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In quantum theory, the description of radiation by a system of charged particles in stationary and nonstationary
cases requires different approaches. While radiative processes in stationary systems are covered in textbooks,
the emission of radiation by nonstationary systems driven by an external time-dependent force has not received
due attention. In this paper, we develop a quantum theory describing the spectrum of photons emitted by a
generic nonstationary atomic system and show how to implement it in practical calculations. We also discuss
the approximation in which the exact quantum formula for the spectrum reduces to the well-known classical
formula with the classical dipole moment replaced by the expectation value of the dipole moment calculated
quantum mechanically. This approximation underlies the classical ansatz commonly used in the theory of high-
order harmonic generation (HHG). To illustrate the theory, we apply it to calculating HHG spectrum for a one-
dimensional zero-range-potential model. The spectra obtained from the quantum formula and from the ansatz
are different and the difference grows as the probability of ionization grows. This difference is an observable
effect predicted by the present theory.
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I. INTRODUCTION

In classical theory, the radiation of electromagnetic waves
by a system of charged particles under certain approximations
is completely described by the time-dependent electric dipole
moment dcl(t ) of the system. In particular, the spectral density
of the radiation at frequency ω > 0 is given by [1,2]

Icl(ω) = 2ω4

3πc3
|dcl(ω)|2. (1)

Here and in the following, for any function of time f (t ) its
Fourier transform is defined by

f (ω) =
∫

f (t )eiωt dt . (2)

Equation (1) holds for stationary systems, whose Hamilto-
nians do not depend on time, as well as for nonstationary
systems interacting with some external time-dependent forces.
This classical formula is derived under the following two
approximations. First, the particles are nonrelativistic, which
amounts to the dipole approximation. Second, the particles are
assumed to perform a given motion driven by their interac-
tions with each other and with external forces, but not affected
by the emitted radiation. In other words, they move as if there
were no radiation, and this motion defines the dipole moment
dcl(t ).

Consider the radiation by charged particles under the same
two approximations, but in the framework of quantum theory.
Stationary and nonstationary systems in this case require
different treatments. Quantum theory of radiation by station-
ary systems is presented in textbooks [3,4]. An elementary
process considered in this theory is the spontaneous emission
of a photon in transitions of an atom from one stationary
state to another stationary state with lower energy in the

discrete or continuous spectrum. The second of the approx-
imations indicated above means that the interaction with the
electromagnetic field causing the emission should be taken
into account in the leading order of perturbation theory, so
the treatment is based on Fermi’s golden rule. Because of the
first approximation, the emission rate is expressed in terms
of a matrix element of the dipole operator d̂. However, this
standard approach is not applicable to nonstationary systems.
This can be seen already from the fact that nonstationary
systems do not have stationary states; therefore, radiative
processes cannot be described by rates. Instead, one should
consider the total probability of emitting a photon during
the action of an external time-dependent force. Furthermore,
there exists radiation induced by the external force, which
would not appear without it. The description of this radiation
requires a different approach and, except for the case of a
weak external force which can be treated perturbatively (as,
e.g., in the problem of scattering of a weak electromagnetic
field by an atom [4]), is not discussed in textbooks. The goal
of this paper is to develop a quantum theory which would
enable one to calculate the spectrum of photons emitted by
a nonstationary system under the same approximations as in
Eq. (1).

To be more specific, we mention that our interest to this
general problem is motivated by its relation to the theory
of high-order harmonic generation (HHG). The point is that
in all calculations in the theory of HHG, beginning with
the pioneering papers [5–10], it is tacitly postulated that the
spectrum of harmonics generated by an atom in a strong laser
field is described by Eq. (1) with the classical dipole moment
replaced by the expectation value of the dipole moment cal-
culated quantum mechanically,

dcl(t ) → d(t ) = 〈ψ (t )|d̂|ψ (t )〉, (3)
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where |ψ (t )〉 is the state vector of the atom interacting with
the laser field, i.e., of the nonstationary system which emits
the HHG radiation. We call this replacement the classical
ansatz. In earlier studies on the quantum theory of HHG
[11,12], it was recognized that the replacement involves an
additional approximation not used in the derivation of the
classical formula (1). From the point of view of the general
theory, it is desirable to clarify the dynamical origin of this
approximation. From the point of view of applications, it is
important to realize its consequences in the theory of HHG.
In the present paper we address both these issues.

The paper is organized as follows. In Sec. II, a quantum
theory of radiation for a generic nonstationary system is
developed. We derive the quantum analog of Eq. (1) and show
how to implement this formula in practical calculations. We
also compare the present theory with the standard treatment
of spontaneous emission in the stationary case (Appendix) and
with a theory for the nonstationary case proposed in Ref. [12]
(Sec. II G). In Sec. III, we discuss how the classical ansatz (3)
emerges from the present theory and analyze the difference
between the exact quantum formula and the ansatz in two
analytically tractable cases. In Sec. IV, the theory is illustrated
by calculating HHG spectrum for a model one-dimensional
atom. Section V concludes the paper.

II. QUANTUM THEORY

A. Time-dependent Schrödinger equation

We consider a one-electron atom described by a time-
independent potential V̂a interacting with a time-dependent
potential V̂ext(t ) representing an external force exerted on
the electron and a quantized electromagnetic field. The time-
dependent Schrödinger equation for the combined atom-field
system reads (atomic units are used throughout)

i
∂|�(t )〉

∂t
= [Ĥ + V̂ext(t )]|�(t )〉, (4)

where |�(t )〉 is the state vector of the system and Ĥ is its
Hamiltonian in the absence of the external force. We have

Ĥ = Ĥ0 + Ĥint, (5)

where Ĥ0 describes the noninteracting atom and field,

Ĥ0 = Ĥa + Ĥf, (6)

Ĥa is the Hamiltonian of the unperturbed atom,

Ĥa = p̂2

2
+ V̂a, (7)

Ĥf is the field Hamiltonian, and Ĥint represents the atom-field
interaction. The electromagnetic field is quantized in a cubic
box of volume L3 with periodic boundary conditions [3,4].
The field modes in the box are enumerated by a multi-index
ν = qλ, where q = 2π (lx, ly, lz )/L = ωn/c is the discretized
wave vector, lx, ly, and lz are integers, ω > 0 is the mode fre-
quency, n2 = 1, and λ = 1, 2 labels real polarization vectors
eν satisfying eνq = 0 and eqλeqλ′ = δλλ′ . The field Hamilto-
nian is

Ĥf =
∑

ν

ωâ†
ν âν, (8)

where â†
ν and âν are the creation and annihilation operators

for photons in the mode ν obeying the commutation rela-
tion [âν, â†

ν] = 1. Following classical theory [1,2] leading to
Eq. (1), the atom-field interaction is treated in the dipole ap-
proximation and within the first order of perturbation theory—
this amounts to the two approximations formulated below
Eq. (2). Under these approximations [3,4]

Ĥint = αÂp̂, α = 1/c, (9)

where Â is the vector potential operator,

Â =
∑

ν

Aν (â†
ν + âν ), Aν =

√
2πc2

ωL3
eν . (10)

The notation α in Eq. (9) incorporating the electron charge
(equal to −1 in atomic units) is introduced to explicitly indi-
cate the perturbation theory parameter. The external potential
V̂ext(t ) can be arbitrarily strong and is treated without any
approximations. It is assumed to act during a finite time
interval,

V̂ext(t � 0) = V̂ext(t � T ) = 0. (11)

The present treatment based on the first order of perturbation
theory in α is restricted to not too large values of T . Let
� = O(α2) denote the characteristic rate of spontaneous ra-
diative decay for atomic states involved in the dynamics de-
scribed by Eq. (4). The applicability of the treatment requires

�T � 1. (12)

This condition ensures that radiative processes do not affect
the electronic motion, which complies with the second of
the approximations used in the derivation of Eq. (1). The
atomic subsystem described by the Hamiltonian Ĥa + V̂ext(t )
is a nonstationary system meant in the title. Our goal is to
analyze the emission of photons by this system caused by its
interaction with the quantized field.

B. Bare and dressed states

Let us introduce eigenstates of the different Hamiltonians.
The eigenstates of the unperturbed atom in the discrete spec-
trum are defined by

Ĥa|ψn〉 = En|ψn〉. (13)

We need to consider two sets of eigenstates in the continuous
spectrum,

Ĥa|ψ±
k 〉 = Ek|ψ±

k 〉, Ek = k2/2, (14)

where k is the incident momentum and the superscripts
+ and − refer to states with outgoing and incoming scattering
waves, respectively [13,14]. For brevity, in the following
expansions over the complete set of atomic states, we retain
only sums over the discrete spectrum, omitting integrals over
the continuous spectrum, and employ the notation |ψ±

n 〉, to
indicate which set of continuum states is meant. For states in
the discrete spectrum the superscript is omitted.

The eigenstates of the field oscillators are defined by

â†
ν âν |N〉ν = N |N〉ν, N = 0, 1, . . . . (15)
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The eigenstates of the free field are given by products of such
states for each oscillator. Thus we introduce the vacuum field
state containing no photons,

|0〉 =
∏
ν

|0〉ν, Ĥf|0〉 = 0. (16)

A state with one photon in the mode ν is defined by

|ν〉 = â†
ν |0〉 = |1〉ν

∏
ν ′ �=ν

|0〉ν ′ , Ĥf|ν〉 = ω|ν〉. (17)

One can similarly define two-photon field states, etc., but we
do not need them for the analysis.

We now consider the combined atom-field system. The
eigenstates of the noninteracting system are called bare states.
We introduce zero-photon and one-photon bare states,

Ĥ0|ψ±
n 〉|0〉 = En|ψ±

n 〉|0〉, (18a)

Ĥ0|ψ±
n 〉|ν〉 = (En + ω)|ψ±

n 〉|ν〉. (18b)

The operator Ĥint couples the electronic and field degrees
of freedom. The eigenstates of the interacting system are
called dressed states. The corresponding zero-photon and one-
photon dressed states are defined by

Ĥ |ψ±
n , 0〉 = En0|ψ±

n , 0〉, (19a)

Ĥ |ψ±
n , ν〉 = Enν |ψ±

n , ν〉. (19b)

They can be found using stationary perturbation theory [13].
In the first order in α, we obtain En0 = En + O(α2), Enν =
En + ω + O(α2), and

|ψ±
n , 0〉 = |ψ±

n 〉|0〉+ α
∑

ν

Ĝ±
a (En − ω)Aν p̂|ψ±

n 〉|ν〉+ O(α2),

(20a)

|ψ±
n , ν〉 = |ψ±

n 〉|ν〉 + αĜ±
a (En + ω)Aν p̂|ψ±

n 〉|0〉
+α × (two-photon states) + O(α2), (20b)

where Ĝ±
a (E ) are the Green’s operators for the unperturbed

atom,

Ĝ±
a (E ) = (E − Ĥa ± iε)−1 (21a)

=
∑

n

|ψ−
n 〉〈ψ−

n |
E − En ± iε

, (21b)

satisfying outgoing (+) and incoming (−) wave asymptotic
boundary conditions. Here and in the following, ε = +0
denotes an infinitesimally small real positive number. Note
that any of the sets |ψ±

n 〉 could be used in the spectral
resolution (21b). If the subscript n corresponds to a discrete
state of the atom, then the superscript ± in the notation of
the state on the RHS of Eqs. (20) can be omitted (throughout
the paper, LHS and RHS stand for the left- and right-hand
side, respectively). However, this superscript also appears in
the Green’s operator, so it should be retained on the LHS of
the equations. In this case, from Eq. (20a) we have

|ψ+
n , 0〉 = |ψ−

n , 0〉 − 2iπα
∑

ν

δ(En − ω − Ĥa)

× Aν p̂|ψn〉|ν〉 + O(α2), (22)

where the second term on the RHS originates from the pole
in Eq. (21a). In the time-dependent picture, the + (−) dressed
states can be obtained from the corresponding bare states at
t → −∞ (t → +∞) by adiabatically turning on (off) the
interaction Ĥint. This important physical asymmetry between
the + and − states will be taken into account in defining
observables (see Sec. II D).

The following comment regarding the dressed states is
in order here. The perturbation theory expansion in α is
known to encounter a problem which appears already in the
second-order correction to the eigenenergies in Eqs. (19).
This correction for dressed states originating from discrete
states of the unperturbed atom is generally complex. Its real
part describes the Lamb shift of the atomic level [15]. This
shift diverges and requires regularization [3,4]. Its imaginary
part accounts for the decay of the atomic state by emitting
or absorbing a photon; the characteristic decay rate appears
in the condition (12). Because of the decay, complex-energy
dressed states do not belong to the discrete spectrum of Ĥ
but are diluted in its real-energy continuum, as in the case
of autoionizing states of atoms [16]. Thus, strictly speaking,
the structure of the set of dressed states essentially differs
from that of bare states [3]. However, this problem does not
reveal itself in the first order in α. In this approximation,
dressed states are in one-to-one correspondence with bare
states from which they originate according to Eqs. (20). The
two sets bearing the same superscript are related by a unitary
transformation. Let us discuss this dressing transformation in
more detail.

For definiteness, we consider the − states, since this is
what is needed for the following; the + states can be treated
similarly. The dressing transformation is defined by

|�−
dressed〉 = Û |�−

bare〉, (23)

where |�−
bare〉 stands for any of the bare states, including

multiphoton states not discussed above, and |�−
dressed〉 denotes

the corresponding dressed state. We show the unitarity of Û
by explicitly constructing this operator. This can be done by
solving Eq. (4) for V̂ext(t ) = 0. To obtain |�−

dressed〉, one has
to substitute Ĥint → Ĥinte−εt and find the solution satisfying
|�(t → ∞)〉 = e−iĤ0t |�−

bare〉. By comparing with Eq. (23) one
obtains Û . Thus, in the first order in α, we find

Û = 1 + iR̂ + O(α2), (24)

where R̂ = O(α) is given by

R̂ =
∫ ∞

0
eiĤ0t Ĥinte

−iĤ0t e−εt dt (25a)

= α
∑

ν

(R̂ν â†
ν + R̂†

ν âν ) (25b)

and

R̂ν =
∫ ∞

0
eiĤat Aν p̂ e−iĤat eiωt−εt dt (26a)

= i
∑
nm

|ψ−
n 〉〈ψ−

n |Aν p̂|ψ−
m 〉〈ψ−

m |
En − Em + ω + iε

. (26b)
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The operator R̂ is manifestly Hermitian, which ensures (to
the first order in α) the condition of unitarity Û†Û = 1. For
zero-photon and one-photon states Eq. (23) takes the form

|ψ−
n , 0〉 = Û |ψ−

n 〉|0〉 = |ψ−
n 〉|0〉+ iα

∑
ν

R̂ν |ψ−
n 〉|ν〉+ O(α2),

(27a)

|ψ−
n , ν〉 = Û |ψ−

n 〉|ν〉 = |ψ−
n 〉|ν〉 − iαR̂†

ν |ψ−
n 〉|0〉

+α × (two-photon states) + O(α2). (27b)

Taking into account Eqs. (21b) and (26b), it can be seen that
Eqs. (27) agree with Eqs. (20).

From the unitarity of the dressing transformation it
follows that zero-photon and one-photon dressed states
with the same superscript are orthogonal, 〈ψ−

m , ν|ψ−
n , 0〉 =

〈ψ+
m , ν|ψ+

n , 0〉 = 0. However, such states with different sub-
scripts are not orthogonal, which reflects the fact that dressing
transformations for + and − states are different. Thus, for
zero-photon states |ψ+

n , 0〉 originating from discrete states of
the unperturbed atom, using Eq. (22) we obtain

〈ψ−
m , ν|ψ+

n , 0〉 = −2iπα〈ψ−
m |Aν p̂|ψn〉δ(Em + ω − En). (28)

We show below (see Sec. II D and the Appendix) that this
projection describes spontaneous decay of the state |ψ+

n , 0〉.

C. Virtual and real photons

The first-order correction to the eigenvector in Eq. (27a)
dresses the unperturbed atomic state by a cloud of virtual
photons [17]. These photons are bound to the atom; they
cannot leave the system and therefore do not contribute to
the emitted radiation. Accordingly, the dressed state on the
LHS of Eq. (27a) is said to contain no real photons. Similarly,
the dressed state on the LHS of Eq. (27b) contains one real
photon, while the RHS of Eq. (27b) contains virtual zero-
photon and two-photon field states. The central quantity in the
following analysis is the number of photons in a given mode.
To properly define this quantity, it is important to distinguish
between virtual and real photons. Here we introduce the
corresponding formalism.

The creation â†
ν and annihilation âν operators are defined

by their action on bare states. In particular, bare states are
the eigenstates of the operator â†

ν âν giving the number of
photons in the mode ν. For example, â†

ν âν |ψ−
n 〉|0〉 = 0 and

â†
ν âν |ψ−

n 〉|ν〉 = |ψ−
n 〉|ν〉. However, these operators do not dis-

tinguish between virtual and real photons. To single out real
photons, we need operators which would act on dressed states
in the same way as â†

ν and âν act on bare states. We intro-
duce such operators by a canonical transformation defined by
Eq. (23),

d̂ν = Û âνÛ†, d̂†
ν = Û â†

νÛ†. (29)

This transformation preserves the commutation relation
[d̂ν, d̂†

ν ] = 1. The dressed operators (29) have the same prop-
erties as â†

ν and âν , but in the basis of dressed states. In
particular, d̂†

ν d̂ν |ψ−
n , 0〉 = 0 and d̂†

ν d̂ν |ψ−
n , ν〉 = |ψ−

n , ν〉. This
enables us to interpret d̂†

ν and d̂ν as the creation and annihila-

tion operators for real photons in the mode ν. Using Eqs. (24)
and (25), in the first order in α we obtain

d̂ν = âν − iαR̂ν + O(α2), (30a)

d̂†
ν = â†

ν + iαR̂†
ν + O(α2). (30b)

These equations clarify the meaning of the operators R̂ν .

D. Initial condition and observables

We still have to specify the initial condition for Eq. (4) and
define observables of interest here. These issues are related.
Let us discuss them.

In standard treatments of radiative processes in stationary
systems [3,4], the dynamics is described in terms of transitions
between bare states. In the present case, radiative transitions
are caused by the atom-field interaction Ĥint. This interaction
persists at all times; hence the transitions also occur at all
times. The amplitudes of bare states continue to oscillate
with time and a special limiting procedure is required to
extract observables at t → ∞. This approach is recalled in
the Appendix.

We adopt an alternative approach in which both the initial
condition for Eq. (4) and observables are defined in terms
of dressed states. We assume that the atom is initially in a
discrete ground or excited state indicated by the subscript 0
and there are no photons. This initial condition is specified by

|�(0)〉 = |ψ+
0 , 0〉. (31)

The initial state is represented by a + state because it is
prepared in the past. Dressed states are the eigenstates of Ĥ ,
so transitions between them are caused only by the external
potential V̂ext(t ). Such transitions are localized in time in
the interval 0 < t < T , see Eq. (11), so observables can be
extracted from the solution to Eqs. (4) and (31) at any time
t � T after the action of V̂ext(t ) is over. We are interested in
two kinds of observables: the probability to find the system in
a given zero-photon state,

Pn = |〈ψ−
n , 0|�(t � T )〉|2, (32)

and the total probability to emit a photon in a given mode ν,

Qν =
∑

n

|〈ψ−
n , ν|�(t � T )〉|2. (33)

Note that the final states here are represented by − states,
which complies with the general rule for transitions to con-
tinuous spectrum [13]. The probability (32) describes the
distribution of atomic states resulting from excitation and ion-
ization processes not accompanied by emitting photons. The
probability (33) defines the spectral, angular, and polarization
distributions of the emitted photons. Of main interest here is
the spectral density of radiation obtained from Qν in the limit
L → ∞ by integrating over the direction n = cq/ω of the
wave vector of a photon and summing over its polarization
λ,

I (ω) = L3ω3

(2πc)3

∑
λ

∫
Qνdn. (34)

To obtain the quantum analog of Eq. (1), one has to substitute
here Qν calculated in the leading-order approximation in α.
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In the stationary case, V̂ext(t ) = 0, the system sponta-
neously emits photons if the subscript 0 in Eq. (31) corre-
sponds to an excited atomic state. We show in the Appendix
that in the present approach based on Eqs. (31) and (33)
spontaneous photons are an immanent property of the initial
dressed state and this approach yields in the stationary case
the same results as the approach used in textbooks [3,4].

The solution to Eq. (4) can be expanded in dressed states.
Although the operator V̂ext(t ) acts only on the electronic de-
grees of freedom, it couples dressed states with different num-
bers of photons, because of correlation between electronic and
photonic degrees of freedom in the states. In the first order
in α, only zero-photon and one-photon states are populated
during the evolution; two-photon states are populated in the
second order in α, etc. Thus the solution to Eq. (4) can be
presented in the form

|�(t )〉 =
∑

n

An(t )e−iEnt |ψ−
n , 0〉

+α
∑
nν

Bnν (t )e−i(En+ω)t |ψ−
n , ν〉, (35)

where the coefficients An(t ) and Bnν (t ) are of order O(α0).
These coefficients cease to depend on time after the action of
the external potential is over,

An(t � T ) = An, Bnν (t � T ) = Bnν . (36)

Thus the probabilities (32) and (33) can be expressed as

Pn = |An|2, Qν = α2
∑

n

|Bnν |2. (37)

Using Eqs. (35)–(37) and the operators d̂†
ν and d̂ν introduced

in Sec. II C, we obtain yet another representation for Qν ,

Qν = 〈�(t )|d̂†
ν d̂ν |�(t )〉|t�T . (38)

This formula shows that Qν defined by Eq. (33) gives the
number of real photons emitted in the mode ν.

To calculate the observables Pn and Qν , one has to solve
Eq. (4) with the initial condition (31). We next discuss two
approaches to solving this problem.

E. Expansion in bare states

The solution to Eqs. (4) and (31) can be expanded in bare
states. In the first order in α, it can be sought in the form

|�(t )〉 = |ψ (t )〉|0〉 + α
∑

ν

e−iωt |φν (t )〉|ν〉, (39)

where

|ψ (t )〉 =
∑

n

an(t )e−iEnt |ψ−
n 〉 (40)

and

|φν (t )〉 =
∑

n

bnν (t )e−iEnt |ψ−
n 〉 (41)

are atomic state vectors and the coefficients an(t ) and bnν (t )
are of order O(α0). Substituting Eq. (39) into Eqs. (4) and (31)
and projecting from the left on 〈0| using Eq. (20a), we obtain

i
∂|ψ (t )〉

∂t
= [Ĥa + V̂ext(t )]|ψ (t )〉, (42a)

|ψ (0)〉 = |ψ0〉. (42b)

Projecting on 〈ν| gives

i
∂|φν (t )〉

∂t
= [Ĥa + V̂ext(t )]|φν (t )〉 + eiωt Aν p̂|ψ (t )〉, (43a)

|φν (0)〉 = Ĝ+
a (E0 − ω)Aν p̂|ψ0〉. (43b)

We have neglected terms of order O(α2) and O(α) in Eqs. (42)
and (43), respectively, which is consistent with neglecting
terms of order O(α2) in Eq. (39). These equations form
the basis of the present approach and provide a means to
implement it in practical calculations. Let us discuss them.

Equation (42) describes the atomic subsystem completely
neglecting its interaction with the quantized field. The condi-
tion (11) means that the coefficients in Eq. (40) satisfy

an(t � T ) = an, (44)

where an are constants. The unitarity of the evolution de-
scribed by Eq. (42) ensures that∑

n

|an|2 = 1. (45)

Substituting Eqs. (27) into Eq. (35) and comparing the zeroth-
order term with such a term in Eq. (39), we obtain An(t ) =
an(t ); hence An = an. Thus the distribution of atomic states
(32) in the leading order in α is not affected by the atom-field
interaction and given by

Pn = |an|2. (46)

Following classical theory leading to Eq. (1), we assume that
the solution to Eq. (42), and hence the coefficients an, are
known. In practice, for general potentials V̂a and V̂ext(t ), the
solution can be found only numerically. Note that the theory
of HHG [5–10] is based on Eq. (42) with

V̂ext(t ) = F(t )r̂, (47)

where F(t ) is the electric field of an intense laser pulse.
Solving Eq. (42) numerically is also the only option in this
case.

Equation (43) describes the emission of photons. This
equation is inhomogeneous: the last term on the RHS of
Eq. (43a), containing the solution to Eq. (42), serves as a
source of photons. Because of this term, the norm of |φν (t )〉 is
not conserved. The initial condition (43b) describes photons
present in the initial state (31). Using Eqs. (22) and (27a), we
can rewrite it in the form

|φν (0)〉 = i[R̂ν − 2πδ(E0 − ω − Ĥa)Aν p̂]|ψ0〉, (48)

where the two terms on the RHS describe virtual and real
(spontaneous, see the Appendix) photons, respectively. Note
that the second term vanishes if the atom is initially in
the ground state. Because of the inhomogeneous term in
Eq. (43a), the coefficients in Eq. (41) do not become constant
at t � T . Substituting Eqs. (40) and (41) into Eq. (43a) and
using Eq. (26b), we obtain

bnν (t � T ) = bnν + i ei(En+ω)t 〈ψ−
n |R̂ν |ψ (t )〉, (49)

where bnν are constants. Comparing the first-order terms in
Eqs. (35) and (39) and using (49) we find Bnν = bnν . Thus
the distribution of photons (33) in the leading order in α is
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given by

Qν = α2
∑

n

|bnν |2. (50)

The coefficients bnν defining this distribution are to be found
from Eq. (49) by solving Eq. (43). This problem is technically
similar to solving Eq. (42) and, in the general case, it also
can be treated only numerically. Note, however, that it should
be solved for each photon mode ν, which presents a much
more laborious computational task. Equation (34) with Qν

substituted from Eq. (50) is the quantum analog of Eq. (1)
for the present system.

There exists an interesting relation connecting |ψ (t )〉 and
|φν (t )〉. Using Eqs. (42a) and (43a), we obtain

i
∂

∂t
〈ψ (t )|φν (t )〉 = eiωt Aνp(t ), (51)

where

p(t ) = 〈ψ (t )|p̂|ψ (t )〉, p(t � 0) = 0 (52)

is the expectation value of the electron momentum in the state
|ψ (t )〉. From the initial conditions (42b) and (43b) we have
〈ψ (0)|φν (0)〉 = 0. Thus

〈ψ (t )|φν (t )〉 = −i
∫ t

0
Aνp(t ′)eiωt ′

dt ′. (53)

The LHS of this equation for t � T can be calculated us-
ing Eqs. (44) and (49). The result of substituting Eq. (49)
into Eq. (41) can be presented in the form |φν (t � T )〉 =
|φ′

ν (t )〉 + |φ′′
ν (t )〉, where the two terms correspond to the two

terms in Eq. (49). We have 〈ψ (t )|φ′
ν (t )〉|t�T = ∑

n a∗
nbnν and

〈ψ (t )|φ′′
ν (t )〉|t�T = eiωt 〈ψ (t )|R̂ν |ψ (t )〉. On the other hand,

using Eq. (26a) we find

eiωt 〈ψ (t )|R̂ν |ψ (t )〉|t�T =
∫ ∞

t
Aνp(t ′)eiωt ′

dt ′. (54)

Substituting all this into Eq. (53) gives [we recall Eq. (2)
defining the notation]∑

n

a∗
nbnν = −iAνp(ω). (55)

This relation is useful for testing consistency of the solutions
to Eqs. (42) and (43).

It is instructive to consider the above equations in the
stationary case, V̂ext(t ) = 0. In this case, Eqs. (44) and (49)
hold at all times t � 0. From Eq. (42b) we obtain an = δn0.
Then from Eq. (43b) using Eq. (28) we find that bnν is given
by Eq. (A5). Thus both sides of Eq. (55) turn to zero, so the
relation holds.

F. Expansion in dressed states

The solution to Eqs. (4) and (31) can be also expanded
in dressed states, as in Eq. (35). In the first order in α, the
difference between dressed and bare one-photon states in the
second term in Eq. (35) can be neglected, so we can rewrite
this expansion in the form

|�(t )〉 =
∑

n

An(t )e−iEnt |ψ−
n , 0〉 + α

∑
ν

e−iωt |ϕν (t )〉|ν〉,
(56)

where

|ϕν (t )〉 =
∑

n

Bnν (t )e−iEnt |ψ−
n 〉. (57)

We have already shown that An(t ) = an(t ). Thus the proce-
dure of finding the atomic distribution (46) remains the same
as in the previous approach: one has to solve Eq. (42). Here
we discuss an alternative procedure of finding the distribution
of photons (50).

The state |ϕν (t )〉 differs from the corresponding state
|φν (t )〉 in Eq. (39) because the first term in Eq. (56) also
contains terms of order O(α). Substituting Eq. (27a) into
Eq. (56) and comparing with Eq. (39), we obtain

|ϕν (t )〉 = |φν (t )〉 − i eiωt R̂ν |ψ (t )〉. (58)

The operator R̂ν satisfies the commutation relation

[Ĥa, R̂ν] = −ωR̂ν + iAν p̂. (59)

Differentiating Eq. (58) in time and using Eqs. (42), (43), (48),
and (59), we obtain an equation describing the evolution of
|ϕν (t )〉,

i
∂|ϕν (t )〉

∂t
= [Ĥa + V̂ext(t )]|ϕν (t )〉 + i eiωt [V̂ext(t ), R̂ν]|ψ (t )〉,

(60a)

|ϕν (0)〉 = −2iπδ(E0 − ω − Ĥa)Aν p̂|ψ0〉. (60b)

This equation replaces Eq. (43) in the dressed-state expansion
approach. It is also inhomogeneous; however, in contrast to
Eq. (43a), the source term in Eq. (60a) vanishes after the
action of V̂ext(t ) is over, so the norm of |ϕν (t )〉 is conserved
at t � T . From the second of Eqs. (37) and Eq. (57) we obtain

Qν = α2〈ϕν (t )|ϕν (t )〉|t�T . (61)

Thus the distribution of photons up to a factor α2 coincides
with the norm of |ϕν (t )〉. The possibility to characterize the
radiation dynamics by the norm of the solution to Eq. (60)
is an advantage of the present approach. For V̂ext(t ) = 0, the
norm does not depend on time and remains equal to that of
the RHS of Eq. (60b). Substituting this into Eq. (61) gives
the probability of spontaneous decay of the initial state [see
Eq. (A4) in the Appendix]. For V̂ext(t ) �= 0, the last term in
Eq. (60a) causes a variation of the norm, and this describes
the radiation induced by the external potential. In terms of the
state |ϕν (t )〉, the relation (55) takes the form

〈ψ (t )|ϕν (t )〉|t�T = −iAνp(ω). (62)

We will see in Sec. III that this relation is a bridge from the
quantum theory to the classical formula (1).

G. Heisenberg’s picture and comparison with earlier theories

The approach used in textbook treatments of radiative
processes [3,4] is applicable only to stationary systems. To
treat the emission of radiation by nonstationary systems, this
approach must be generalized. The theory developed above
presents one of the possible generalizations. There exists
another generalization initially proposed for a two-state model
[11] and then developed for the general system of charged
particles [12]. In both papers, the authors were motivated by
applications to the theory of HHG; however, their approach

013410-6



QUANTUM THEORY OF RADIATION BY NONSTATIONARY … PHYSICAL REVIEW A 101, 013410 (2020)

can be extended to an arbitrary form of the external time-
dependent potential. Here, we discuss a relation between the
present theory and the theory proposed in these earlier studies.

To compare the theories, we apply the approach of
Ref. [12] to the present system. The approach employs
Heisenberg’s picture, so we need to introduce some additional
notation. Let Û (t ) and û(t ) denote the evolution operators
for Eqs. (4) and (42a) defined by |�(t )〉 = Û (t )|�(0)〉 and
|ψ (t )〉 = û(t )|ψ (0)〉, respectively. We obtain

Û (t ) = û(t )e−iĤft

[
1 − iα

∑
ν

∫ t

0
Aν p̂(t ′)(â†

νeiωt ′

+ âνe−iωt ′
)dt ′ + O(α2)

]
, (63)

where p̂(t ) = û†(t )p̂û(t ). Let |�D(t )〉 be the solution to
Eq. (4) satisfying

|�D(0)〉 = |ψ0〉|0〉. (64)

In Ref. [12], the number of photons in the mode ν is defined
by

QD
ν (t ) = 〈�D(t )|â†

ν âν |�D(t )〉 (65a)

= 〈�D(0)|â†
ν (t )âν (t )|�D(0)〉, (65b)

where âν (t ) = Û †(t )âνÛ (t ). Using Eq. (63), we obtain

âν (t ) = e−iωt

[
âν − iα

∫ t

0
Aν p̂(t ′)eiωt ′

dt ′ + O(α2)

]
. (66)

Substituting this into Eq. (65b) gives

QD
ν (t ) = α2

∫ t

0

∫ t

0
〈ψ0|Aν p̂(t ′′)Aν p̂(t ′)|ψ0〉eiω(t ′−t ′′ )dt ′dt ′′.

(67)

This formula is the result of the application of the theory of
Ref. [12] to the present problem. It coincides (up to notation)
with Eq. (16) from Ref. [12] which, in turn, corresponds to
Eq. (7) from Ref. [11]. Note that it yields the number of
photons as a function of time. The observable photon dis-
tribution should probably be obtained from Eq. (67) in the
limit t → ∞. However, neither the limiting procedure was
discussed nor the final result for QD

ν = QD
ν (t → ∞) was given

in Ref. [12].
As can be seen from the above derivation, the theory of

Ref. [12] is based on Eqs. (64) and (65a). In the present
theory, these equations are replaced by Eqs. (31) and (38),
respectively. The use of a dressed state (31) instead of a bare
state (64) in the initial condition is justified by the fact that the
Lamb shift [15] is experimentally observable. The counting
of only real photons in Eq. (38) instead of all photons, as in
Eq. (65a), is justified by the observation that virtual photons
dress the atomic subsystem [17], but do not contribute to the
emitted radiation. Thus we believe that the present theory is
in closer correspondence to physical reality than the theory
based on Eqs. (64) and (65a).

We can further elucidate the difference between the theo-
ries by presenting our result for Qν in a form which can be
more directly compared with Eq. (67). Similar to Eq. (65b),
we can rewrite Eq. (38) as

Qν = 〈�(0)|d̂†
ν (t )d̂ν (t )|�(0)〉|t�T , (68)

where d̂ν (t ) = Û †(t )d̂νÛ (t ). For simplicity, we assume that
the atom is initially in the ground state, so that |ψ+

0 , 0〉 =
|ψ−

0 , 0〉 and hence |�(0)〉 = Û |�D(0)〉. Then it can be easily
seen that Eq. (68) differs from Eq. (65b), because Û†Û (t )Û �=
Û (t ). From Eqs. (30) we have

d̂ν (t ) = âν (t ) − iαR̂ν (t ) + O(α2), (69)

where R̂ν (t ) = û†(t )R̂ν û(t ). Using Eqs. (24), (25), and (66) we
obtain

d̂ν (t )|�(0)〉 = −iα e−iωt

[ ∫ t

0
Aν p̂(t ′)eiωt ′

dt ′ + eiωt R̂ν (t )

− R̂ν + O(α)

]
|�D(0)〉. (70)

By solving the Heisenberg equation for R̂ν (t ) using Eq. (59),
we find

R̂ν (t ) = e−iωt

[
R̂ν −

∫ t

0
Aν p̂(t ′)eiωt ′

dt ′

+ i
∫ t

0
[V̂H(t ′), R̂ν (t ′)]eiωt ′

dt ′
]
, (71)

where V̂H(t ) = û†(t )V̂ext(t )û(t ). Substituting this into Eq. (70)
gives

Qν = α2
∫ T

0

∫ T

0
〈ψ0|[V̂H(t ′), R̂ν (t ′)][V̂H(t ), R̂ν (t )]|ψ0〉

× eiω(t−t ′ )dt dt ′. (72)

This formula has the structure of Eq. (67), but the operators
involved are different. Note that in the present case the RHS
of Eq. (60b) vanishes and the solution can be expressed as

|ϕν (t )〉 = û(t )
∫ t

0
[V̂H(t ′), R̂ν (t ′)]eiωt ′

dt ′|ψ0〉. (73)

Substituting this into Eq. (61) also leads to Eq. (72). We
can obtain another representation for Qν by noting that
û(t � T ) = e−iĤa (t−T )û(T ); hence

eiωt R̂ν (t ) =
∫ ∞

t
Aν p̂(t ′)eiωt ′−εt ′

dt ′. (74)

Substituting this into Eq. (70) gives

Qν = α2
∫ ∞

0

∫ ∞

0
〈ψ0|Aνδp̂(t ′)Aνδp̂(t )|ψ0〉

× eiω(t−t ′ )−ε(t+t ′ )dt dt ′, (75)

where

δp̂(t ) = p̂(t ) − eiĤat p̂ e−iĤat . (76)

The latter formula, Eq. (75), can be directly compared with
Eq. (67). In this formula, the way of taking the limit t → ∞ in
Eq. (67) is specified. In addition, the Heisenberg momentum
operator p̂(t ) for an electron moving in the total potential V̂a +
V̂ext(t ) is replaced by δp̂(t ), where the electron momentum in
the atomic potential V̂a is subtracted. We can further rewrite
Eq. (75) in the form

Qν = α2
∑

n

∣∣∣∣
∫ ∞

0
〈ψ−

n |Aνδp̂(t )|ψ0〉eiωt−εt dt

∣∣∣∣
2

, (77)
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where the summation runs over all final states of the atom, as
in Eqs. (33), (37), and (50).

Summarizing the comparison, we note that although
Eqs. (65b) and (67) obviously differ from Eqs. (68) and (75),
respectively, we cannot state that the observable distribution
QD

ν following from Eq. (67) in the limit t → ∞ necessarily
differs from Qν . One can easily see that in the stationary case,
V̂ext(t ) = 0, QD

ν reduces to Q′
ν given by Eq. (A4), and thus

coincides with Qν , if the limit is understood as explained in
the Appendix. We must admit that the coincidence may hold
also in the nonstationary case, V̂ext(t ) �= 0, provided that the
limit is properly defined. In this sense, Eq. (75) specifies the
proper definition.

To close the theory section, we emphasize that Eqs. (50),
(61), (72), (75), and (77) give different representations for
the same quantity—the number of photons emitted in the
mode ν obtained in the leading order in α. Any of them
substituted into Eq. (34) gives the quantum analog of Eq. (1).
Although the expressions on the RHS of the equations are
shown to be formally equivalent, they are quite different from
the point of view of implementation. While Eqs. (50) and (61)
can be readily implemented by solving Eqs. (43) and (60),
respectively, Eqs. (72), (75), and (77) [as well as Eq. (67)]
are formal and not suitable for practical calculations. We are
going to illustrate our theory by calculations (see Sec. IV), so
the difference is important. This explains our priorities in the
presentation.

III. CLASSICAL ANSATZ

A. Classical approximation

The quantum theory developed above can be used to shed
some light on the dynamical origin of the classical ansatz.
It enables us to locate the approximation underlying the
replacement (3) at a more fundamental level. Let us try to find
an approximate solution to Eq. (60) in the form

|ϕν (t )〉 ≈ fν (t )|ψ (t )〉, (78)

where fν (t ) is a function of time. Projecting this equation from
the left on 〈ψ (t )| and taking into account that 〈ψ (t )|ψ (t )〉 =
1, we find fν (t ) = 〈ψ (t )|ϕν (t )〉. Substituting this into Eq. (61)
and using Eq. (62), we obtain

Qν ≈ Q(c)
ν = α2|〈ψ (T )|ϕν (T )〉|2 = α2|Aνp(ω)|2. (79)

For the present system p(t ) = −ḋ(t ), where d(t ) is the expec-
tation value of the dipole moment defined by Eq. (3). Thus

Q(c)
ν = α2ω2|Aνd(ω)|2. (80)

Substituting this into Eq. (34) leads to Eq. (1) with the
classical dipole dcl(t ) replaced by d(t ). This is the classical
ansatz. Accordingly, we refer to Eq. (78) as the classical
approximation.

Comparing Eqs. (61) and (79) and using the Cauchy-
Bunyakovsky-Schwarz inequality, we obtain

Qν � Q(c)
ν . (81)

Thus the exact quantum result Qν for the number of photons
in the mode ν always exceeds the result Q(c)

ν obtained in

the classical approximation. This inequality is a rigorous
consequence of the theory. The equality is achieved if and only
if the state |ϕν (T )〉 up to a constant factor coincides with the
state |ψ (T )〉. The approximation in Eq. (78) assumes that this
is the case for any t .

Equation (79) could be also obtained from Eq. (75) by
substituting

〈ψ0|Aνδp̂(t ′′)Aνδp̂(t ′)|ψ0〉
→ 〈ψ0|Aνδp̂(t ′′)|ψ0〉〈ψ0|Aνδp̂(t ′)|ψ0〉. (82)

This replacement amounts to retaining only the term with
n = 0 in the sum in Eq. (77). In other words, only radiative
(accompanied by emitting a photon) processes in which the
atom returns to the initial state are taken into account in the
classical approximation. This explains the inequality (81). A
replacement similar to Eq. (82) termed decorrelation ansatz
was considered in Ref. [11]. It was pointed out that it is
implicit in calculations of HHG spectra [5,6]. In Ref. [12], the
decorrelation was justified for a system consisting of a large
number of atoms. This, however, is not relevant for the present
single-atom theory.

We suspect that the classical approximation (78) can be
justified under certain conditions satisfied by the atomic sys-
tem, external potential, and photon mode. Such a justification,
together with a small parameter controlling the accuracy of the
approximation, should emerge from the analysis of Eq. (60).
The problem turns out to be nontrivial and we leave it for
future studies. To illustrate the difference between the exact
quantum result for Qν and the approximation (79) based on
Eq. (78), in the rest of this section we compare them in two
situations which can be treated analytically. For simplicity, we
assume that the atom is initially in the ground state, so the
RHS of Eq. (60b) turns to zero.

B. Weak external potential: Perturbation theory

We first consider a weak external potential. In this case,
the solutions to Eqs. (42) and (60) can be found using time-
dependent perturbation theory [13]. In the first order in V̂ext(t ),
we obtain

Qν = α2
∑

n

∣∣∣∣Aν

∑
m

[
pnmVm0(ω + En − E0)

Em − En − ω − i0

+ Vnm(ω + En − E0)pm0

Em − E0 + ω

]∣∣∣∣
2

, (83)

where pnm = 〈ψ−
n |p̂|ψ−

m 〉 and Vnm(t ) = 〈ψ−
n |V̂ext(t )|ψ−

m 〉. On
the other hand, from Eq. (79) we obtain

Q(c)
ν = α2

∣∣∣∣∣Aν

∑
m

[
p0mVm0(ω)

Em − E0 − ω − i0
+ V0m(ω)pm0

Em − E0 + ω

]∣∣∣∣∣
2

.

(84)

One can see that Q(c)
ν coincides with the term with n = 0

in the sum over n in Eq. (83), so the inequality (81) holds.
Let us consider, for definiteness, the external potential of
the form (47). In this case, the distribution (83) describes
photons generated in scattering of a laser field F(t ) by the
atom [4]. The summation over n in Eq. (83) corresponds to the
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summation over the final states of the atom. This quantum
formula accounts for both elastic (Rayleigh) scattering pro-
cesses, in which the atom is left in the initial state (n = 0),
and inelastic (Raman) scattering processes, which result in
excitation or ionization of the atom (n �= 0). The classical
approximation (84) accounts only for elastic scattering and
neglects inelastic scattering. The relative contribution of Ra-
man processes depends on the spectral contents of the field
F(t ) and the frequency ω of scattered photons. As far as we
know, in the general case there is no parameter justifying
the neglect of electronic Raman processes in atoms. Thus
the classical approximation (78) is not expected to hold in the
perturbative regime.

C. Pulsed external potential: Sudden approximation

We now consider a strong external potential acting during
a very short time. To treat this case, it is convenient to use
the coordinate representation in which the potential is repre-
sented by Vext(r, t ), etc. Let Vext characterize the magnitude
of Vext(r, t ) and ta denote the characteristic atomic time. We
assume that T � ta and VextT � 1, which ensures that Vext �
�Ea, where �Ea ∼ 1/ta is the characteristic energy distance
between atomic states. Under these conditions Eqs. (42) and
(60) can be solved using the sudden approximation. From
Eq. (42) we obtain

ψ (r, t � T ) = eiS(r,t )ψ0(r), (85)

where

S(r, t ) = −
∫ t

0
Vext(r, t ′) dt ′. (86)

In the same approximation

p̂ψ (r, t ) = p(r, t )ψ (r, t ), p(r, t ) = ∇S(r, t ). (87)

The characteristic frequency of the emitted photons in this
case is ω ∼ 1/T � �Ea. At such high frequencies the op-
erator (26) can be approximated by R̂ν = iAν p̂/ω. Thus the
solution to Eq. (60) is

ϕν (r, T ) = −iAνp(r, ω)ψ (r, t ). (88)

Substituting this into Eq. (61), we find

Qν = α2
∫

ψ∗
0 (r)|Aνp(r, ω)|2ψ0(r)dr. (89)

On the other hand, from Eq. (79) we obtain

Q(c)
ν = α2

∣∣∣∣
∫

ψ∗
0 (r)Aνp(r, ω)ψ0(r)dr

∣∣∣∣
2

. (90)

The classical approximation (90) again differs from the quan-
tum formula (89). The integral in Eq. (90) is a coherent sum
of the emission amplitudes of the different volume elements,
while that in Eq. (89) is an incoherent sum of the emission
intensities. It can be seen that the inequality (81) holds. The
difference between Eqs. (89) and (90) strongly depends on
the shape of the momentum p(r, ω) as a function of r. In
particular, for the external potential of the form (47), the
momentum does not depend on r and the difference disap-
pears. This example supports our suspicion that, under certain

conditions on the system, the classical approximation (78) can
be justified by the analysis of Eq. (60).

IV. APPLICATION TO HIGH-ORDER
HARMONIC GENERATION

To illustrate the theory, we apply it to the calculation of
the HHG spectrum in a one-dimensional model. Before we
turn to the model, let us comment on the applicability of the
present theory to the HHG process. First, in a fully quantum
theory of HHG, the strong infrared laser field should be treated
quantum mechanically, on an equal footing with the HHG
field. However, the high intensity of the laser field means
large occupation numbers of photonic states. In this case, the
field can be treated classically [4] and its interaction with
the atom can be described by the potential (47). Note that
in Refs. [11,12] the laser field was also treated classically.
Second, a quantitative theory of HHG should take into account
medium effects which can modify experimentally observable
HHG spectra compared to theoretical predictions for a single
atom. However, the spectra are still based on a single-atom
response. This justifies the interest to single-atom treatments
of HHG in Refs. [5–9] and below.

It is convenient to use the coordinate representation. We
consider a one-dimensional atom described by a zero-range
potential,

Ĥa = −1

2

d2

dx2
− κδ(x). (91)

This model was used previously for developing the adiabatic
theory of strong-field ionization [18] and HHG [19]. The
unperturbed atom has only one bound state,

E0 = −κ
2/2, ψ0(x) = κ

1/2e−κ|x|. (92)

Its scattering states meant in Eq. (14) are given by

Ek = k2/2, ψ
(±)
k (x) = eikx + R(±|k|)e±i|kx|, (93a)

R(k) = iκ

k − iκ
, −∞ < k < ∞. (93b)

The external potential is V̂ext(t ) = F (t )x, where F (t ) is the
electric field of a laser pulse. Let us modify the notation
ν → ω and Aν → Aω for the present one-dimensional case
and omit an unessential factor in the spectrum of photons by
setting αAω = 1. Then Eqs. (42) and (43) take the form

i
∂ψ (x, t )

∂t
= [Ĥa + F (t )x]ψ (x, t ), (94a)

ψ (x, 0) = ψ0(x), (94b)

and

i
∂φω(x, t )

∂t
= [Ĥa + F (t )x]φω(x, t ) + eiωt p̂ψ (x, t ), (95a)

φω(x, 0) = −iκ3/2

ω
sgn(x)(e−κ|x| − e−κ(ω)|x|), (95b)

where p̂ = −id/dx and

κ(ω) =
√

κ
2 + 2ω. (96)

Equations (94) and (95) are solved numerically using a
method described in Ref. [18]. This yields the solutions at the
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end of the pulse, ψ (x, T ) and φω(x, T ). The observables are
then calculated by projecting these functions onto the atomic
states. Using Eqs. (40) and (44), we obtain

a0 = eiE0T
∫

ψ0(x)ψ (x, T )dx, (97a)

ak = eiEkT
∫

ψ
(−)∗
k (x)ψ (x, T )dx. (97b)

The probability for the atom to remain in the initial state and
the photoelectron momentum distribution (PEMD) are given
by

P0 = |a0|2, P(k) = |ak|2. (98)

The unitarity condition (45) takes the form

P0 + Pion = 1, Pion =
∫

P(k)
dk

2π
. (99)

Similarly, using Eq. (41), we obtain

b0ω(T ) = eiE0T
∫

ψ0(x)φω(x, T )dx, (100a)

bkω(T ) = eiEk T
∫

ψ
(−)∗
k (x)φω(x, T )dx. (100b)

Then from Eq. (49) we find

b0ω = b0ω(T ) +
∫

ei(E0+ω−Ek′ )T p0k′ak′

E0 + ω − Ek′ + i0

dk′

2π
, (101a)

bkω = bkω(T ) + ei(Ek+ω−E0 )T pk0a0

Ek + ω − E0

+
∫

ei(Ek+ω−Ek′ )T pkk′ak′

Ek + ω − Ek′ + i0

dk′

2π
, (101b)

where

pk0 =
∫

ψ
(−)∗
k (x) p̂ψ0(x) dx = 2kκ

3/2

κ
2 + k2

, (102a)

pkk′ =
∫

ψ
(−)∗
k (x) p̂ψ

(−)
k′ (x) dx = 2πkδ(k − k′)

− 2κ

k2 − k′2 + i0

(
k′|k|

|k| − iκ
− k|k′|

|k′| + iκ

)
. (102b)

According to Eq. (50), the quantum spectrum of HHG photons
is given by

Q(ω) = |b0ω|2 +
∫

|bkω|2 dk

2π
. (103)

In the classical approximation, the spectrum is obtained from
Eq. (79),

Q(c)(ω) = |p(ω)|2, (104)

where p(ω) is the Fourier transform of

p(t ) =
∫

ψ∗(x, t ) p̂ψ (x, t )dx (105)

calculated as described in Ref. [19]. Equation (104) amounts
to the classical ansatz commonly used in calculations of
HHG [5–9].
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FIG. 1. Photoelectron momentum distributions P(k), Eq. (98),
generated by pulses with frequency ω0 = 0.114 (λ ≈ 400 nm) and
amplitudes indicated in the figure. The survival probability for F0 =
0.03, 0.1, 0.3, and 1 is P0 = 1 − 0.324×10−5, 0.948, 0.456×10−1,
and 0.204×10−2, respectively. The vertical dashed lines show the
classical cutoffs at k2/2 = 10.007×Up [22].

We consider pulses with the Gaussian envelope,

F (t ) = F0e−(2t ′/τ )2
cos (ω0t ′), t ′ = t − T/2, (106)

where F0, ω0, and τ = 2πnoc/ω0 are the pulse amplitude,
frequency, and width, respectively, and noc is the number of
optical cycles in the pulse. To comply with Eq. (11), we solve
Eqs. (94) and (95) in a finite interval 0 � t � T , where T is
chosen to be sufficiently large so that the observables do not
depend on this parameter. All the calculations reported below
are performed with noc = 5 and T = 8τ . We are mainly inter-
ested in the adiabatic regime relevant to strong-field physics
[20], which corresponds to sufficiently low frequencies and
high intensities of the laser field [18,21]. Accordingly, we
consider pulses with two frequencies ω0 = 0.114 and 0.057
corresponding to the wavelengths λ ≈ 400 nm and 800 nm,
respectively. For each of the frequencies, we performed cal-
culations for four pulses with amplitudes F0 = 0.03, 0.1, 0.3,
and 1 corresponding to intensities from 3.2×1013 W/cm2

to 3.5×1016 W/cm2. In the calculations we set κ = 1, so
E0 = −0.5. For completeness of the discussion, we consider
observables of both kinds, the PEMDs and the HHG spectra.
The results obtained are shown in Figs. 1–4.
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FIG. 2. HHG spectra for the same pulses as in Fig. 1. Solid (blue,
HHG-Q) lines show results of the present quantum theory obtained
from Eq. (103). Dashed (red, HHG-C) lines show results of the
classical approximation from Eq. (104). The vertical dashed lines
show the classical cutoff at ω = |E0| + 3.173×Up [23].

Figures 1 and 3 present survival probabilities P0 (given in
the captions) and PEMDs P(k) for pulses with ω0 = 0.114
and 0.057, respectively, obtained from Eqs. (98). For both
frequencies, P0 rapidly decreases as the pulse amplitude grows
and becomes negligibly small [which means almost complete
ionization, see Eq. (99)] for the largest value of F0 considered.
Note that for the lower frequency the decrease of P0 is
not monotonic. This is explained by adiabatic recombination
which is the inverse process to tunneling ionization [18]. In
the adiabatic regime, the PEMD P(k) is localized in k between
classical cutoffs at k2/2 = 10.007×Up [22] shown by vertical
dashed lines, where Up = F 2

0 /4ω2
0 is the ponderomotive po-

tential. The cutoffs are determined by backward rescattering
trajectories born near the main positive and negative maxima
of the field F (t ). The secondary cutoffs seen as abrupt jumps
in the bottom panels of Figs. 1 and 3 at smaller |k| correspond
to backward rescattering trajectories born near secondary
maxima of F (t ). More details on the behavior of P(k) for
the present model in the adiabatic regime can be found in
Ref. [18].

Figures 2 and 4 present HHG spectra for the same pulses
as in Figs. 1 and 3, respectively. Solid (blue) lines denoted
by HHG-Q show quantum spectra obtained from Eq. (103).
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FIG. 3. Similar to Fig. 1, but for pulses with frequency
ω0 = 0.057 (λ ≈ 800 nm). The survival probability for F0 = 0.03,
0.1, 0.3, and 1 is P0 = 1 − 0.227×10−5, 0.935, 0.397×10−4, and
0.112×10−3, respectively.

Dashed (red) lines denoted by HHG-C show the correspond-
ing spectra obtained in the classical approximation from
Eq. (104). The HHG-C spectra for the present model in the
adiabatic regime were analyzed in Ref. [19]. They are local-
ized in ω below the classical cutoff at ω = |E0| + 3.173 × Up

[23] shown by vertical dashed lines. Similar to the PEMD
case, this cutoff is determined by a rescattering trajectory
born near the main maximum of |F (t )|. The secondary cutoffs
seen in the bottom panels of Figs. 2 and 4 at smaller ω

correspond to rescattering trajectories born near secondary
maxima of |F (t )|. For both frequencies, the HHG-Q spectra
obtained from the present quantum theory differ from the
HHG-C spectra obtained in the classical approximation, and
this is the main conclusion to be drawn from the calculations.
For the weakest field considered, F0 = 0.03, the difference
is marginal. However, it grows with the field and becomes
dramatic for F0 = 1. In all the cases, the inequality (81) is seen
to hold. Note that the HHG-Q and HHG-C spectra have more
or less similar shapes; in particular, they both vanish beyond
the classical cutoff. The difference manifests itself in their
magnitudes, especially at higher frequencies near the cutoff.

This difference can be explained as follows. In the adi-
abatic regime, the solution to Eq. (94) can be divided into
adiabatic and rescattering parts representing electrons which
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FIG. 4. Similar to Fig. 2, but for the same pulses as in Fig. 3. The
continuation of both spectra beyond the cutoff in the bottom panel is
an artifact caused by the lack of convergence of our calculations in
this region.

remain bound and are liberated from the atom by tunneling
ionization in the strong laser field, respectively [18,21]. The
HHG-C spectrum (104) is determined by the cross term
involving the adiabatic and rescattering parts in the integral
(105); the contribution of the rescattering-rescattering term to
the HHG-C spectrum in the adiabatic regime is small [19]. To
contribute to the integral, the adiabatic and rescattering parts
must overlap in space. To this end, the liberated electrons must
return to the parent ion. This happens for the first time within
one optical cycle after tunneling ionization. The maximum
energy of electrons arriving for rescattering determines the
cutoff frequency of the emitted HHG-C radiation [23]. If a
part of the initial state survives until the maximum of the pulse
envelope, the cutoff is determined by the pulse amplitude
F0. However, if the field is so strong that almost complete
ionization occurs within one optical cycle or so in the rising
part of the pulse envelope, the maximum energy of electrons
arriving for rescattering before the initial state is completely
depleted is determined by the instantaneous value of the
pulse envelope at the moment of ionization, which is smaller
than F0. This results in a lower effective cutoff frequency.
Thus the magnitude of the HHG-C spectrum near the cutoff
determined by F0 should start to decrease at sufficiently high
intensities. This behavior is confirmed in Figs. 2 and 4. On

the other hand, the HHG-Q spectrum contains contributions
from processes in which returning electrons recombine to
continuum states represented by terms with n �= 0 in Eq. (77).
Such radiative processes yield photons with frequency up to
the classical cutoff, as in the HHG-C case. In contrast to the
HHG-C case, they occur even if the initial state is completely
depleted before the pulse envelope attains its maximum. A
more detailed analysis of mechanisms defining the magnitude
and shape of the HHG-Q spectrum is certainly required. This,
however, goes beyond the scope of the present paper and is
left for future studies.

Summarizing the results shown in Figs. 2 and 4, the
present quantum theory predicts saturation of the HHG yield
near the classical cutoff as the laser intensity grows and the
ionization probability approaches unity, while the classical
ansatz commonly used in the theory of HHG [5–9] predicts
that the yield decreases. This behavior should be confirmed
by further calculations involving the full dimensionality of the
HHG problem.

V. CONCLUSION

We have developed a quantum theory describing the emis-
sion of electromagnetic radiation by a generic nonstationary
atomic system under the same approximations as used in the
derivation of the classical formula (1). The quantum spectrum
of radiation is given by Eq. (34), where the distribution of
photons Qν is equivalently represented by Eqs. (50), (61),
(72), (75), and (77). In practical calculations, this distribution
can be obtained from Eq. (50) or Eq. (61) by solving Eq. (43)
or Eq. (60), respectively. We have shown that under an addi-
tional approximation specified by Eq. (78) the exact quantum
formula for the spectrum reduces to Eq. (1), where one
should substitute Eq. (3). This classical ansatz is commonly
used in the theory of HHG [5–10]. The approximation (78)
sheds some light on the dynamical origin of the ansatz. We
have shown that this approximation can be justified by the
analysis of Eq. (60) under certain conditions on the system
(see Sec. III C). To illustrate the theory, we have calculated
HHG spectrum for a model one-dimensional atom. The results
obtained from the quantum formula and from the classical
ansatz are different. In particular, the quantum yield of HHG
photons always exceeds that predicted by the ansatz. The
difference grows and becomes dramatic as the probability of
ionization approaches unity. Thus the present theory may have
important implications for the theory of HHG.
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APPENDIX: SPONTANEOUS EMISSION
IN THE STATIONARY CASE

In the absence of the external potential, V̂ext(t ) = 0, the
system described by Eq. (4) becomes stationary. Spontaneous
emission of photons by such a system is treated in textbooks
[3,4]. Here, we reconsider this problem in order to elucidate
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the difference between the standard approach used in text-
books and the present approach introduced in Sec. II D.

In the standard approach, the initial condition and observ-
ables are defined in terms of bare states. The initial condition
formulated above Eq. (31) is specified by

|� ′(0)〉 = |ψ0〉|0〉. (A1)

The solution to Eq. (4) satisfying Eq. (A1) is denoted
by |� ′(t )〉; the prime distinguishes it from the solution to
Eqs. (4) and (31). Similar to Eq. (35), the solution |� ′(t )〉
can be expanded in bare states. The amplitudes αB′

nν (t ) =
ei(En+ω)t 〈ν|〈ψ−

n |� ′(t )〉 of one-photon bare states populated
during the evolution can be found by solving Eqs. (4) and
(A1) using time-dependent perturbation theory [13]. In the
first order in α one obtains

αB′
nν (t ) = −i

∫ t

0
ei(En+ω−E0 )t ′ 〈ν|〈ψ−

n |Ĥint|ψ0〉|0〉dt ′

= −α〈ψ−
n |Aν p̂|ψ0〉ei(En+ω−E0 )t − 1

En + ω − E0
. (A2)

The total probability to emit a photon in the mode ν is given
by

Q′
ν = α2

∑
n

|B′
nν (t → ∞)|2. (A3)

Primes in the notation B′
nν (t ) and Q′

ν indicate that these
quantities are defined in terms of bare states. The amplitudes
(A2) oscillate with time and do not have a definite limit at
t → ∞. However, the limit in (A3) exists if one considers
Q′

ν as a generalized function of ω. The limiting procedure is
based on the relation ω−2 sin2 ωt |t→∞ = πtδ(ω) also used in
the derivation of Fermi’s golden rule [13]. The result is

Q′
ν = 2πα2t

∑
n

|〈ψ−
n |Aν p̂|ψ0〉|2δ(En + ω − E0). (A4)

Note that, because of the δ function, the summation here
runs only over discrete atomic states with energies below E0.

Hence spontaneous photons do not appear, Q′
ν = 0, if the atom

is initially in the ground state.
The present approach to the same problem is based on

Eqs. (31) and (33). For V̂ext(t ) = 0, the solution to Eqs. (4)
and (31) is |�(t )〉 = e−iE0t |ψ+

0 , 0〉. The amplitudes αBnν =
ei(En+ω)t 〈ν, ψ−

n |�(t )〉 of one-photon dressed states in Eq. (35)
can be found using Eq. (28),

Bnν = −2iπ〈ψ−
n |Aν p̂|ψ0〉δ(En + ω − E0). (A5)

These amplitudes do not depend on time. Substituting them
into the second of Eqs. (37) and replacing one of the two δ

functions by t/2π (we use this common trick to shorten the
discussion), we obtain Qν . The result coincides with Q′

ν given
by Eq. (A4).

The above consideration illustrates the difference between
formalisms of the two approaches. While in the standard
approach the number of photons oscillates with time and
the observable distribution (A4) emerges only at t → ∞, in
the present approach spontaneous photons are an immanent
property of the initial dressed state (31) present in the system
at all times t > 0. However, in spite of the difference, the
results for the probability to spontaneously emit a photon in
a given mode are identical, Qν = Q′

ν .
As follows from Eq. (A4), the probability Qν linearly

grows with time, so one usually considers the partial emis-
sion rate �ν = Qν/t . The total rate of emitting a photon is
� = ∑

ν �ν . The linear growth of Qν continues as long as
�t � 1; at larger t , the depletion of the initial state due to
its radiative decay cannot be neglected. The decay rate �

is also a property of the initial dressed state (31) given by
� = −2 Im En0, where En0 is the complex energy of the state
defined by Eq. (19a). We have � = O(α2), so the decay is
not accounted for by the present treatment restricted to the
first-order approximation in α. As a result, the spectrum of
spontaneous photons obtained by substituting Eq. (A4) into
Eq. (34) consists of discrete lines located at frequencies ω =
E0 − En with En < E0. Because of the assumption �t � 1,
the lines have a δ-function shape. At larger times satisfying the
opposite condition, �t � 1, their shape becomes Lorentzian
[3,4]; this, however, goes beyond the present treatment.
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