniza-
tion process [12] of small molecules are controlled by pulses.
The motion of the two electrons in the helium atom has been
imaged and investigated with the help of attosecond pulses
[13,14] and Fano interferences have been built up [15,16].
There have also been advances in the engineering of atomic
Rydberg states [17].

Further progress requires a better understanding of the
electronic dynamics in few-electron atoms interacting with
electromagnetic fields. In this regard, the interaction of light
with the helium atom is of special interest, because, despite
being the simplest example for a multielectron atom, its
dynamics is nonintegrable even from the classical point of
view [18]. The helium atom is a realization of the three-body
problem with gravitational forces replaced by attractive and
repulsive Coulomb interactions. The classical dynamics of
helium is in general irregular and chaotic with only small
regions of regular motion in phase space [19], which implies
the destruction of good quantum numbers in the quantum
description [20] and a chaotic structure of the spectrum. The
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loss of integrability, due to the electron-electron interaction,
prevented the application of Bohr’s quantization postulates
to the helium atom in the early days of quantum mechanics
[18,21,22]. Only with the development of modern semiclassi-
cal methods in the second half of the 20th century [23,24] and
the subsequent semiclassical quantization of helium [25–27],
the relation between the nonintegrability of the quantum
system and the classical mixed regular-chaotic dynamics was
established [20]. Up to date, various theoretical investigations
have improved our understanding of two-electron atoms rang-
ing from semiclassical (see [20] for a review) to quantum
mechanics including relativistic corrections [28–32].

Since the seminal experiment by Madden and Codling
in 1963 [33], where doubly excited states of two-electron
atoms have been identified as highly correlated states that
cannot be in general described by a simple model based on
independent-particle quantum numbers, doubly and highly
excited states of helium have attracted the interest of theo-
reticians and experimentalists. Particularly, the energy regime
near the total fragmentation threshold represents a paradigm
for electronic correlations in atomic physics. In this regime—
which is indeed the semiclassical one in two-electron atoms—
the underlying classical chaotic dynamics should influence the
quantum spectrum of highly doubly excited states, manifested
as semiclassical scaling laws for the fluctuations of excitation
cross sections [34–36] or signatures of quantum chaos such as
Ericson fluctuations [37,38].

Strong electronic correlations are found in highly asym-
metrically doubly excited states of helium which are associ-
ated with the highly correlated classical frozen planet configu-
ration (FPC) [39,40]. Theoretical studies for one-dimensional
(1D) [41,42] and planar helium [43,44] suggest that un-
der near-resonantly periodic driving these states transform
into two-electron nondispersive wave packets (NDWPs) [45].
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However, until now, there has been no definitive evidence of
the existence of these objects.

In this paper, we investigate the dynamics of driven doubly
excited states of planar helium and the formation of nondis-
persive wave packets. While the restriction of the system
dynamics to a plane is certainly an important approximation
that significantly reduces the complexity compared to the
full three-dimensional (3D) treatment, it is known that a
planar model also provides a good qualitative and quanti-
tative description of the helium atom that improves as the
excitation energy approaches the double ionization threshold
[35,36,46,47].

Here, we present an efficient numerical treatment of driven
helium which allows us to characterize NDWPs in pla-
nar helium. In our approach to solve the time-dependent
Schrödinger equation (TDSE) describing the dynamics of a
two-electron atom interacting with a periodic electromagnetic
field, we use a spectral method combined with Floquet theory
[48,49]. The method is based on the solution of the TDSE
in a basis set composed of eigenstates of the unperturbed
Hamiltonian. The diagonalization of the planar atomic Hamil-
tonian is achieved within the ab initio method described in
[43,44] which gives an accurate description of the system
combining complex dilation and the representation of the
Hamiltonian in suitably chosen coordinates without adjustable
parameters. Apart from the significant reduction of the size of
the matrices involved in the computations, this method allows
us to identify the atomic states with the principal contribution
to the formation of the NDWP.

This paper is organized as follows. In Sec. II, we present
the theoretical description of the unperturbed and driven pla-
nar helium. Section III describes the numerical treatment for
the solution of the time-dependent Schrödinger equation in
the atomic basis. In Sec. IV we present a general description
of the classical frozen planet configuration and frozen planet
states (FPSs). Section V contains a brief description of the
spectral and localization properties of FPSs of planar helium.
In Sec. VI we review the classical dynamics of the driven
frozen planet configuration. In Sec. VII we present the char-
acterization of nondispersive wave packets in planar helium.
Finally, Sec. VIII contains the summary and conclusions.

II. THEORY

A. Hamiltonian

In the center-of-mass system within the infinite nucleus
mass approximation, the dynamics of a two-electron atom is
governed by the following Hamiltonian, given in atomic units
(a.u.) and neglecting relativistic effects:

H0 = p2
1

2
+ p2

2

2
− Z

r1
− Z

r2
+ γ

r12
, (1)

where the parameter γ characterizes the electron-electron
interaction and Z represent the nucleus charge (for helium
γ = 1 and Z = 2). The positions of the electrons with respect
to the nucleus are denoted by r1 and r2, and p1 and p2 are the
respective conjugate momenta.

Hamiltonian (1) is spin independent. Thus, the two-
electron wave function �(q1, q2) can be written as

� = �(r1, r2)χ (1, 2), where �(r1, r2) and χ (1, 2) corre-
spond to the spatial and spin-wave functions, respectively.
The Pauli exclusion principle states that the wave function
�(q1, q2) must be antisymmetric under the electron-electron
exchange. Hence, the total wave function is either the product
of a symmetric spatial wave function by an antisymmetric
spin-wave function, that is a singlet state, or the product
of an antisymmetric spatial wave function by a symmetric
spin-wave function which corresponds to a triplet state [50].

B. Complex rotation

The energy spectrum of the unperturbed helium atom is
organized in series converging to single ionization thresholds,
labeled by the principal quantum number N of the inner elec-
tron. The series of the single ionization thresholds converges
in turn to the double ionization threshold at zero energy.
Above the first ionization threshold (N > 1), doubly excited
states in helium are coupled to the continuum states of the
lower-lying series and correspond to resonance states with a
finite lifetime. To extract the energies and decay rates of the
resonance states presented in the helium spectra, we use the
method of complex coordinate rotation [51–55], which was
shown to be applicable for the Coulomb potential in Ref. [56].

The complex rotation by an angle θ is generated by the
nonunitary operator

R(θ ) = exp

(
−θ

r · p + p · r
2

)
, (2)

which yields the transformation of the coordinates and mo-
menta according to r → reiθ and p → pe−iθ , with r = (r1, r2)
and p = (p1, p2).

The rotated Hamiltonian H (θ ) = R(θ )HR(−θ ) is no
longer Hermitian. Nevertheless, its spectrum is related to the
spectrum of the original Hamiltonian [51,52,55].

(i) The bound states of H remain unchanged under the
transformation.

(ii) The continuum states are rotated downwards by an
angle 2θ with the real axis, around its individual threshold.

(iii) Once the rotation angle θ is sufficiently large, the
resonance states are exposed and are associated to com-
plex eigenvalues Ei,θ = Ei − i�i/2, where the real part cor-
responds to the energy Ei of the resonance, and the imaginary
part contains the decay rate �i, which is the inverse of the
resonance lifetime.

The eigenvectors |�i,θ 〉 of the rotated Hamiltonian H (θ )
are normalized for the scalar product

〈�i,θ |� j,θ 〉 = δi j (3)

and satisfy the closure relation∑
i

|�i,θ 〉〈�i,θ | = 1, (4)

where 〈�i,θ | is the transpose of 〈�i,θ |.

C. Planar treatment of the two-electron atom

In this simplified model, the dynamics of the atom is con-
fined to a plane. A comprehensive description of the represen-
tation we use for this model can be found in Refs. [43,44,57].
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1. Regularization of the two-dimensional helium Hamiltonian

The regularization of the Coulomb singularities in the
Hamiltonian (1) is achieved by transforming the Cartesian
coordinates of the electrons (x1, y1) and (x2, y2) to a set of
parabolic coordinates, obtained after three coordinate trans-
formations: a parabolic transformation

μi = √
ri + xi, νi = √

ri − xi, (5)

followed by a rotation by π/4,

μ± = μ1 ± μ2√
2

, ν± = ν1 ± ν2√
2

, (6)

and a second parabolic transformation,

x± = √
r± + μ±, y± = √

r± − μ±, (7)

where ri =
√

x2
i + y2

i (i = 1, 2) and r± =
√

μ2
± + ν2

± . After
these transformations, the expressions for the distances r1, r2,
and r12 become polynomial functions in the new coordinates

16r1 = [(x+ − y−)2 + (x− + y+)2]

× [(x+ + y−)2 + (x− − y+)2],

16r2 = [(x+ − x−)2 + (y+ + y−)2] (8)

× [(x+ + x−)2 + (y+ − y−)2],

4r12 = (x2
+ − y2

+)(x2
− + y2

−).

The time-independent Schrödinger equation H0|ψ〉 =
E |ψ〉 is regularized by multiplication with the Jacobian of the
transformation:

J = 16r1r2r12. (9)

In this way, we obtain the generalized eigenvalue problem
(GEVP): (− 1

2 T + V
)|ψ〉 = EJ|ψ〉, (10)

where

T = 16r1r2r12
(∇2

1 + ∇2
2

)
, (11)

V = −32r2r12 − 32r1r12 + 16r1r2. (12)

It can be shown that the operators involved in this GEVP are
polynomial functions of the parabolic coordinates and their
partial derivatives [43]. This fact allows us to introduce a set
of creation and annihilation operators defined by

ax± = x± + ipx±√
2

, a†
x± = x± − ipx±√

2
,

ay± = y± + ipy±√
2

, a†
y± = y± − ipy±√

2
.

Then, we define the circular operators in the planes (x+, y+)
and (x−, y−) as

a1 = ax+ − iay+√
2

, a2 = ax+ + iay+√
2

,

a3 = ax− − iay−√
2

, a4 = ax− + iay−√
2

, (13)

which satisfy the usual commutation relations

[ai, a j] = 0, [a†
i , a†

j ] = 0, [ai, a†
j ] = δi, j,

with i, j = 1, 2, 3, 4. In this way, we obtain a basis set of
tensorial products of harmonic oscillator Fock states:

|n1n2n3n4〉 = |n1〉 ⊗ |n2〉 ⊗ |n3〉 ⊗ |n4〉, (14)

where ni = a†
i ai. The appropriate symmetrization of this basis

will be discussed in Sec. II C 3.
The major advantage of this representation is that the

expressions for J , T , and V are polynomial functions of
finite degree of the circular operators ai and a†

i . In this way,
the matrix elements of the GEVP (10) can be calculated
analytically [43], and are expressed in normally ordered (cre-
ation operators on the left [58]) monomial terms of the form
M = a†α1

1 a†α2
2 a†α3

3 a†α4
4 aβ1

1 aβ2
2 aβ3

3 aβ4
4 , where αi and βi are integer

numbers. Since the number of monomials in the GEVP is
finite, the number of coupled basis states is also finite. This
determines a set of selection rules {�n1,�n2,�n3,�n4},
with �ni = ni − n′

i, if 〈n1n2n3n4|M|n′
1n′

2n′
3n′

4〉 	= 0. For the
GEVP (10) all the selection rules satisfy −4 � �ni � 4 and
�n1 − �n2 + �n3 − �n4 = 0.

2. Matrix representation

In addition to the complex rotation (see Sec. II B), we use
a dilation by a positive real number α, given by the unitary
operator [59]

Dα = exp

(
i log(α)

r · p + p · r
2

)
. (15)

Under complex rotation (2) and dilation (15), the Cartesian
coordinates and momenta transform as

r → αreiθ , p → 1

α
pe−iθ . (16)

After complex rotation and dilation, the matrix representation
of the generalized eigenvalue problem (10) reads

Hα
0 (θ )�θ = EθJ�θ , (17)

where

Hα
0 (θ ) = − 1

2α2
Te−2iθ + 1

α
Ve−iθ , (18)

with T, V, and J the matrix representations of (11), (12), and
(9), respectively, and �θ is the vector representation of the
wave function.

3. Construction of the basis

The planar helium atom is invariant under rotations around
an axis perpendicular to the plane, under the exchange sym-
metry P12 and under the parity �. The system is also invariant
under the reflections �x (x1, y1, x2, y2) → (x1,−y1, x2,−y2)
and �y (x1, y1, x2, y2) → (−x1, y1,−x2, y2), which are re-
lated to the total parity by � = �x�y = �y�x. These sym-
metries commute with L2

z and anticommute with Lz. In this
paper the eigenstates of the planar helium atom are labeled
by the absolute value |l| of the angular momentum Lz, the
exchange symmetry P12, and the symmetry �x = ±1.

The symmetrization of the basis (14) with respect to P12

and Lz is given by [43,57]

|n1n2n3n4〉+ = |n1n2n3n4〉 + |n3n4n1n2〉. (19)
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Additionally, the basis can be adapted to the symmetry �x by
the definition [43,44]

|n1n2n3n4〉+εx = |n1n2n3n4〉+ + εx|n2n1n4n3〉+, (20)

where εx = ±1. With this, the basis decomposes into the
subspaces of even (εx = 1) or odd (εx = −1) states with
respect to the symmetry �x, and of singlet and triplet states
according to

singlet states: n1 − n2 ≡ n3 − n4 ≡ 0 (mod 4);

triplet states: n1 − n2 ≡ n3 − n4 ≡ 2 (mod 4).

The numerical implementation requires the truncation of the
infinite symmetrized basis, which is made according to

n1 + n2 + n3 + n4 � nbase, (21)

with nbase a positive integer. This value determines the dimen-
sions of the matrices Hα

0 (θ ) and J in Eq. (17) which, due to the
selection rules in (n1, n2, n3, n4), correspond to sparse banded
matrices of bandwidth nlarg and size ntot.

D. Helium atom under periodic driving

Now we consider the helium atom in presence of an
external electromagnetic field. In the dipole approximation,
with length gauge, and neglecting relativistic effects, the
Hamiltonian for the driven atom reads

H = H0 + F (x1 + x2) cos(ωt ). (22)

Here, H0 is the unperturbed Hamiltonian (1) and the field is
linearly polarized along the x direction and periodic in time
with amplitude F and frequency ω.

Floquet theory

Since the Hamiltonian (22) is periodic in time, with period
T = 2π/ω, the Floquet theorem [48,49] guarantees that the
solutions of the time-dependent Schrödinger equation

i
∂

∂t
|ψ (t )〉 = H |ψ (t )〉 (23)

can be expressed as a superposition of time-periodic wave
functions

|ψ (t )〉 =
∑

i

cie
−iεit

∣∣φεi (t )
〉
,

∣∣φεi (t + T )
〉 = ∣∣φεi (t )

〉
,

where εi and |φεi (t )〉 are the eigenvalues and eigenstates of
the Floquet Hamiltonian HF = H − i ∂

∂t , called quasienergies
and Floquet states, respectively.

The Floquet states are periodic in time; therefore, they can
be expanded in Fourier series:

∣∣φεi (t )
〉 =

∞∑
k=−∞

e−ikωt
∣∣φk

εi

〉
. (24)

In this way, the eigenvalue problem HF |φεi (t )〉 = εi|φεi (t )〉
reduces to

(H0 − kω)
∣∣φk

εi

〉 + F
(∣∣φk+1

εi

〉 + ∣∣φk−1
εi

〉) = εi

∣∣φk
εi

〉
, (25)

where

F = F

2
(x1 + x2). (26)

Unperturbed
Hamiltonian

Field
interaction

Unperturbed
Hamiltonian

Field
interaction

FIG. 1. Schematic block structure of the Hamiltonian matrices A
(left) of the eigenvalue problem (27) and Ã (right) of the eigenvalue
problem (31).

With the Floquet method, the time dependence has been elim-
inated, and we have a new quantum number k. In the limit of a
large number of photons, there is a one-to-one correspondence
between the quasienergy spectrum of the Floquet Hamiltonian
and the energy spectrum of an atom dressed by a quantized
field [49,60]. The number of photons exchanged between the
atom and the field is then given by the Floquet quantum
number k.

III. NUMERICAL TREATMENT

In Sec. II D, we show that, using Floquet theory, the TDSE
(23) which describes the helium atom under periodic driving
can be written as the eigenvalue problem (25), where the time
dependence was eliminated and a new quantum number k was
introduced. The matrix representation of Eq. (25) is given by

A�i = εi�i, A = H0 − kω1 + F, (27)

with �i the column vector representing |φk
i 〉 and F the matrix

representation of (26).
The general form of matrix A is depicted in Fig. 1 (left).

The matrix H0 is symmetric and has a block-diagonal struc-
ture. On the other hand, the matrix F is symmetric in the
position gauge but it is antisymmetric in the velocity gauge,
with a block structure where only elements for which �L =
±1 and �k = ±1 are coupled.

The numerical implementation requires a truncation in the
number of Floquet blocks and angular momenta included in
the computation according to

kmin � k � kmax, L = 0, . . . , Lmax. (28)

In previous investigations [44], Eq. (27) has been solved
directly in the harmonic oscillator basis (20). In that basis,
the block matrix H0 has only a few terms different from zero
due to the selection rules in (n1, n2, n3, n4). However, even
for a small number of Floquet blocks and a low value of Lmax,
the computations are time and memory consuming due to the
large size of the matrix A [44,61]. As a consequence, it was
not possible to provide a full picture of the NDWPs or their
decaying properties. For instance, for nbase = 200, kmin = −2,
kmax = 4, and Lmax = 3 the matrix size is ntot = 521 795,
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while the RAM necessary to store the matrices is of the order
of 430 GB.

Time-dependent Schrödinger equation in the atomic basis

Let us consider the atomic states |ϕL
i 〉 which satisfy the

time-independent Schrödinger equation

H0

∣∣ϕL
i

〉 = εL
i

∣∣ϕL
i

〉
, (29)

where H0 is the unperturbed Hamiltonian (1) and L is the total
angular momentum. The solution to this equation is achieved
with the approach described in Sec. II C.

Once we have obtained the states |ϕL
i 〉, we can define the

atomic basis adapted to solve the eigenvalue problem (25) by{∣∣ϕL,k
i

〉}
,

∣∣ϕL,k
i

〉 = |k〉 ⊗ ∣∣ϕL
i

〉
, (30)

where the identification of the Floquet quantum number k with
the number of photons exchanged between the atom and the
field discussed in Sec. II D allows us to write the above tensor
product.

In the basis (30), the eigenvalue problem (27) writes

Ã�̃i = εi�̃i, Ã = h0 − kω1 + F̃, (31)

where �̃i is the solution vector in the atomic basis, h0 is the
diagonal matrix containing the eigenvalues of H0, and the
matrix F̃—which has the same structure as F—contains
the dipole matrix elements 〈ϕL

n |(x1 + x2)|ϕL+�L
m 〉, �L = ±1.

The general form of the matrix Ã is shown in Fig. 1 (right).
The diagonalization of both the unperturbed system (29)

and the Floquet eigenvalue problem (31) is performed using
an efficient implementation of the Lanczos algorithm [62,63].

The principal features of this method, as we will see
in Sec. VII, are the tremendous reduction in the size of
the matrices (with all the benefits that this entails from the
computational point of view) and the possibility to identify
the atomic states involved in the formation of NDWPs, which
allows us to reduce the system to its very basic ingredients.

IV. UNPERTURBED FROZEN PLANET STATES

A. Classical frozen planet configuration

The classical FPC is a collinear and asymmetric configu-
ration where both electrons are located on the same side of
the nucleus. In this highly asymmetric configuration, which is
dynamically stable [27,39,64], the inner electron precesses on
highly eccentric ellipses and the outer electron remains nearly
“frozen” around some equilibrium distance.

The phase space of the frozen planet configuration pre-
sented in Fig. 2 is visualized within a Poincaré surface of a
section obtained by plotting the position x1 and the momen-
tum p1 of the outer electron every time the inner electron
reaches the nucleus. The numerical computation of the classi-
cal dynamics is achieved by the previous regularization of the
equations of motion by Kustaanheimo-Stiefel transformations
[65,66].

Within the formalism of adiabatic invariants [67], the fast
Kepler oscillations of the inner electron define an effective
attractive potential which describes the dynamics of the outer
electron. From the shape of this potential, we can extract the
intrinsic frequency and amplitude scales which determine the

4 620

0.0

-0.4

0.4

FIG. 2. Phase space of the outer electron in the collinear frozen
planet configuration.

effect of an external driving field on the configuration [42,68].
The position xmin of the minimum of the effective potential,
the minimum energy Emin, the intrinsic frequency scale ωI ,
and the intrinsic field strength FI for the FPC, in atomic units,
are

xmin = 2.6S2, ωI = 0.3S−3,

Emin = −2.22S−2, FI = 0.03S−4, (32)

where S = 1
2π

∮
p2dx2 is the action integral over one cycle of

the Kepler oscillation of the inner electron, with x2 and p2

its position and momentum, respectively. The natural scale
FI for the field strength is given by the maximum slope of
the effective potential and defines the minimum static field
necessary to ionize the configuration. The frequency scale ωI

is given by the curvature of the potential at its minimum. This
is the frequency of small oscillations around the equilibrium
position.

In a quantum description, the action S is replaced by the
effective quantum number of the inner electron N , and the
scaled quantities (32) take the form

xmin = 2.6(N − δ)2, (33)

ωI = 0.3(N − δ)−3, (34)

EN = −2.22(N − δ)−2, (35)

FI = 0.03(N − δ)−4, (36)

where δ = 0.5 [57] and δ = 0 for two-dimensional (2D) and
3D helium, respectively.

The existence of FPSs (which are the quantum counterparts
of the FPCs) have been demonstrate theoretically on 1D [42],
2D [44,46], and 3D [40] helium for N � 3. However, these
states have so far not been unambiguously identified in ex-
periments, though sequential multiphoton excitation schemes
[69–71] have successfully been used for the creation of
planetary states [25] where highly excited electrons move in
different regions of space(〈r2〉 < 〈r1〉).

B. Identification of frozen planet states

Frozen planet states are localized along a collinear configu-
ration, thus for these states the expectation value of the cosine
of the angle θ12 between the two electrons has to be close to
unity (〈cos θ12〉 � 1). In addition, FPSs have long lifetimes
compared to other resonances in the same energy regime.
In this way, we can use the decay rates and the expectation
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value of cos θ12 to identify quantum states along classical
frozen planet trajectories in helium spectra. However, these
two quantities do not fully characterize the FPS, and their
unambiguous identification also requires the study of the lo-
calization properties of the electronic density in configuration
space and phase space.

Due to the high dimensionality of the configuration and
phase spaces, the visualization of the wave function requires
the use of projections of the probability density. The visualiza-
tion in configuration space is achieved using conditional prob-
ability distributions for θ12 = 0 or one-electron probability
densities. In the frame of complex rotation the full probability
density for an isolated resonance of complex energy Ej takes
the form [44,72]

|ψ (r )|2 � 1

π |Im Ej |Re 〈r |R(−θ )|� j,θ 〉2, (37)

where r = (r1, r2).
The electronic density of a FPS of energy Ej can also be

projected into the phase space with the help given by the
Husimi function [42,44]:

WφE (q, p) � 1

π |Im Ej,θ |Re
∫

dr φq,p(r )〈r |R(−θ )|� j,θ 〉

×
∫

dr ′ φ∗
q,p(r ′)〈r ′|R(−θ )|� j,θ 〉, (38)

with φq,p the modified coherent state

φq,p(r) = exp
(− 1

2ωs(x1 − q)2 − ix1 p
)

× δ
(
x2 − x0

2

)
δ(y1)δ(y2), (39)

centered at the point (p, q) in the phase space. Here, x0
2 � 0

and ωs � ωI = 0.3(N − 1/2)−3, i.e., the intrinsic frequency
of the FPC.

Finally, the expectation value of cos θ12 for a resonance
state |� j,θ 〉 is calculated with the help of the expression [44]

〈cos θ12〉 � 1

π |Im Ej,θ |Re〈� j,θ | cos θ12|� j,θ 〉. (40)

V. FROZEN PLANET STATES OF 2D HELIUM

Our principal interest is to study frozen planet states of
helium under near-resonant driving. In this direction, the first
step is to identify the FPS in the spectrum of the unperturbed
atom. Frozen planet states are organized in series converging
to single ionization thresholds IN and will here be denoted by
FN

nF
, where N corresponds to the principal quantum number of

the inner electron and nF indicates the position of the FPS in
the series.

We diagonalize the unperturbed Hamiltonian H0 in the
energy region below the N = 3, . . . , 7 ionization thresholds
for angular momentum L = 0 and 1. In the obtained energy
spectrum, we identify the lowest FPS of the series converging
to each ionization threshold. In Table I we present the energies
of the ground (nF = 1) FPS compared with the semiclassical
values obtained by Eq. (35). As N increases, quantum results
are closer to the semiclassical energies. This is not surprising
since the semiclassical regime of the Coulomb potential is
located at energies close to the double ionization threshold

TABLE I. Energies of the ground 1S and 3S frozen planet states
for N = 3, . . . , 7 in planar helium. The semiclassical values EN are
obtained from Eq. (35). Notice that the semiclassical energy (35)
does not account for the zero-point energy of the effective potential.
This can be done with the help of the EKB quantization [39]. This,
however, does not improve the results presented in this table.

N −EN (a.u.) −E (1S) (a.u.) −E (3S) (a.u.)

3 0.355 20 0.354 907 546 0.352 128 587
4 0.181 22 0.180 560 506 0.180 360 430
5 0.109 63 0.109 297 551 0.109 260 500
6 0.073 39 0.073 207 046 0.073 203 013
7 0.052 54 0.052 445 661 0.052 443 726

[73,74]. In addition, the singlet-triplet energy splitting due
to particle exchange effects which are not considered in the
semiclassical prediction decreases exponentially with N [46].

We calculate the energies, decay rates, and 〈cos θ12〉 for the
first four singlet (Table II) and triplet (Table III) 2D frozen
planet states for L = 0, 1 and N = 3, . . . , 7. For N � 5 the
L = 0 FPSs possess small decay rates and largest value of
〈cos θ12〉 compared with the L = 1 FPS. We observe also
that 〈cos θ12〉 increases with N and nF, consistent with the
semiclassical character of the highly doubly excited states.

In the left panels of Fig. 3 we present the conditional
(θ12 = 0) probability density [77] of the lowest 1S FPS below
the N = 4 single ionization threshold. The inner electron
labeled by the index 2 is close to the nucleus while the outer
electron labeled by the index 1 is far from the nucleus. For
the ground FPS, the maximum of the probability density
is localized near the equilibrium position xmin of the outer
electron in the classical configuration given by Eq. (33). In
the case of the excited FPS, the maximum of the probability
density along the inner electron axis remains at the same
position whereas the maximum along the outer electron axis
increases with nF.

The correspondence of these states with the classical
frozen planet configuration is more evident from the plots on
the right side of Fig. 3. Each of these plots is composed of two
parts. The left part corresponds to the inner electron density
for a fixed position of the outer electron, while the right part
shows the outer electron density for a fixed position of the in-
ner electron. The value for the position of the fixed electron is
given by the maximum of the conditional probability density
for the respective electron.

Figure 4 displays the Husimi distributions of the first four
1S FPSs converging to the sixth series for planar helium.
Comparing these plots with the phase space of classical
configuration in Fig. 2, we observe that the maximum of
the probability density of the ground state is localized at
the equilibrium position of the outer electron in the classical
FPC given by Eq. (33). On the other hand, excited FPSs
are localized along periodic orbits with higher energy of the
classical configuration.

VI. DRIVEN FROZEN PLANET CONFIGURATION

In the presence of an external time-periodic electromag-
netic field, the dynamics of the collinear frozen planet con-
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TABLE II. Energies, decay rates, and 〈cos θ12〉 for the four lowest
1S and 1P frozen planet states for N = 3, . . . , 7 in planar helium.

N nF −E (a.u.) �/2 (a.u.) 〈cos θ12〉
1S states

3 1 0.354 907 546 0.000 003 373 0.672
2 0.342 496 485 0.000 0004 76 0.676
3 0.335 495 095 0.000 000 073 0.680
4 0.331 264 862 0.000 000 071 0.681

4 1 0.180 560 506 0.000 000 877 0.788
2 0.175 705 103 0.000 001 483 0.785
3 0.172 615 385 0.000 001 593 0.782
4 0.170 535 543 0.000 001 452 0.781

5 1 0.109 297 551 0.000 003 748 0.772
2 0.106 832 792 0.000 000 062 0.853
3 0.105 139 500 0.000 000 179 0.862
4 0.103 925 428 0.000 000 337 0.864

6 1 0.073 207 046 0.000 010 180 0.950
2 0.071 801 931 0.000 006 145 0.902
3 0.070 770 672 0.000 002 634 0.884
4 0.069 994 857 0.000 001 482 0.882

7 1 0.052 445 661 0.000 001 443 0.888
2 0.051 561 367 0.000 002 240 0.894
3 0.050 887 178 0.000 001 949 0.895
4 0.050 361 468 0.000 001 562 0.898

1P states
3 1 0.348 950 783 0.000 000 088 0.616

2 0.338 858 835 0.000 000 055 0.608
3 0.333 238 049 0.000 000 035 0.599
4 0.329 797 285 0.000 000 024 0.591

4 1 0.179 248 594 0.000 001 534 0.693
2 0.174 807 889 0.000 001 010 0.691
3 0.171 980 605 0.000 000 669 0.690
4 0.170 073 973 0.000 000 465 0.688

5 1 0.108 773 791 0.000 005 206 0.680
2 0.106 479 587 0.000 002 816 0.716
3 0.104 884 000 0.000 002 000 0.732
4 0.103 734 973 0.000 001 206 0.741

6 1 0.073 044 134 0.000 002 573 0.818
2 0.071 713 237 0.000 007 305 0.762
3 0.070 726 659 0.000 009 997 0.722
4 0.069 972 887 0.000 010 269 0.703

7 1 0.052 351 581 0.000 000 361
2 0.051 498 957 0.000 001 302 0.867
3 0.050 846 645 0.000 003 033 0.848
4 0.050 336 417 0.000 004 942 0.823

figuration takes place in a five-dimensional phase space
described by the positions and momenta of the electrons, and
by the phase ωt of the driving field.

For near-resonant driving ω ≈ ωI = 0.3(N − 0.5)−3 of
amplitude F < FI = 0.03(N − 0.5)−4, which do not affect in
a sensitive way the frozen planet dynamics, the time scale
separation between the fast Kepler oscillations of the inner
electron and the slow motion of the outer electron makes
it possible to map the phase-space structure onto a two-
dimensional surface by a two-step Poincaré section method

TABLE III. Energies, decay rates, and 〈cos θ12〉 for the four
lowest 3S and 3P frozen planet states for N = 3, . . . , 7 in planar
helium. In the case of N = 4 only two 3S FPSs have been identified.

N nF −E (a.u.) �/2 (a.u.) 〈cos θ12〉
3S states

3 1 0.352 128 587 0.000 001 529 0.427
2 0.340 903 255 0.000 001 835 0.468
3 0.334 395 783 0.000 000 992 0.531
4 0.330 517 901 0.000 000 601 0.563

4 1 0.180 360 430 0.000 000 418 0.760
2 0.175 457 936 0.000 001 558 0.613

5 1 0.109 260 500 0.000 000 021 0.839
2 0.106 794 314 0.000 000 037 0.838
3 0.105 099 702 0.000 000 046 0.835
4 0.103 887 667 0.000 000 049 0.832

6 1 0.073 203 013 0.000 000 006 0.869
2 0.071 788 666 0.000 000 007 0.871
3 0.070 756 000 0.000 000 007 0.872
4 0.069 980 757 0.000 000 007 0.872

7 1 0.052 443 726 0.000 000 130 0.888
2 0.051 557 442 0.000 000 088 0.891
3 0.050 882 036 0.000 000 065 0.893
4 0.050 355 907 0.000 000 049 0.895

3P states
3 1 0.349 389 074 0.000 000 130 0.690

2 0.339 211 003 0.000 000 135 0.726
3 0.333 485 926 0.000 000 101 0.745
4 0.329 971 022 0.000 000 072 0.755

4 1 0.179 424 139 0.000 008 708 0.775
2 0.174 965 590 0.000 001 044 0.801
3 0.172 105 472 0.000 000 312 0.818
4 0.170 170 487 0.000 000 143 0.829

5 1 0.108 873 521 0.000 006 070 0.776
2 0.106 618 280 0.000 007 045 0.585
3 0.104 979 719 0.000 003 584 0.777
4 0.103 806 525 0.000 001 699 0.821

6 1 0.073 024 843 0.000 003 008 0.836
2 0.071 671 979 0.000 006 616 0.833
3 0.070 675 246 0.000 009 262 0.780

7 1 0.052 349 313 0.000 001 742 0.657
2 0.051 493 345 0.000 003 555 0.881
3 0.050 837 398 0.000 004 744 0.892
4 0.050 324 264 0.000 004 666 0.887

[41,64]. The first Poincaré section is obtained by plotting the
position x1 and momentum p1 of the outer electron each time
the inner electron hits the nucleus at x2 = 0. The resulting
points, which describe the slow outer electron’s oscillation,
are connected by cubic interpolation to construct a continuous
trajectory, used to perform a second Poincaré section by fixing
the phase of the driving field ωt = φ0 (mod 2π ).

In Fig. 5 is depicted the two-step Poincaré surface of
a section obtained for fixed field frequency ω = 0.2(N −
0.5)−3 a.u. and different field amplitudes. In the left plot, the
field amplitude is F = 0. For field amplitude F = 0.001(N −
0.5)−4 a.u. (middle) the phase space becomes mixed with
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FIG. 3. Left: Conditional probability density (θ12 = 0) of the
lowest 1S frozen planet states of the N = 4 series in planar helium.
For the ground FPS, the maximum of the probability density is
localized near the equilibrium position xmin of the outer electron
in the classical configuration [Eq. (33)]. For the excited FPS, the
maximum of the probability density along the inner electron axis
r2 remains at the same position while the maximum along the outer
electron axis r1 increases with nF. Right: Projections in configuration
space for the electronic density of the 1S, N = 4 frozen planet states.
In each plot, the left part corresponds to the inner electron density for
a fixed position of the outer electron, while the right part shows the
outer electron density for a fixed position of the inner electron. The
value for the position of the fixed electron is given by the maximum
of the corresponding conditional probability density displayed in the
left panels.

regular and chaotic regions. At the position x1 = 4.8(N −
0.5)2 a.u., we can identify a substructure which corresponds to
the 1:1 resonance. At larger field amplitude, F = 0.005(N −
0.5)−4 a.u. (right), the induced resonance separates from the
rest of the regular domain and the phase space exhibits two
regular islands: the intrinsic island and the resonance island,
which are embedded into the chaotic sea and are localized at
the positions x1 = 2.5(N − 0.5)2 a.u. and 4.9(N − 0.5)2 a.u.,
respectively.

Figure 6 shows the classical phase-space structure for field
amplitude F = 0.005(N − 0.5)−4 a.u. and frequency ω =
0.2(N − 0.5)−3 a.u., for three different field phases ωt . The
intrinsic island remains basically unaffected by the field while
the resonance island oscillates around the intrinsic island with
the same field frequency.

VII. NONDISPERSIVE WAVE PACKETS IN 2D HELIUM

A. Identification of NDWPs below the sixth ionization threshold

In this section, we study doubly excited states of planar he-
lium under periodic driving. The main interest is to verify the
applicability of the method presented in Sec. III to investigate

420
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46 8 6 820

FIG. 4. Projections in phase space for the electronic density of
the 1S frozen planet states of the N = 6 series in planar helium.
For the ground FPS 1SF 6

1 the maximum of the probability density
is localized at the equilibrium position of the outer electron in
the classical FPC shown in Fig. 2, while for the excited FPS the
maximum of the probability density is localized along periodic orbits
with higher energy of the classical configuration.

driven frozen planet states and to identify nondispersive wave
packets in helium.

There is evidence for the existence of nondispersive wave
packets in the energy region below the N = 6 ionization
threshold of planar helium [44]. Hence, we start our study
of driven frozen planet states precisely in that energy region,
with special attention on the lowest triplet (3S) FPS of the N =
6 series (Table III). The same analysis presented in this section
leads to the description of NDWPs for other symmetries and
ionization thresholds. The results are discussed in Sec. VII D.

As mentioned in Sec. III, our approach is based on two
principal steps. First, we diagonalize the unperturbed Hamil-
tonian for L = 0, . . . , Lmax (each one of these calculations is
performed independently since for the unperturbed atom the
angular momentum is a conserved quantity). Figure 7 displays
the complex spectrum for triplet states converging to the sixth
ionization threshold obtained by diagonalization of Eq. (17),
for nbase = 250 and L = 0, . . . , 7.

In the second step, the numerical investigation of the driven
atom is achieved by solving the eigenvalue problem (31).
The matrix to diagonalize is expressed in the atomic basis

0.0

-0.4

4 620

0.4

4 620 4 620

FIG. 5. Phase space of the driven frozen planet configuration for
fixed field frequency ω = 0.2(N − 0.5)−3 a.u. and three different
field amplitudes: F = 0 a.u. (left), F = 0.001(N − 0.5)−4 a.u. (cen-
ter), and F = 0.005(N − 0.5)−4 a.u. (right).
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FIG. 6. Phase space of the driven frozen planet configuration for
field amplitude F = 0.005(N − 0.5)−4 a.u., frequency ω = 0.2(N −
0.5)−3 a.u., and variable driving field phases ωt .

(30), which is built up using the states in Fig. 7 and 15
Floquet blocks (kmin = −7 and kmax = 7), i.e., we study the
dynamics of the atomic states obtained in the previous step,
under the action of the external field. For the electromag-
netic driving, we use the field frequency ω = 0.0012 a.u.
and field amplitude F = 5.5 × 10−6 a.u., which induces the
well-pronounced 1:1 resonance and intrinsic island in the
classical phase space in Fig. 5 (right). The result was tested
for convergence by repeating the calculations for atomic bases
obtained with different values of the complex rotation angle θ

and the dilation parameter α.
The Floquet eigenstates obtained by diagonalization of

Eq. (31) are given by a superposition of atomic states. Hence,
we can identify the states for which the greatest contribution in
the atomic basis is given by a FPS FN

j , i.e., the Floquet states
|ψ〉 with the largest overlap |〈FN

j |ψ〉|2. We denote them by
WN

j .
Figure 8 shows the projected Husimi distributions of the

Floquet eigenstates with the largest overlap with the lowest
3S FPS in the sixth series of the field-free atom. The state
W6

1 follows the same oscillation of the intrinsic island in the
classical structure (bottom). On the other hand, the states W6

2
and W6

3 , anchored to the hyperbolic and elliptic fixed points of
the 1:1 resonance, respectively, oscillate around the intrinsic
island with the same field frequency.
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FIG. 7. Complex energy spectrum of the unperturbed helium
atom for triplet states in the energy region below the sixth ionization
threshold, obtained after diagonalization of (17) for nbase = 250 and
several angular momenta.
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FIG. 8. Husimi distributions of the triplet wave packets W6
1 , W6

2 ,
and W6

3 obtained for field parameters F = 5.5 × 10−6 a.u. and ω =
0.0012 a.u., depicted for different phases of the driving field. For
comparison, we show the classical phase-space structure obtained
for the same field parameters (bottom).

Figure 9 shows the electronic density in configuration
space for the Floquet states W6

1 , W6
2 , and W6

3 . In the three
cases, we observe that the probability density of the inner elec-
tron is not affected by the field, while the probability density
of the outer electron oscillates with the driving frequency.

The above results reproduce the dynamics of the nondis-
persive wave packets identified in Refs. [44,61], where, the
dynamics of the lowest triplet 3S FPS of the N = 6 series under
periodic driving was studied by solving Eq. (25) for kmin =
−2, kmax = 4, and Lmax = 3 in a harmonic oscillator basis
of 521 795 elements. It is worth mentioning that, despite the
large size of the basis used, they have not been able to obtain
a converged value of the wave-packet decay rates, while we
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FIG. 9. Projections in configuration space of the electronic den-
sity of the same wave packets presented in Fig. 8. In each plot, the
left part shows the inner electron density, while the right part shows
the outer electron density.
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FIG. 10. Overlaps of the wave packet W6
2 with the states of the atomic basis organized according to angular momentum L (top) and the

Floquet number k (bottom). Driving field parameters: F = 5.5 × 10−6 a.u. and ω = 0.0012 a.u.

obtained converged values (presented in Table V) with a small
basis of only 4366 elements (that is, approximately 100 states
per angular momentum). One of the advantages of our method
is that we can identify the atomic states that contribute to the
formation of the NDWP. This will be clear in the next section.

B. Characterization of NDWPs below the sixth
ionization threshold

In the previous section, we have seen that it is possible to
study the dynamics of FPSs under electromagnetic driving
in an efficient way, using an expansion in a basis set of a
relatively small number of atomic eigenstates. Here, we study
in more detail the NDWP identified in the previous section,
with the aim of determining which of the atomic states have
the most relevant participation in the process of formation of
NDWPs in helium.

Following the notation introduced in Sec. VII A, we iden-
tify the Floquet eigenstates with the largest overlap with the
lowest 3S FPS in the sixth series of the field-free atom as W6

j .
In order to quantify the contribution of the atomic eigenstates
|ϕL,k

i 〉 in the basis (30) to each wave packet W6
j , we calculate

the overlaps |〈ϕL,k
i |W6

j 〉|2, i.e., the square modulus of the
components of the Floquet eigenstate W6

j . Here, we present
our analysis for the wave packet W6

2 . The results for the wave
packets W6

1 and W6
3 are qualitatively similar.

Figure 10 shows the overlaps for the wave packet W6
2 and

the basis elements for field amplitude F = 5.5 × 10−6 a.u.
and frequency ω = 0.0012 a.u. In the top plots, we observe,
as expected, that the main contributions come from the atomic
states with lower angular momentum. Unexpected is that
only two states carry 90% of the weights: the Floquet state
W6

2 exhibits the largest overlap with the frozen planet states
3SF 6

2 (63%) and 3PF 6
1 (27%). The contributions from other

states are smaller and decrease rather fast by increasing L. In
particular, the contributions from L = 7 angular momentum
states are eight orders of magnitude smaller than for L = 0.
Thus, we do not expect significant contribution for atomic
states of angular momentum L = 8 or greater.

In the bottom panels of Fig. 10 the overlaps are organized
according to the Floquet number k. The main contribution is
given by the atomic states in the Floquet blocks from k = −2
to 2. In addition, we observe that the contribution from atomic
states in the Floquet block k = 4 is seven orders of magnitude
smaller than the one for k = 0, and contribution for k = 5
or greater is not expected since the number of photons to
reach the sixth ionization threshold from the frozen planet
state 3SF 6

2 is 4.
In Fig. 11, we present the energies (left) and decay rates

(right) of the Floquet spectrum as a function of the field
amplitude F for fixed field frequency ω = 0.0012 a.u. In
the limit F = 0, the Floquet eigenstates correspond to un-
perturbed states with energy E shifted by kω. By increasing
the field amplitude, the Floquet eigenstates are given by a
superposition of atomic states and energy levels shift due to
the repulsion between coupled Floquet states. Green, blue, and
red circles identify the states W6

1 , W6
2 , and W6

3 , respectively.
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FIG. 11. Behavior of the energies E (left) and decay rates �

(right) as a function of the field amplitude F , for driving frequency
ω = 0.0012 a.u. Green, blue, and red circles identify the wave
packets W6

1 , W6
2 , and W6

3 , respectively. For field amplitudes F >

5.7 × 10−6 a.u., there are no Floquet eigenstates with the largest
overlap with the FPS 3SF 6

1 .
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FIG. 12. Overlaps between the triplet wave packet W6
2 and the

elements in the basis. The left plot shows the overlaps as a function
of the field amplitude F for fixed frequency ω = 0.0012 a.u., while
in the right plot we present the overlaps as a function of the field
frequency ω for a fixed amplitude F = 5.5 × 10−6 a.u. The green
regions identify the field amplitude (left) and frequency (right)
intervals for which the Husimi distribution of the wave packet W6

2

follows the classical trajectory as in Fig. 8.

In the left plot, for F > 2 × 10−6 a.u., the energies of the
states W6

1 and W6
2 exhibit a pronounced shift at positive

slope, which is associated to a large dipole moment of the
electronic density in configuration space [78]. In the right plot,
we show the imaginary part of the Floquet spectrum, which
corresponds to half of the decay rates �. In this plot, we ob-
serve that the decay rate of the Floquet eigenstate W6

3 remains
approximately constant for F < 4 × 10−6 a.u., and for field
amplitudes around F = 5 × 10−6 and 7 × 10−6 a.u. the decay
rate exhibits abrupt changes due to avoided crossings. For
the case of the states W6

1 and W6
2 , the decay rates show a

pronounced shift at a negative slope. Thus, the tendency of
these decay rates is to increase with the field amplitude.

Figure 12 shows the overlaps between the wave packet
W6

2 and the elements in the basis for different field param-
eters. The green region identifies the intervals for the field
amplitude (left) and frequency (right), where the Floquet state
W6

2 exhibits the nondispersive behavior. To establish this
region, we calculated the Husimi distributions of the triplet
wave packet W6

2 for the different field parameters, verifying
that the dynamics shown in Fig. 8 was reproduced. Similar
results were observed for the wave packets W6

1 and W6
3 .

However, this is not conclusive, since by varying the field
frequency (amplitude) the green region in the left (right) plot
can change. Thus, the complete characterization of the wave-
packet behavior in terms of the field parameters requires the
simultaneous variation of F and ω.

In the left plot in Fig. 12, the overlaps are calculated
as a function of the field amplitude F for fixed frequency
ω = 0.0012 a.u. There, we observe that in the limit F = 0 the
overlap with the frozen planet state 3SF 6

2 is equal to 1, which
means that the Floquet state W6

2 has only one component in
the atomic basis, given by the unperturbed state 3SF 6

2 . By
increasing the field amplitude, the overlaps with the other
elements in the basis become different from zero and in par-
ticular we observe that the principal contribution comes from

the frozen planet states 3SF 6
2 , 3PF 6

1 , 3PF 6
3 , and 3SF 6

4 . The
small perturbations observed for the values F = 1.5 × 10−6

and 4.8 × 10−6 a.u. correspond to avoided crossings between
Floquet states (see Fig. 11). The right plot displays the over-
laps as a function of the field frequency ω for fixed amplitude
F = 5.5 × 10−6 a.u. Again, the main contribution to the wave
packet is coming from a few S and P frozen planet states.
For ω = 0.00124 a.u., the contribution from the unperturbed
states 3SF 6

2 and 3PF 6
1 is the same because this frequency

corresponds to the resonant value ω = |E (3SF 6
2 ) − E (3PF 6

1 )|.
To conclude this section, let us remark that we have per-

formed our computations employing only the resonances of
the subseries converging to the N = 6 ionization threshold.
To illustrate the fact that this basis is enough to study the
formation of NDWPs, we repeated the computations includ-
ing the resonances of L = 0, . . . , 8 below the N = 5, 6, and
7 ionization thresholds with their respective continua and 51
Floquet blocks (kmin = −25 and kmax = 25) in the construc-
tion of the atomic basis (30). In that case, the number of basis
elements was 114 319, which still remains smaller than the
basis of 521 795 elements used in Ref. [44]. However, with
the inclusion of more states on the basis we do not observe any
improvement in the convergence for the wave-packet energies
and decay rates, and the behavior of Figs. 11 and 12 remains
the same. This was expected, since at least 22 photons are
necessary to couple the frozen planet state 3SF 6

2 to states
below the fifth ionization threshold and 20 photons to reach
the seventh ionization threshold. This supports the fact that
in our initial calculation we actually include all the relevant
states and that in the dynamics of the driven frozen planet
states single ionization is the dominant decay process [44].

C. Few level model for NDWPs

The results in Fig. 10 suggest that by removing from the
atomic basis (30) the states of negligible overlap with the
wave packets W6

1 , W6
2 , and W6

3 , and considering only a small
number of Floquet blocks, the dynamics of the driven FPS
should not be affected considerably. On the other hand, if we
remove from the basis one of the atomic states with greater
contribution to the wave packets, we wait for an observable
modification of the wave-packet dynamics, i.e., in the elec-
tronic density projections in Figs. 8 and 9. In such a way, we
can identify the atomic states that play a fundamental role in
the formation of NDWPs in helium.

For this purpose, we remove progressively from the ba-
sis the resonances of the unperturbed atom with the lowest
overlap with the wave packets W6

1 , W6
2 , and W6

3 , in order to
keep only the minimum number of atomic states and Floquet
blocks that must be plugged into the model to reproduce the
dynamics shown in Fig. 8. This procedure leaves us with the
six atomic states in Table IV and Floquet blocks from kmin =
−1 to kmax = 2. In other words, if we construct the basis
(30) only with these six states for kmin = −1 to kmax = 2 and
solve (31) for the field parameters F = 5.5 × 10−6 a.u. and
ω = 0.0012 a.u., we identify Floquet eigenstates W6

1 , W6
2 ,

and W6
3 that exhibit the same Husimi distributions displayed

in Fig. 8.
In Table V column (b), we present the values for the

energy and decay rate for the wave packets W6
1 , W6

2 , and
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TABLE IV. Energies and decay rates of the atomic states needed
to reproduce the dynamics of the wave packets W6

2 , W6
3 , and W6

4

presented in Sec. VII A. The state G 6
1 corresponds to the ground state

of a series of FPS-like states.

3S 3P

−E (a.u.) �/2 (a.u.) −E (a.u.) �/2 (a.u.)

G 6
1 0.074 452 683 0.000 000 202

F 6
1 0.073 203 013 0.000 000 006 0.073 024 843 0.000 003 008

F 6
2 0.071 788 666 0.000 000 007 0.071 671 979 0.000 006 616

F 6
3 0.070 756 000 0.000 000 007

W6
3 obtained with the few level model [79]. The values for

the energy obtained with the atomic basis of 4366 elements
of Sec. VII A and the few level model in columns (a) and (b),
respectively, are the same up to the fourth decimal position.
The decay rate of the wave packet W6

1 obtained with the few
level model is two orders of magnitude smaller than the actual
value in (a), while for the wave packets W6

2 and W6
3 the orders

of magnitude in (a) and (b) are the same. This result implies
that there are resonances with non-negligible overlap with
the wave packets which have a significant contribution to the
decay rates and have not been included in the model.

Figure 13 (left) shows the overlaps between the wave pack-
ets and the elements in the basis. By analyzing these overlaps
it is easy to identify the specific couplings that produce the
nondispersive wave packets that are summarized in Fig. 13
(right): the wave packet W6

1 is produced by a direct coupling
between the states 3SF 6

1 and 3PG 6
1 ; the wave packet W6

2 is
also produced by a direct coupling, but in this case between
the frozen planet states 3SF 6

2 and 3PF 6
1 ; and, finally, the wave

packet W6
3 is produced by an indirect coupling between the

states 3SF 6
3 and 3PG 6

1 .
In Table V, the wave packet W6

3 features the lowest decay
rate. This might be related to the fact that the wave packet
W6

3 is produced by an indirect coupling. In this sense, this
long-life wave packet might be a consequence of the interplay
of different decay channels with associated partial decay rates.
However, the complex rotation method only provides infor-
mation about the total decay rate. Another possible cause of
this small decay rate might be the extension of the associated
regular island in the transverse direction. In any case, this
requires further investigation.

TABLE V. Energies and decay rates of the triplet wave packets
W6

m obtained after diagonalization of Eq. (31) for driving field
parameters F = 5.5 × 10−6 a.u. and ω = 0.0012 a.u. (a) Results
using the atomic basis which includes the states of Fig. 7 with kmin =
−7 and kmax = 7. (b) Values obtained with the few level model for
kmin = −1 and kmax = 2.

(a) (b)

m −E (a.u.) �/2 (a.u.) −E (a.u.) �/2 (a.u.)

1 0.073 149 52 0.000 001 24 0.073 165 98 0.000 000 03
2 0.071 743 79 0.000 002 56 0.071 748 71 0.000 001 87
3 0.070 766 20 0.000 000 58 0.070 772 79 0.000 000 38

(-0.0744)
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(-0.0720)
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Sq
ua

re
d 

O
ve

rl
ap

-0.0744 -0.0732 -0.0720 -0.0708

10-4

10-2

100

10-4

10-2

100

10-4

10-2

100

FIG. 13. Left plots display the overlaps between the wave pack-
ets obtained with the few level model and the atomic states in
Table IV. In the right plot, we present the scheme of the essential
states involved in the formation of the NDWP W6

2 , W6
3 , and W6

4 .
The dashed lines are separated by ω, with energies (in atomic
units) indicated in parentheses. 3S (3P) states are highlighted in blue
(orange).

All the atomic states in the model are frozen planet states
except the state we have denoted by 3PG 6

1 . However, this state
corresponds to the ground state of a series of FPS-like states
that share most of the properties with the FPS (as we observe
in Fig. 14), but with lower expectation value of cos(θ12). For
instance, the value of 〈cos(θ12)〉 for the state 3PF 6

1 is 0.836,
while for the state 3PG 6

1 it is 0.592.

“Hyperbolic” and “elliptic” NDWPs

By looking at the Husimi distributions in Fig. 8, a question
arises: why is the wave packet W6

2 anchored to the hyperbolic
fixed point of the resonance, whereas the wave packet W6

3 is
anchored to the elliptic fixed point of the resonance?

As we can see in Fig. 13, the wave packet W6
2 is produced

by the coupling between the states 3SF 6
2 and 3PF 6

1 , and its
largest overlap is with the state 3SF 6

2 . However, there is a
second Floquet eigenstate which is also produced by the

0

2

-2

4320 5
-0.3 0.0

0

2

-2
41 20 3

0.4

0.8

1.2

1

-0.0

-0.3
-0.3

-0.0

-0.3

4320 51

0.0

0.4

0.8

1.2

FIG. 14. Comparison between the unperturbed states 3PF 6
1 and

3PG 6
1 . The left plots show the projections of the electronic density

in phase space, while the projections of the electronic density in
configuration space are depicted as a function of the distances r1 and
r2 (for θ12 = 0) in the center plots, and for the x and y coordinates (as
in Fig. 3) in the right plots.
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FIG. 15. Husimi distributions of the “hyperbolic” (green) and
“elliptic” (red) wave packets W6

2 for electromagnetic driving at
frequency ω = 0.0012 a.u. and amplitude F = 5.5 × 10−6 a.u., de-
picted for different phases of the driving field.

coupling between the same two atomic states, but with the
largest overlap with the state 3PF 6

2 . The latter corresponds
to a wave packet anchored to the elliptic fixed point of the
resonance while the former is anchored to the hyperbolic fixed
point (see Fig. 15).

Figure 16 shows the energy of the two wave packets W6
2

(top) and the overlaps of the hyperbolic wave packet W6
2 with

the elements in the basis (bottom), as a function of the field pa-
rameters. In the left plots, the energy and overlaps are depicted
against the field amplitude F for fixed frequency ω = 0.0012
a.u. For field amplitudes F > 2 × 10−6 a.u. (for which the
contribution of the states 3SF 6

2 and 3PF 6
1 to the wave packet

W6
2 remains nearly constant) the wave-packet energies exhibit

slopes of similar magnitude with opposite sign. In the right
plot, where the energy and overlaps are given as a function
of the frequency ω for fixed field amplitude F = 5.5 × 10−6

a.u., we observe that, for driving frequency ω < 0.00124 a.u.

FIG. 16. Energy of the “hyperbolic” (green) and “elliptic” (red)
wave packets W6

2 obtained with the few level model (top). Overlaps
between the hyperbolic wave packet W6

2 and the elements in the
atomic basis (bottom). The results are presented for variable field
amplitude with fixed frequency ω = 0.0012 a.u. (left) and variable
field frequency with fixed amplitude F = 5.5 × 10−6 a.u. (right).

TABLE VI. Driving field parameters and converged values for
the energies and decay rates of the wave packets WN

2 .

N ω (a.u.) F (a.u.) −E (a.u.) �/2 (a.u.)

Singlet states
3 0.006 60 2.0 × 10−5 0.329 338 5 0.000 000 5
4 0.003 60 1.0 × 10−5 0.175 724 3 0.000 002 2
5 0.002 40 2.0 × 10−5 0.106 898 2 0.000 004 2
6 0.001 25 1.5 × 10−6 0.071 813 9 0.000 003 9
7 0.000 80 2.0 × 10−6 0.051 580 0.000 002

Triplet states
3 0.008 50 5.0 × 10−5 0.341 003 0.000 001
4 0.004 10 4.0 × 10−5 0.175 471 2 0.000 002 6
5 0.002 10 1.2 × 10−5 0.106 866 5 0.000 001 4
6 0.001 24 1.5 × 10−6 0.071 801 4 0.000 000 9
7 0.000 80 2.0 × 10−6 0.051 575 5 0.000 000 6

(before the avoided crossing), the hyperbolic wave packet
W6

2 has the largest overlap with the state 3SF 6
2 , while, for

frequency ω > 0.00124 a.u. (after the avoided crossing), the
largest overlap is with the state 3PF 6

2 . The opposite is true for
the elliptic wave packet.

The previous results suggest that the coupling between a
FPS of L = 0 and a FPS of L = 1 produces two NDWPs,
one of them anchored to the hyperbolic fixed point of the
resonance and the other one anchored to the elliptic fixed point
of the resonance. Which one of the coupled states has the
largest overlap with the wave packet depends on the driving
field parameters as we observe in Fig. 16.

D. Identification of NDWPs below other ionization thresholds

In this section, we study the dynamics of the driven frozen
planet states below the N = 3, . . . , 7 ionization thresholds.
Based on the results of the previous section, here we look
for elliptic wave packets WN

2 produced by the direct coupling
between the frozen planet states SFN

2 and PFN
1 . In each case,

we construct the atomic basis (30) including only the reso-
nances converging to the ionization threshold of interest for
L = 1, . . . , 5 and 11 Floquet blocks (kmin = −5 and kmax =
5). In this basis we solve the eigenvalue problem (31) for
driving field frequency ω ≈ |E (SFN

2 ) − E (PFN
1 )| and field

amplitude F < FI .
In Table VI we present the field parameters used in each

calculation and the converged values for the energy and decay
rates of the elliptic wave packets WN

2 identified in the Floquet
spectrum. As we described in Sec. VII B, there is an interval
for the field amplitude F and frequency ω where the wave
packet exhibits the nondispersive behavior. Thus, the values
in Table VI should be taken as reference values, since by
changing the field parameters the wave-packet energy and
decay rate can also change.

Figure 17 shows the Husimi distributions of the triplet
wave packets for three different phases of the driving field.
The Husimi distributions for the singlet wave packets are
qualitatively similar and are not presented. The wave packets
are more localized by increasing N . The same behavior was
observed for the NDWP in one-dimensional helium [42].
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FIG. 17. Contour plot of the Husimi distribution of the triplet
elliptic wave packets WN

2 , obtained by diagonalization of Eq. (31)
for the field parameters in Table VI, at different phases of the driving
field.

VIII. SUMMARY AND CONCLUSIONS

We have given a full characterization of two-electron
nondispersive wave packets in planar helium. Our numerical

treatment, which combines a spectral method with Floquet
theory, provides an efficient description of the dynamics of
driven doubly excited states of planar helium with a low
computational cost. The results obtained showed that the main
contribution to the wave packets is given by a small number
of atomic states of low angular momentum. Indeed, we have
been able to reduce the system to its very basic ingredients,
finding that the coupling between two frozen planet states of
different angular momentum produces a “hyperbolic” and an
“elliptic” nondispersive wave packet.

The method developed can be adapted to investigate the
dynamics of driven frozen planet states in the full three-
dimensional helium atom. In that case, we also expect that the
coupling between two FPSs of different angular momentum
could produce nondispersive wave packets following the clas-
sical trajectory as in the planar system. The main difference
is expected to be found in the wave-packet lifetime since
this value depends on the lifetime of the FPS. Though the
planar model allows for quantitatively reliable predictions,
the lifetimes of planar FPSs might differ from the exact
ones [46].
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