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To solve the time-dependent Schrödinger equation in spatially inhomogeneous pulses of electromagnetic
radiation, we propose an iterative semiclassical complex trajectory approach. In numerical applications, we
validate this method against ab initio numerical solutions by scrutinizing (a) electronic states in combined
Coulomb and spatially homogeneous laser fields and (b) streaked photoemission from hydrogen atoms and
plasmonic gold nanospheres. In comparison with streaked photoemission calculations performed in strong-field
approximation, we demonstrate the improved reconstruction of the spatially inhomogeneous induced plasmonic
infrared field near a nanoparticle surface from streaked photoemission spectra.
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I. INTRODUCTION

The exposure of gaseous atomic, mesoscopic, and solid
targets to incident pulses of electromagnetic radiation of suf-
ficiently high photon energy or intensity leads to the emission
of photoelectrons [1]. For more than a century, photoelec-
tron spectroscopy has very successfully exploited this phe-
nomenon and has long become established as one of the most
prolific techniques for unraveling the static electronic struc-
ture of matter by examining the kinetic energy or momentum
distribution of emitted photoelectrons. More recently, starting
in the 21st century, advances in ultrafast laser technology
started to extend photoemission spectroscopy into the time
domain [2–4]. Importantly, the development of attosecond
streaking [5,6] and interferometric [7–9] photoelectron spec-
troscopy enabled the observation of electron dynamics at the
natural timescale of the electron motion in matter (attosec-
onds, 1 as = 10−18 s). This was demonstrated in proof-of-
principle experiments for gaseous atomic [10–16] and molec-
ular [17–19] targets. Attosecond time-resolved photoemission
spectroscopy is currently being extended to complex tar-
gets [6,20], such as nanostructures and nanoparticles [21–28],
and solid surfaces [9,29–36], making it possible to examine,
for example, the dynamics of photoemission from a surface
on an absolute timescale [37] and suggesting, for example,
the time-resolved observation of the collective motion of
electrons (plasmons) in condensed-matter systems [38–40].

In combination with advances in nanotechnology, allowing
the production of plasmonic nanostructures with increasing
efficiency at the nm length scale, attosecond photoemission
spectroscopy has started to progress toward the spatiotem-
poral imaging of electron dynamics in complex targets, ap-
proaching the atomic length and timescales (nm and attosec-
onds) [20,21,25–28,31,41,42]. Photoemission spectroscopy
therefore holds promise to become a powerful tool for exam-
ining nm-attosecond scale processes that are operative in plas-
monically enhanced photocatalysis [43], light harvesting [44],
surface-enhanced Raman spectroscopy [45], biomedical and
chemical sensing [46], tumor detection and treatment [47],

and ultrafast electro-optical switching [48]. The concurrent
development and provision of large-scale light sources, ca-
pable of producing intense ultrashort pulses in the extreme
ultraviolet (XUV) to x-ray spectral range at several leading
laboratories in Europe, the United Stated, and Japan [49,50],
promises to further boost the value of spatiotemporally re-
solved electron spectroscopy as a tool for imaging electronic
dynamics within a wide array of basic and applied research
projects.

Being able to take advantage of the full potential offered
by current and emerging atomic scale photoelectron imaging
techniques relies on theoretical and numerical modeling. This
is true for comparatively simple atoms in the gas phase,
and for complex nanostructured targets additional theoretical
challenges arise [6,20]. While for atomic photoionization by
visible and near UV light, the size of the target is small
compared to the wavelength of the incident light pulse, this is
no longer true for x-ray ionization, leading to the well-known
breakdown of the dipole approximation [51,52]. Furthermore,
for nanoparticles [22–28], (nanostructured) surfaces [36,53–
55], and layered structures [31,35,36,42], not only the compa-
rability of the wavelength and structure size requires careful
quantum-mechanical modeling beyond the dipole approxima-
tion, but also the target’s spatially inhomogeneous dielectric
response to the incident light pulse [54,55]. Most numerical
models for streaked and interferometric photoemission from
atoms are based on the so-called “strong-field approximation”
(SFA) [6]. The SFA builds on the assumption that photoemit-
ted electrons are solely exposed to spatially homogeneous
external fields. It discards all other interactions photoreleased
electrons may be subject to (e.g., with the residual parent ion)
and cannot accommodate spatially inhomogeneous final-state
interactions.

While the SFA was shown to deteriorate for lower pho-
toelectron energies [56], it completely loses its applicability
for complex targets as screening and plasmonic effects ex-
pose photoelectrons to inhomogeneous net electromagnetic
fields [6,38,54,55]. The convenient use of analytically known
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so-called “Volkov wave functions” for the photoelectron’s
motion in homogeneous electromagnetic fields [57] is no
longer acceptable since dielectric response effects entail
screening length and induced plasmonic fields at the nm
length scale [22,24–28,36,38]. Thus, the numerical modeling
of photoemission from complex targets with morphologies
or plasmonic response lengths at the nm scale by intense
short wavelength pulses [made increasingly available at new
(X)FEL light sources [49,50]], necessitates photoemission
models beyond the SFA.

To this effect, we previously employed heuristically gen-
eralized Volkov states to model photoemission from bare
and adsorbate-covered metal surfaces [35,36,54,55] and plas-
monic nanoparticles [22,26,28]. While this allowed us to
numerically model streaked [42,54,55,58] and interferomet-
ric photoemission spectra from surfaces [35,36], in fair to
good agreement with experimental data, and to reconstruct
plasmonic fields near gold nanospheres [28], a systematic
mathematical solution of the time-dependent Schrödinger
(TDSE) for a single active electron exposed to inhomoge-
neous external fields remains to be explored. We here discuss a
semiclassical model for obtaining such solutions. While being
approximate, our complex-phase Wentzel-Kramer-Brillouin
(WKB) type approach lends itself to systematic iterative re-
finement. Our proposed method, termed ACCTIVE (action
calculation by classical trajectory integration in varying elec-
tromagnetic fields), employs complex classical trajectories to
solve the TDSE in the presence of spatially inhomogeneous
electromagnetic pulses that are represented by time-dependent
inhomogeneous scalar and vector potentials. Our approach
is inspired by the semiclassical complex-trajectory method
for solving the TDSE with time-independent scalar inter-
actions of Boiron and Lombardi [59] and its adaptation to
time-dependent scalar interactions by Goldfarb, Schiff, and
Tannor [60].

Following the mathematical formulation of ACCTIVE in
Sec. II, we validate this method by discussing five examples
in Sec. III. We first compare ACCTIVE calculations with
ab initio numerical solutions by scrutinizing electronic states
in a (i) homogeneous laser field, (ii) Coulomb field, and (iii)
combination of laser and Coulomb fields. Next, we apply
ACCTIVE to streaked photoemission from (iv) hydrogen
atoms and (v) plasmonic nanoparticles. In the application
to Au nanospheres, we examine final states for the simul-
taneous interaction of the photoelectron with the spatially
inhomogeneous plasmonically enhanced field induced by the
streaking infrared (IR) laser pulse and demonstrate the im-
proved reconstruction of the induced nanoplasmonic IR field
from streaked photoemission spectra. Section IV contains our
summary. In four appendices we prove the gauge invariance
of the ACCTIVE method (Appendix A) and add details of
our calculations within ACCTIVE of Volkov wave functions
(Appendix B) and Coulomb wave functions (Appendix C),
and additional comments on streaked photoemission from Au
nanospheres (Appendix D).

II. THEORY

We seek approximate solutions of the TDSE for a particle
of (effective) mass m and charge q in an inhomogeneous

time-dependent electromagnetic field given by the scalar and
vector potentials φ(r, t ) and A(r, t ) and any additional scalar
potential V (r, t ):

ih̄
∂

∂t
�(r, t ) =

{
1

2m
[ih̄∇ + qA(r, t )]2 + ϕ(r, t )

}
�(r, t ),

(1)
where ϕ(r, t ) = qφ(r, t ) + V (r, t ). Representing the wave
function in eikonal form, �(r, t ) = eiS(r,t )/h̄, Eq. (1) can be
rewritten in terms of the complex-valued quantum-mechanical
action S(r, t ) as

∂

∂t
S(r, t ) + 1

2m
[∇S(r, t ) − qA(r, t )]2 + ϕ(r, t )

= ih̄

2m
∇ · [∇S(r, t ) − qA(r, t )]. (2)

Expanding the action in powers of h̄ [59,60],

S(r, t ) =
∞∑

n=0

h̄nSn(r, t ), (3)

substituting Eq. (3) into Eq. (2), and comparing terms of equal
order results in the set of coupled partial differential equations

∂

∂t
S0(r, t ) + [∇S0(r, t ) − qA(r, t )]2

2m
+ ϕ(r, t ) = 0, (4a)

∂

∂t
S1(r, t ) +

[∇S0(r, t ) − qA(r, t )

m

]
· ∇S1(r, t )

= i

2
∇ ·

[∇S0(r, t ) − qA(r, t )

m

]
, (4b)

∂

∂t
Sn(r, t ) +

[∇S0(r, t ) − qA(r, t )

m

]
· ∇Sn(r, t )

= − 1

2m

n−1∑
j=1

∇S j (r, t ) · ∇Sn− j (r, t )

+ i

2m
∇2Sn−1(r, t ) (n � 2), (4c)

where the lowest-order contribution S0(r, t ) is the classical
action of a charged particle moving in the electromagnetic
field

E(r, t ) = −∇ϕ(r, t )/q − ∂A(r, t )/∂t,

B(r, t ) = ∇ × A(r, t ). (5)

With regard to the ongoing discussion about the
gauge (in)variance of approximate solutions of the TDSE
for intense-external field interactions with matter (see,
e.g., [52,61,62] and references therein), we point out that
Eqs. (4) are form invariant under gauge transformations

A �→ A′ = A + ∇ f (r, t ),

ϕ �→ ϕ′ = ϕ − q
∂

∂t
f (r, t ), (6)

defined in terms of arbitrary differentiable functions f (r, t )
that leave the external fields E(r, t ) and B(r, t ) unchanged.
This invariance requires the classical action to transform
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according to

S0(r, t ) �→ S′
0(r, t ) = S0(r, t ) + q f (r, t ),

Sn(r, t ) �→ S′
n(r, t ) = Sn(r, t ) (n � 1), (7)

in agreement with the known unitary local gauge transfor-
mation of the wave function �(r, t ) according to �(r, t ) �→
� ′(r, t ) = eiq f (r,t )/h̄�(r, t ) [51,62]. Here, the complex phase
q f (r, t )/h̄ appears only in S0(r, t ). For further comments see
Appendix A.

Solving the classical Hamilton-Jacobi equation (HJE) (4a)
leads to Newton’s second law

d

dt
v(r, t ) = q

m
[E(r, t ) + v(r, t ) × B(r, t )], (8)

where the classical velocity field v(r, t ) and kinetic momen-
tum

p(r, t ) ≡ mv(r, t ) ≡ ∇S0(r, t ) − qA(r, t ) (9)

are given in terms of the gauge-invariant canonical momentum
∇S0(r, t ) [63] (see Appendix A). The combination of the
HJE (4a) and Eq. (9) provides the Lagrangian L[r, v(r, t ), t]
as a total time differential of S0(r, t ):

d

dt
S0(r, t ) = L[r, v(r, t ), t]

= 1

2
mv2(r, t ) + qv(r, t ) · A(r, t ) − ϕ(r, t ). (10)

Similarly, by substituting Eq. (9) into Eqs. (4b) and (12),
we find the total time derivatives of the first-order contribution
to S(r, t ),

d

dt
S1(r, t ) = i

2
∇ · v(r, t ), (11)

and of all higher-order terms

d

dt
Sn(r, t ) = − 1

2m

n−1∑
j=1

∇S j (r, t ) · ∇Sn− j (r, t )

+ i

2m
∇2Sn−1(r, t ) (n � 2). (12)

Approximate solutions to S(r, t ) can be obtained by iteration
of Eq. (12), after integrating the total time derivatives in
Eqs. (10), (11), and (12) along classical trajectories r̃(t ) that
are defined by

d

dt
r̃(t ) ≡ v[r̃(t ), t] (13)

with respect to a reference time (integration constant) tr . The
wave function at tr , �r (r) = �(r, tr ), provides initial (tr � 0)
or asymptotic (tr 	 0) conditions in terms of the action

S(r, tr ) = −ih̄ ln[�r (r)] (14)

and the velocity field

v(r, tr ) = − 1

m
∇S0(r, tr ) − q

m
A(r, tr )

≈ − 1

m
∇S(r, tr ) − q

m
A(r, tr )

= − ih̄∇�r (r)

m�r (r)
− q

m
A(r, tr ). (15)

FIG. 1. Illustration of the shooting method used for determining
classical trajectories. For any given event (r, t ) and a predetermined
reference time tr , trajectories are classically propagated from trial
points in phase space (r, vtrial ) at time t along trial trajectories
r̃trial (t ′). The velocity field v and appropriate trajectory r̃(t ′) are
determined by iterating the trial velocity vtrial in order to find the
roots of f (vtrial ) in Eq. (18).

The semiclassical solution of Eqs. (10), (11), and (12)
requires an appropriate classical trajectory r̃(t ′), for any given
“current” event (r, t ) that connects the “current” coordinate
and velocity,

r = r̃(t ), v = d r̃(t ′)
dt ′

∣∣∣∣
t

, (16)

to the proper coordinate and velocity at tr ,

rr = r̃(tr ), (17a)

vr = d r̃(t ′)
dt ′

∣∣∣∣
tr

= − ih̄∇�r (rr )

m�r (rr )
− q

m
A(rr, tr ). (17b)

The known quantities in Eqs. (16) and (17) are r, t , and
tr , while v, rr , and vr are to be determined. To numerically
calculate the undetermined quantities, we employ a shooting
method, starting with a “trial” velocity vtrial at position r and
time t . Propagating r to the reference time according to Eq. (8)
results in rtrial

r = r̃trial(tr ) and vtrial
r = d r̃trial(t ′)/dt ′ |tr (Fig. 1).

The velocity field v that satisfies Eq. (8) can now be found
numerically by determining the roots of the function

f (vtrial ) =
∣∣∣∣∣vtrial

r + ih̄∇�r
(
rtrial

r

)
m�r

(
rtrial

r

) + q

m
A

(
rtrial

r , tr
)∣∣∣∣∣ (18)

for an appropriate range of start trial velocities. In our numer-
ical applications, this is accomplished by an efficient multi-
dimensional quasi-Newton root-finding algorithm (Broyden’s
method) [64,65]. Once the correct trajectories r̃(t ′) are de-
termined by finding the roots of Eq. (18), the actions in
Eqs. (10), (11), and (12) are integrated along these trajectories
and composed, by truncating Eq. (3), into an approximate
solution of Eq. (1).

Since each term Sn(r, t ) in Eq. (3) depends only on terms of
lower orders, ACCTIVE enables, in principle, the systematic
iterative refinement of approximate solutions of Eq. (1) by
including successively higher orders n. The iteration is started
with S0(r, t ), which is determined by the velocity field v(r, t ),
and continued by integrating Eqs. (11) and (12).

013411-3



JIANXIONG LI AND UWE THUMM PHYSICAL REVIEW A 101, 013411 (2020)

In the numerical examples discussed in Sec. III below,
we find that retaining only the zeroth- and first-order terms
S0(r, t ) and S1(r, t ) provides sufficiently accurate and phys-
ically meaningful solutions at modest numerical expense.
Thus, according to Eqs. (10) and (11), we apply

�(r, t ) ≈ exp{iS0(r, t )/h̄ + iS1(r, t )}

= eiS(rr ,tr )/h̄ exp

{
−1

2

∫ t

tr

∇ · v(r̃(t ′), t ′)dt ′

+ i

h̄

∫ t

tr

L[r̃(t ′), v(r̃(t ′), t ′), t ′]dt ′
}
. (19)

For real classical trajectories and potentials, the integral of
S0(r, t ) is real, representing a local phase factor, while S1(r, t )
is purely imaginary and defines the wave-function ampli-
tude, as in the standard WKB approach [51]. The quantum-
mechanical probability density ρ(r, t ) then satisfies the conti-
nuity equation

dρ(r, t )

dt
= d

dt
|�(r, t )|2 = −ρ(r, t )∇ · v(r, t ) (20)

for the classical probability flux ρ(r, t ) v(r, t ) [66].

III. EXAMPLES

We validate the ACCTIVE method by discussing five
applications to electron wave functions in Coulomb and laser
fields.

A. Volkov wave function

For the simple example of an electron in a time-dependent,
spatially homogeneous laser field, the potentials in Eq. (1) and
reference wave function are (in the Coulomb electromagnetic
gauge [51])

A(r, t ) = A(t ), ϕ(r, t ) = 0, �r (r) = eip·r/h̄, (21)

and the first-order wave function in Eq. (19) reproduces the
well-known analytical Volkov solution [57]

�V (r, t ) = exp

{
i p · r

h̄
− i

2mh̄

∫ t

tr

[p − qA(t ′)]2dt ′
}
.

(22)

For details of the derivation of Eq. (22) within ACCTIVE, see
Appendix B.

B. Coulomb wave function

As a second simple example and limiting case, we consider
an unbound electron in the Coulomb field of a proton. In this
case, the potentials in Eq. (1) are

A(r, t ) = 0, ϕ(r, t ) = −ke
e2

r
, (23)

where e is the elementary charge and ke the electrostatic
constant. Assuming outgoing-wave boundary conditions, we
define the reference wave function at a sufficiently large
reference time tr as the “outgoing” Coulomb wave

�r (r, tr )
tr→∞, z→+∞−−−−−−−−−→ ei

(
kz− h̄k2

2m tr
)
. (24)

FIG. 2. Real part of an unbound Coulomb wave function, subject
to the boundary condition given by an outgoing wave propagating
along the z axis. (a) Numerically calculated semiclassical first-order
ACCTIVE wave function. (b) Analytical Coulomb wave function
in the y = 0 plane. (c) Real part of the wave functions in (a) and
(b) along the z axis for x = y = 0.

Here, r = (x, y, z) and p = h̄k > 0 is the final electron mo-
mentum. In this case, the TDSE is solved exactly by the
well-known Coulomb wave function

�C
k (r, t ) = e

π
2k �(1 − i/k)

(2π )3/2 1F1(i/k, 1, ikr − ikz)ei
(

kz− h̄k2

2m t
)

(25)

in terms of the confluent hypergeometric function 1F1. Note
that for finite distances from the z axis (i.e., for finite coordi-
nates x and y), the asymptotic form of the Coulomb continuum
wave function for z → +∞ is just a plane wave (without a
logarithmic phase term) [51,67].

Applying ACCTIVE to the outgoing-wave Coulomb prob-
lem, tr must be chosen sufficiently long after t , so that
each classical trajectory r̃(t ′) propagates far enough toward
the z → +∞ asymptotic limit for the reference velocity to
become

vr
tr→∞, z→+∞−−−−−−−−−→ ẑp/m, (26)

in compliance with Eq. (17b). In this and for the following
numerical example, we use as reference velocity the initial
trial velocity for points of the spatial numerical grid that are
sufficiently far away from the Coulomb singularity at the
origin. The correct “current” velocities v(r, t ) at the most
distant coordinates are subsequently used as trial velocities at
the nearest-neighbor spatial grid points. This scheme is con-
tinued until classical trajectories for the entire spatiotemporal
numerical grid are calculated. Further details of the numerical
calculation of Coulomb wave functions within ACCTIVE are
given in Appendix C.

Figure 2 shows the very good agreement between the nu-
merically calculated first-order ACCTIVE wave function (19)
and the analytical Coulomb wave function (25) for a final elec-
tron kinetic energy of p2/2m = 50 eV. The color (grayscale)
represents the real part of the wave function in the x-z
plane. Figures 2(a) and 2(b) show the same scattering pattern.
Good quantitative agreement of the first-order ACCTIVE
wave function and the analytical Coulomb wave function is
demonstrated in Fig. 2(c).
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FIG. 3. Real parts of (a), (d) Coulomb, (b), (e) ACCTIVE-
calculated Coulomb-Volkov, and (c), (f) Volkov wave functions in
the y = 0 plane. (a)–(c) Snapshots at time t = 0, when the laser-pulse
center is at z = 0. (d)–(f) Time evolution along the z axis.

C. Coulomb-Volkov wave function

A more challenging third example is given by the motion
of an electron under the combined influence of a point charge
(proton), located at the coordinate origin, and a spatially
homogeneous laser pulse, subject to the boundary condi-
tion (24). In this case, the potentials in Eq. (1) are (in Coulomb
gauge [51])

A(r, t ) = A(t ), ϕ(r, t ) = −ke
e2

r
. (27)

Considering a laser pulse of finite duration, tr must be chosen
such that the laser electric field vanishes at tr . This combi-
nation of the two previous examples in Secs. III A and III B
constitutes the Coulomb-Volkov problem, for which merely
approximate solutions [68–71], but no analytical wave func-
tion, are known. We assume a laser pulse with 15 eV central
photon energy, a cosine-square temporal intensity envelope
with a pulse length of 0.5 fs full width at half intensity
maximum (FWHIM), and 3 × 1015 W/cm2 peak intensity. At
time t = 0, the temporal pulse profile is centered at z = 0.
We enforce the outgoing-wave boundary condition (24) for an
asymptotic photoelectron kinetic energy of p2/2m = 50 eV.
This energy is reached at a sufficiently large distance of the
outgoing electron from the proton and long after the pulse has
vanished.

In Fig. 3 we compare the ACCTIVE-calculated Coulomb-
Volkov wave function with Coulomb and Volkov wave func-
tions for identical outgoing-wave boundary condition and
50-eV asymptotic photoelectron kinetic energy. The Coulomb
and Volkov wave functions are given for a positive elementary
charge and the same laser parameters as the Coulomb-Volkov
wave, respectively. The color (grayscale) represents the real
part of the wave functions. We determined all numerical
parameters (numerical grid size, spacing, and propagation
time step) to ensure convergence of the wave functions.

Figures 3(a), 3(b), and 3(c) display snapshots at time t = 0
of the Coulomb, ACCTIVE-calculated Coulomb-Volkov, and
Volkov wave functions, respectively. The Coulomb-Volkov
wave function shows a similar (inverse) Coulomb scattering
pattern for the incident wave (z < 0) as the Coulomb wave.
Its outgoing part (z > 0) closely matches the phase of the
Volkov wave. On the other hand, the time-dependent evo-
lution of the Coulomb-Volkov wave function in the y = 0
plane in Fig. 3(e) shows laser-induced wavefront distortions,
similar to the Volkov wave in Fig. 3(f). The time evolution
of the ACCTIVE-calculated Coulomb-Volkov wave function
reveals the acceleration of the incoming and deceleration
of the outgoing wave near the proton at z = 0 of the pure
Coulomb wave in Fig. 3(d). An animated version of this
wave-function comparison can be found in the Supplemental
Material [72].

D. Streaked photoemission from hydrogen atoms

As a fourth example, we employ ACCTIVE final-state
wave functions to calculate IR-streaked XUV photoelectron
spectra from ground-state hydrogen atoms [6]. We assume
the ionizing XUV and streaking IR pulse as linearly polarized
along the z axis. The relative time delay between the centers
of the two pulses τ is assumed positive in case the IR precedes
XUV pulse. The electric field EX (t ) of the XUV pulse is
characterized by a Gaussian temporal profile, 55 eV central
photon energy, and a pulse length of 200 as (FWHIM). The
IR pulse has a cosine-squared temporal profile, 720 nm central
wavelength, pulse duration of 2 fs FWHIM, and 1011W/cm2

peak intensity.
We model streaked photoemission from the ground state

of hydrogen |�i〉 based on the quantum-mechanical transition
amplitude [6,28,51,55]

T (k f , τ ) ∼
∫

dt
〈
�C−V

k f ,τ

∣∣zEX (t )
∣∣�i

〉
, (28)

where the IR-pulse-dressed final state of the photoelectron
|�C−V

k f ,τ
〉 is a Coulomb-Volkov wave function [56] that we

evaluate numerically using the ACCTIVE method. In a com-
parison calculation, we replace the Coulomb-Volkov state by
the Volkov state |�V

k f ,τ
〉 and assume otherwise identical phys-

ical conditions. As mentioned in the Introduction, the use of
Volkov states [57] in photoionization calculations is referred
to as SFA [6] and amounts to neglecting the interaction of
the released photoelectron with the residual ion (proton in the
present case). We scrutinize streaked photoemission spectra
obtained with ACCTIVE-calculated Coulomb-Volkov final
states and in SFA against ab initio benchmark calculations. In
these exact numerical calculations we directly solve the three-
dimensional TDSE using the SCID-TDSE time-propagation
code [73].

Numerical results are shown in Fig. 4. The streaked
photoemission spectra obtained with ACCTIVE-calculated
Coulomb-Volkov final states [Fig. 4(a)], in SFA [Fig. 4(b)],
and by direct numerical solution of the TDSE [Fig. 4(c)] show
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FIG. 4. IR-streaked XUV photoelectron spectra, (a) based on
ACCTIVE-calculated Coulomb-Volkov final states, (b) in SFA, and
(c) obtained by direct numerical solution of the TDSE. Red dotted
lines in (a)–(c) indicate the respective centers of energy (CoE). The
spectral yields in (a)–(c) are normalized separately, to their respective
maxima. (d) Comparison of the delay-dependent CoE for the spectra
in (a)–(c).

very similar “streaking traces,” i.e., oscillations of the asymp-
totic photoelectron energy with delay τ . For a quantitative
comparison, we plot in Fig. 4(d) the centers of energy (CoEs)
of the spectra in Figs. 4(a)–4(c). While the three calculations
result in identical photoemission phase shifts (streaking time
delays) relative to the streaking IR field, within the resolution
of the graph, the ACCTIVE-calculated spectra agree with the
exact TDSE calculation, while the SFA calculation predicts
noticeably smaller CoEs due to the neglect of the Coulomb
potential in the final photoelectron state [22].

E. Streaked photoemission from metal nanospheres

As a final, fifth, example, we apply the ACCTIVE method
to model photoelectron states in spatially inhomogeneous,
plasmonically enhanced IR electromagnetic fields. For this
purpose, we investigate streaked photoemission [22,25–27]
and the reconstruction of plasmonic near fields [28] for gold
nanospheres with a radius of R = 50 nm. We represent the
electronic structure of the nanosphere in terms of eigenstates
of a square well with a potential depth of V0 = −13.1 eV and
obtain the photoelectron yield by incoherently adding the tran-
sition amplitudes (28) over all occupied initial conduction-
band states [6,55,58]. For the calculation of the transition am-
plitude (28), we closely follow Ref. [26], with the important
difference of employing numerically calculated semiclassi-
cal ACCTIVE final photoelectron wave functions, while in
Ref. [26] the SFA approximation is used, applying heuristi-
cally generalized Volkov final states and thus neglecting direct
photoelectron interactions with the residual nanoparticle.

FIG. 5. Simulated IR-streaked XUV photoelectron spectra for
photoemission along the XUV-pulse polarization direction (a) using
ACCTIVE final states and (b) in SFA. (c) Corresponding delay-
dependent centers of energy. (d) Comparison of the corresponding
reconstructed plasmonic electric near fields at the point (x, y, z) =
(0, 0, R) on the nanoparticle surface with the Mie-theory-calculated
electric field.

For the ACCTIVE calculation we thus solve the TDSE (1)
with the potentials

A(r, t ) =
∫ ∞

t
Etot(r, t ′) dt ′, (29a)

ϕ(r, t ) =
{

V0, r < R
0, r � R

(29b)

and the boundary condition (24). Here, the asymptotic wave
function in Eq. (24) also serves as reference wave function for
the classical trajectory computation. The net time-dependent
inhomogeneous field Etot(r, t ) is given by the superposition of
the homogeneous IR field of the incident streaking pulse and
the inhomogeneous plasmonic field produced by the nanopar-
ticle in response to the incident IR pulse [27,28]. For the
streaking calculation, we assume an XUV pulse with 30 eV
central photon energy and Gaussian temporal profile with a
width of 200 as (FWHIM). We further suppose a delayed
Gaussian IR pulse with 720 nm central wavelength, 2.47 fs
(FWHIM) pulse length, and 5 × 1010 W/cm2 peak intensity.

Figure 5 shows simulated streaked photoelectron spectra
obtained with ACCTIVE-calculated and Volkov final states
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for electron emission along the XUV-pulse polarization di-
rection. In this direction, the effect of the induced plasmonic
field on the photoelectron is strongest [28]. The corresponding
spectra in Figs. 5(a) and 5(b) show very similar temporal
oscillations of the photoelectron yield and CoE as a function
of both asymptotic photoelectron energy and XUV-IR pulse
delay τ . As for streaked photoemission from hydrogen atoms
discussed in Sec. III D above, we find that the SFA shifts
the CoE to lower kinetic energies [Fig. 5(b), cf. Fig. 4(d)].
Here, the SFA results in an approximately 1.5 eV lower CoE
than the ACCTIVE calculation. This energy shift is due to
the fact that the SFA, by neglecting the potential well of
the nanosphere in the final photoelectron state, leads to an
unphysical enhancement of the photoemission cross section
at lower photoelectron kinetic energies, thereby increasing the
weight of low-energy yields in the CoE average [22]. Addi-
tional comments on the comparison of streaked photoelectron
spectra within either ACCTIVE or based on Volkov wave
functions can be found in Appendix D.

From streaked photoemission spectra the plasmonic near
field at the nanoparticle surface can be reconstructed as de-
tailed in Refs. [27,28]. Figure 5(d) shows the reconstructed net
electric field Etot along the XUV-pulse polarization direction,
i.e., at the surface and on the positive z axis, of the nanosphere.
The reconstruction of net plasmonically enhanced near fields
from the simulated spectra in Figs. 5(a) and 5(b) was per-
formed according to the scheme proposed in Ref. [28]. The
obtained reconstructed fields are compared in Fig. 5(d) with
the net electric IR near field obtained within Mie theory [74]
and used as input in the streaking calculations. As is seen
in Fig. 5(d), the ACCTIVE method improves the near-field
reconstruction in comparison with the SFA calculation. The
least-square deviation between the reconstructed and Mie-
theory calculated fields, assembled over the entire IR pulse
length, amounts to 1.62% using the ACCTIVE wave func-
tion and 3.05% using the SFA. A comparative animation of
reconstructed and analytical electric fields at the surface of Au
nanospheres can be found in the Supplemental Material [72].
The ACCTIVE method thus extends the applicability of the
plasmonic near-field reconstruction scheme in Ref. [28] to
lower XUV photon energies.

IV. SUMMARY

In summary, we propose a semiclassical method, ACC-
TIVE, to solve the TDSE for one active electron exposed to
any spatially inhomogeneous time-dependent external force
field. We validate this method by comparing ACCTIVE-
calculated electronic wave functions with known Coulomb
and Volkov wave functions for the electronic dynamics in
Coulomb and intense laser fields, respectively, and by scru-
tinizing ACCTIVE-calculated Coulomb-Volkov final photo-
electron wave functions (i) against ab initio numerical solu-
tions of the TDSE and (ii) in streaked photoemission from
hydrogen atoms and plasmonic metal nanospheres.

For streaked photoemission from hydrogen atoms, we
demonstrate excellent agreement of our ACCTIVE calcula-
tion with a benchmark ab initio TDSE calculation, while a
comparative calculation using the SFA systematically deviates
from the exact TDSE solution. For streaked photoemission

from Au nanospheres we find that ACCTIVE final-state wave
functions improve the reconstruction of plasmonic near fields
over SFA calculations (based on Volkov final states) at com-
paratively low photoelectron energies.
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APPENDIX A: GAUGE INVARIANCE OF
THE ACCTIVE METHOD

While Eq. (1) is known to be form invariant under the
gauge transformations given by Eqs. (6) [51], we here ver-
ify the invariance of Eqs. (4) under the transformations (6)
and (7).

We first show that the velocity field (9) is gauge invariant.
This is easily demonstrated by the following steps:

p′(r, t ) ≡ mv′(r, t )

≡ ∇S′
0(r, t ) − qA′(r, t )

= ∇[S0(r, t ) + q f (r, t )] − q[A(r, t ) + ∇ f (r, t )]

= ∇S0(r, t ) − qA(r, t )

≡ p(r, t ) ≡ mv(r, t ). (A1)

Next, the sequence of identities

0 = ∂

∂t
S0(r, t ) + [∇S0(r, t ) − qA(r, t )]2

2m
+ ϕ(r, t )

= ∂

∂t
[S′

0(r, t ) − q f (r, t )] + [∇S′
0(r, t ) − qA′(r, t )]2

2m

+
[
ϕ′(r, t ) + q

∂

∂t
f (r, t )

]

= ∂

∂t
S′

0(r, t ) + [∇S′
0(r, t ) − qA′(r, t )]2

2m
+ ϕ′(r, t ) (A2)

proves the gauge invariance of Eq. (4a). The invariance of the
higher-order terms in Eqs. (4b) and (4c) is easily recognized
by replacing Sn(r, t ) with S′

n(r, t ) for n � 1 and [S0(r, t ) −
qA(r, t )] with [S′

0(r, t ) − qA′(r, t )].

APPENDIX B: DERIVATION OF EQ. (22)

We here derive the Volkov wave function (22) using ACC-
TIVE. Starting from the potentials and initial wave function in
Eq. (21), the velocity field along the classical trajectory r̃(t ) is

v(r, t ) = p
m

+ q

m

∫ t

t0

E(t ′)dt ′ = p − qA(t )

m
. (B1)
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Therefore,

r̃(t ) = r0 +
∫ t

t0

[
p − qA(t )

m

]
dt ′, (B2)

∇ · v(r, t ) = 0, (B3)

and Eq. (19), applied to the example in Sec. III A, becomes

�(r, t ) = exp

{
ip · r0

h̄
+ i

h̄

∫ t

t0

[
m

2

(
p − qA(t ′)

m

)2

+ q

(
p − qA(t ′)

m

)
· A(t ′)

]
dt ′

}

= exp

{
ip
h̄

·
[

r −
∫ t

t0

(
p − qA(t )

m

)
dt ′

]
+ i

h̄

∫ t

t0

[
m

2

(
p − qA(t ′)

m

)2

+ q

(
p − qA(t ′)

m

)
· A(t ′)

]
dt ′

}

= exp

{
ip · r

h̄
+ i

h̄

∫ t

t0

[
m

2

(
p − qA(t ′)

m

)2

− m

(
p − qA(t ′)

m

)2
]

dt ′
}

= exp

{
i p · r

h̄
− i

2mh̄

∫ t

t0

[p − qA(t ′)]2dt ′
}
, (B4)

which is the Volkov wave function (22).

APPENDIX C: NUMERICAL CALCULATION OF
COULOMB WAVE FUNCTIONS USING ACCTIVE

The ACCTIVE method links a quantum-mechanical prob-
lem of obtaining wave functions �(r, t ) to a classical problem
of determining velocity fields v(r, t ). However, in some cases,
e.g., for Coulomb wave functions, such velocity fields are
not uniquely defined (Fig. 6). This can result in interference
patterns in the obtained wave functions, as pointed out by
Goldfarb et al. [60].

For each event (r, t ), two possible classical trajectories
can be found to satisfy the same boundary condition of an
outgoing plane wave in Eq. (24), as shown in Fig. 6. Goldfarb
et al. [60] take this interference into account by approximating
the wave function as the superposition of contributions from

FIG. 6. Two possible classical trajectories passing through (r, t )
satisfying the same outgoing plane-wave boundary condition.

different trajectories

�(r, t ) ≈
∑

l

exp

[
i

h̄
Sl (r̃(t ), t )

]
, (C1)

where each action Sl (r, t ) is associated with a trajectory r̃l (t ).
In this work, we follow a different and simpler approach.

The TDSE is a linear partial differential equation. Its
solution can be expressed as the superposition of a set of
linearly independent basis functions � l (r, t ),

�(r, t ) =
∑

l

Cl� l (r, t ) =
∑

l

Cl exp

[
i

h̄
Sl (r, t )

]
, (C2)

where each Sl (r, t ) is uniquely determined by a velocity field
vl (r, t ) and the coefficients Cl are obtained from the initial
condition

�0(r) =
∑

l

Cl� l (r, t0). (C3)

Since two possible trajectories can be obtained for each
given event (r, t ), we can find two velocity fields v+(r, t ) and
v−(r, t ), which are defined by

v+(r, t )
z→+∞, x>0−−−−−−−−→ ẑp/m, (C4a)

v−(r, t )
z→+∞, x<0−−−−−−−−→ ẑp/m, (C4b)

as illustrated in Figs. 7(a) and 7(b), respectively. Figures 7(c)
and 7(d) show the calculated first-order ACCTIVE wave
functions, �+(r, t ) and �−(r, t ), associated with these two
velocity fields at t = 0. Numerical calculation shows that

�+(r, t )
z→+∞−−−−−→

{
eikz, x > 0
0, x < 0

(C5a)

�−(r, t )
z→+∞−−−−−→

{
eikz, x < 0
0, x > 0.

(C5b)
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FIG. 7. Two possible velocity fields (a) v+(r, t ) and (b) v−(r, t ).
(c) �+(r, t ) and (d) �−(r, t ) are the real parts of the corresponding
first-order ACCTIVE wave functions at y = 0 plane, respectively,
and (d) �(r, t ) is the linear combination of these two wave functions.

Therefore, at t0, �0(r) = �(r, 0) can be written as the
linear combination of �+(r, t0) and �−(r, t0) and satisfies the
boundary condition (C4):

�0(r) = �+(r, t0) + �−(r, t0). (C6)

The wave function at any given time t is then obtained with
the same coefficients,

�(r, t ) = �+(r, t ) + �−(r, t ), (C7)

and is shown in Fig. 7(e).

APPENDIX D: COMMENTS ON STREAKED
PHOTOEMISSION FROM Au NANOSPHERES

Figure 5 in the main text shows the comparison of simu-
lated streaked photoelectron spectra using either ACCTIVE
wave functions as final states or Volkov wave function in
SFA. ACCTIVE wave functions are more accurate at low

FIG. 8. Real parts of photoelectron final-state wave functions
near the surface of Au nanospheres along the XUV polarization
direction: (a) first-order ACCTIVE wave function and (b) SFA
modeled wave function in Ref. [28], for the electron detection along
the XUV polarization direction and asymptotic photoelectron energy
E f = 5 eV. (c) Initial-state wave function, modeled as bound state
in a spherical square-well potential, at the Fermi level. The vertical
dashed line indicates the nanosphere surface. (d) Simulated XUV
photoemission cross sections.

photoelectron energy, but entail higher CoEs than Volkov
wave functions [Fig. 5(c)]. In comparison with Fig. 4(d),
this might appear as counterintuitive. An explanation is given
below.

Figure 8(a) shows the real part of the first-order ACCTIVE
wave function near the Au nanosphere surface, and Fig. 8(b)
the corresponding Volkov wave function in SFA [28]. Both
are calculated for photoelectron detection along the XUV po-
larization direction and outgoing photoelectron energy E f =
5 eV. Inside the nanosphere, the Volkov final-state wave func-
tion neglects the spherical well potential. It therefore has a
longer wavelength than the ACCTIVE wave function and
more strongly overlaps with the initial-state wave function
shown in Fig. 8(c). Thus, the cross section, calculated follow-
ing Ref. [51], is larger in SFA than if based on ACCTIVE final
states.

This effect becomes less significant at larger photoelec-
tron kinetic energies, where both ACCTIVE and SFA wave
functions have shorter wavelengths and overlap less with
initial-state wave function. Figure 8(d) shows that the energy-
dependent photoemission cross sections calculated with ACC-
TIVE and Volkov final states converge at large photoelectron
energies, while at small energies the SFA leads to larger cross
sections. The net effect of this cross-section difference is to
put more weight on photoelectron yields at lower energy and
thus to shift streaking traces and CoEs in SFA photoemis-
sion spectra to lower energies as compared to ACCTIVE-
calculated spectra.
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