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Binding energy of bipartite quantum systems: Interaction, correlations, and tunneling
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We provide a physically motivated definition for the binding energy (or bond dissociation) of a bipartite
quantum system. We consider coherently applying an external field to cancel out the interaction between the
subsystems, to break their bond and separate them as systems from which no work can be extracted coherently
by any cyclic evolution. The minimum difference between the average energies of the initial and final states
obtained this way is defined as the binding energy of the system. We show that the final optimal state is a passive
state. We discuss how the required evolution can be realized through a sequence of control pulses. The utility of
our definition is illustrated through two examples. In particular, we also show how quantum tunneling can assist
or enhance a bond-breaking process. This extends our definition to probabilistic events.
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I. INTRODUCTION

Binding energy (BE) or bond-dissociation energy is a
prevalent concept in various branches of science such as phys-
ical chemistry, condensed-matter physics, atomic physics, nu-
clear physics, and gravitation. Colloquially, e.g., in chemistry,
BE is defined as the energy needed to fully decompose a com-
posite material into its constituent elements (in a mole of ma-
terial). Some further cases where BE can be relevant include
ionization of an atom, alpha particle decay [1], or dissociation
of molecules. In addition to advanced measurement tech-
niques, there exist numerical methods in physical chemistry—
e.g., the finite-difference Poisson-Boltzmann electrostatic
method—to theoretically compute BE for materials [2].

In classical systems, BE is attributed to the forces that
bound elements of a composite system together [3]. However,
with the recent advent of nanotechnology and engineering
small-scale systems, it seems important to revisit the concept
of BE for systems where quantum effects may prevail [4–7].
In particular, quantum coherence and quantum correlations
have a role in physical and chemical evolutions since they
contribute to energy exchange and thermodynamics of quan-
tum systems [8–10]. Additionally, it has also been argued that
quantum tunneling may be employed in some dynamical evo-
lutions [1] or chemical reactions in order to reduce required
initial energy in some bond-breaking processes [4].

Various technical tools have been developed in order to
investigate control and manipulation of quantum systems. For
example, optimal control theory (OCT) introduces techniques
based on variational optimization and differential geometry
to obtain optimal approaches to achieve a target in quantum
systems [1,11–21], e.g., by coherently applying appropriate
control fields such as lasers pulse trains [22,23].

Here we introduce a definition for the BE of a quantum
bipartite system and propose methods to (optimally) break a
bond in a composite system. We restrict ourselves to unitary
processes during which a bond breaks due to work extraction.
We consider several scenarios for breaking a bond by exter-
nal control, and discuss optimal or close-to optimal control

strategies. In particular, we focus on photodissociation where
a bond breaks through absorption of photons generated by
suitable laser pulse trains [24].

This paper is organized as follows. We start by briefly
reviewing, in Sec. II, how control of a quantum system affects
it. In Sec. III, we present and motivate a definition for BE.
In Sec. IV, we obtain optimal state and coherent evolution
for bond breaking. This section also includes discussions of
an example of bond breaking in an atom-cavity system. We
discuss the impact of quantum tunneling in bond breaking in
Sec. V. The paper is summarized in Sec. VI. Two Appendixes,
A and B, include some review material and detailed calcula-
tions related to an example discussed later in the paper.

II. CONTROLLING A QUANTUM SYSTEM

Let us assume that we manipulate a quantum system (S)
with an external control agent or apparatus (C), which is
another classical or quantum system. The Hilbert space of the
composite system is H SC = H S ⊗ H C. It is known that the
total Hamiltonian of this composite system is given by

HSC(λ, g; t ) = HS(λ; t ) + HC + Hint (g; t ). (1)

Here HS(λ; t ) indicates the system Hamiltonian, which may
depend explicitly on time as well as some other structural
parameters λ (e.g., size of the box for particle in a box).
The Hamiltonian of the controller is shown by HC, which for
simplicity we assume to be time independent. The interaction
Hamiltonian Hint (g; t ) is the main player in controlling system
S, which itself may depend on time and some structural
parameters g given by the physics of the two systems S and
C and how they interact (e.g., an electron and an electric
field)—see Fig. 1.

Note that, although the Hilbert space after the control
is H SC, in general interaction of the system and the con-
troller can yield a different control-induced decomposition
as H SC = H S1 ⊗ H S2 ⊗ . . . H C′ , where new physical parties
may be produced and the control system may also drastically
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FIG. 1. Schematic of a system under control by another system.

vary. Evolution of each product or party (� ∈ {S1, . . . , C′})
is then given by a dynamical equation obtained by reducing
(tracing out) the total dynamical equation [25],

∂��(λ, g; t )

∂t
= − i

h̄

[
H (eff )

� (λ, g; t ), ��(λ, g; t )
] + L�(λ, g; t ).

(2)

Here the density matrix �� = Tr�̄[�SC], with �̄ = {SC} − {�},
describes the quantum state of party �, and H (eff )

� is the
effective Hamiltonian of party �. This effective Hamiltonian
describes the coherent part of the dynamics. In addition to
this part, there is an L� which encompasses an incoherent
(i.e., nonunitary) part of the dynamics of the party which
incorporates correlations and interactions with other parties
[25,26].

However, under some specific conditions the dynamics of a
controlled system can still be described coherently. Consider
the following conditions: (i) the applied control, e.g., a field,
is sufficiently weak [‖Hint (g)‖ � ‖HS(λ) + HC‖, where ‖ · ‖
is the standard operator norm]; (ii) the control-induced de-
composition of the total Hilbert space is still the same as the
decomposition before control; and (iii) the change in the con-
trol system C is not appreciable or of interest (thus it can be
simply ignored), then the contribution of the incoherent term
in the dynamics of system S may be negligible, ‖L�(λ, g)‖ ≈
0. Under such conditions, the action of the control on the
system can be effectively recast as a change of the system
Hamiltonian as

H (eff )
S (λ, g; t ) = HS(λ; t ) + V (g; t ), (3)

where V is a Hamiltonian associated with the applied control
field (acting on the space H S). In this regime, varying the
system Hamiltonian, by changing λ in the unperturbed system
Hamiltonian HS or by changing g in the applied field V , can
yield a target dynamics for the system. As a remark, note that
in some sense weakness of the control also implies weakness
of V with respect to HS.

It will be helpful to consider a simple physical example;
interaction of light (e.g., a laser or electric field Ê) and
matter (e.g., an atom) [27]. When the atom has only two
energy levels, the field is single-mode almost at resonance
with the atom (ω ≈ εes − εgs), and it is sufficiently weak so
that the dipole approximation suffices (Hint = −D̂ · Ê, with
D̂ being the dipole moment operator of the atom), the total
Hamiltonian of this atom-field system can be described by the
Jaynes-Cummings model,

HSC = HS + HC + g(e−iωt â ⊗ |es〉〈gs| + eiωt â† ⊗ |gs〉〈es|),
(4)

where HS = ∑
i∈{es,gs} εi|i〉〈i| is the Hamiltonian of the atom

(|gs〉 and |es〉 are the ground state and excited state, respec-
tively), and HC = h̄ω(â†â + 1/2) is the field Hamiltonian,
with â being the bosonic annihilation operator of the field
mode.

In the coherent regime, if the field is classical, we can say
its action on the atom is given by the potential V (g, ω; t ) =
g(eiωt |gs〉〈es| + e−iωt |es〉〈gs|), which induces transitions be-
tween the atomic energy levels and g is the coupling strength.
Indeed, this approach is taken in elementary considerations of
how an atom interacts with an electric field and yields the Rabi
oscillation which presents the emission and absorption of the
photon between atom and field periodically. Hence it mimics
the binding energy between field source and atom [27,28].

III. BE OF BIPARTITE QUANTUM SYSTEMS

Consider a composite bipartite system S, comprised of
two parts A and B. The associated Hilbert spaces of the
subsystems and the composite system are denoted by H A, H B,
and H S = H A ⊗ H B. The free Hamiltonians of the subsys-
tems A and B are given by HA = ∑dA

i=1 ε
(A)
i |i〉A〈i| and HB =∑dB

i=1 ε
(B)
i |i〉B〈i|. The Hamiltonian of the composite system

AB is assumed to be

H = Hfree + Hint, (5)

where Hfree = HA + HB is the free Hamiltonian of the com-
posite system and Hint describes the interaction between the
subsystems. We assume the spectral decomposition Hfree =∑d

γ=1 εγ |	γ 〉〈	γ |, where d = dAdB = dim(H S), γ ≡ (i, j)

with i ∈ {1, . . . , dA} and j ∈ {1, . . . , dB}, εγ ≡ ε
(A)
i + ε

(B)
j ,

and |	γ 〉 ≡ |i〉A| j〉B are the eigenstates of the free Hamilto-
nian (also known as the “bare states”). Similarly, we assume
the spectral decomposition H = ∑

γ E [D]
γ |	[D]

γ 〉〈	[D]
γ | (where

|	[D]
γ 〉’s are called “dressed states”).
The instantaneous state of the composite system at any

time �(t ) can be represented as [29]

�(t ) = �A(t ) ⊗ �B(t ) + χ (t ), (6)

where �A and �B are the reduced density matrices of the
subsystems, and χ denotes correlations, classical or quantum,
in the composite system. Note that TrA[χ ] = TrB[χ ] = 0. In
addition, the (“average” or “internal”) energy associated to the
system is given by U (t ) = Tr[H (t ) �(t )].

To dissociate parts A and B, a suitable time-dependent
potential V (t ) is applied which modifies the Hamiltonian as

H → H (t ) ≡ H (V (t )), (7)

such that V (0) = 0 and H (V (0)) = H and at the dissociation
time tf where again V (tf ) = 0 the interaction part (Hint) is
turned off, i.e., H (V (tf )) = Hfree. The energy change of the
system during this process is given by

U (tf ) − U (ti ) = Tr[�(tf ) H (tf )] − Tr[�(0) H (0)]. (8)

Here �(t ) depends on the applied external control field V (t )
through the evolution equation

∂�(t )

∂t
= − i

h̄
[H (V (t )), �(t )], (9)
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FIG. 2. Schematic of coherent separation of a composite system
(e.g., a molecule) into its subsystems by applying an external field
V (t ).

or equivalently through

�(t ) = U(t )�(0)U†(t ), 0 � t � tf , (10)

where the evolution is given by U(t ) = T e−i
∫ t

0 H (V (s))ds and
T is the time-ordering operation. This evolution for a control-
lable composite system of dimension d belongs to the unitary
group U(d ). (See Fig. 2.)

Now, it is natural to define the BE as the optimal energy
required to eliminate the interaction Hamiltonian of the com-
posite system in a coherent manner, i.e.,

�UBE = min
tf ,V (t )

[Tr[�(tf )H (tf )] − Tr[�(0) H (0)]]

= Tr
[
�(opt)(t (opt)

f

)
Hfree

] − Tr[�(0)(Hfree + Hint )].
(11)

To lighten the notation, henceforth we denote the optimal time
t (opt)
f with tf and the optimal state �(opt)(tf ) with �(tf ).

Several remarks are in order.
(i) The minimization over time is important because, if

bond breaking takes too long, the composite system may
experience decoherence or dissipation due to interactions
with its ambient environment [30]. In such an open-system
scenario one shall need to take into account environmental
effects (decoherence or dissipation) into the formalism, e.g.,
use a relevant master equation for the dynamics of the com-
posite system [25]. Thus, to avoid this issue and simplify our
analysis, we consider that the evolution time of the system
is considerably less than its coherence time [30]—hence the
system can be considered quantum-mechanically closed. Al-
though we confine our discussion to closed-system scenarios,
we expect its extension to open systems to be straightforward.
The time optimization for our scenario can be performed by
employing Pontryagin’s maximum principle [12], which in
turn yields the optimal control field for the minimum time.
We elaborate on this method in the next subsection.

(ii) The last term in Eq. (11) is the initial internal energy
of the composite system, which is fixed and given; hence we
only need to vary the final state and the Hamiltonian to find
the BE—the energy needed for dissociation. Note that the sole
result of this evolution should be effectively neutralizing the
interaction Hamiltonian. That is, the final Hamiltonian should
be equal to the free Hamiltonian of the system, H (tf ) = Hfree.
This yields that the average energy of the final state is

U (tf ) = Tr[�A(tf )HA] + Tr[�B(tf )HB]. (12)

(iii) It is evident that the value of U (tf ) is independent of
the correlations χ . Thus, with this definition of the BE, non-
interacting subsystems may still be correlated. Nevertheless,
the optimization of Eq. (8) guarantees that the final state of

the system is a passive state, from which by definition it is
impossible to extract any work in a cyclic process [7]. That is,
all work-generating correlations have already been eliminated
from the final state, and thus the residual correlations can only
yield heat. To remove such leftover correlations one should
employ strategies which may require sophisticated handling
of the state in a nonunitary fashion.

IV. OPTIMIZATIONS

A. Optimal final state �(tf )

As remarked in the previous section, the optimization (11)
can be performed by varying �(tf ) over the achievable orbit of
�(0) via unitary transformations. The kinematical extremum
of U (tf ) is determined by the eigenvalues of Hfree as well as
the eigenvalues of �(tf ).

We recall that the evolution of the state �(t ) is unitary,
given by Eq. (10), where U(t ) ∈ U(d ). To have an extremum
for the final energy U (tf ) = Tr[�(tf )Hfree], it is necessary that
the final density matrix �(tf ) commute with Hfree; that is, �(tf )
should be diagonal in the eigenbasis of Hfree [7],

�(tf ) =
∑

γ

pγ |	γ 〉〈	γ |. (13)

Here the probabilities pγ ’s are the eigenvalues of the initial
density matrix �(0). The maximum and minimum values
of U (tf ) belong to the finite set S = {p · ε : p ∈ �(p), ε ∈
�(ε)}, where �(x) denotes the set of all permutations of x =
(x1, x2, . . . , xd ) ∈ Rd . The maximum of the set S corresponds
to the case where both vectors p and ε are nondecreasing or
nonincreasing, and its minimum is obtained when either of
them are nondecreasing (x↑

γ � x↑
γ+1, ∀γ ), while the other one

is nonincreasing (x↓
γ � x↓

γ+1, ∀γ ),

p↓ · ε↑ = p↑ · ε↓ � p · ε � p↓ · ε↓. (14)

Thus minimizing the final energy U (tf ) leads to the passive
state which is in the form of Eq. (13), where pγ � pγ+1 with
γ ’s ordered such that εγ � εγ+1, ∀γ . As a result, we obtain

�UBE =
∑

γ

pγ εγ − U (0). (15)

B. Optimal evolution U(t )

Here we discuss general unitary evolutions of arbitrary
initial states towards desired final states by employing OCT
techniques. We start with simple cases

(i) Maximally mixed initial state. Consider the initial state
�(0) = I/d . Because of the unitarity of the evolution, this
state remains unchanged during the evolution.

(ii) Pure initial state. This initial state results in a pure
passive state which is the ground state of the final dissociated
system. If we denote the initial state of the composite system
with |α〉, the corresponding unitary transformation to the
ground state of the dissociated system (|	1〉) becomes

U(α)(tf ) = |	1〉〈α| +
d∑

γ=2

|	γ 〉〈α(γ )|, (16)

where |α(γ )〉’s are states orthonormal to |α〉 and α(γ ) has
a one-to-one and regular relation with γ . Since Eq. (16) is
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independent of the transformation path it is not uniquely
identified. The orthogonal vectors to |α(γ )〉 are in a (d − 1)-
dimensional subspace of the d-dimensional space; thus infi-
nite sets of orthogonal sub-basis {|α(γ )〉 : γ = 2, . . . , d − 1}
can be found. The optimization process includes calculation
of the unitary transformation U(t ) with minimum dissociation
time tf .

(iii) Thermal initial state. In the dressed-state basis, this
initial state is represented by

�(0) = (1/Z [D])
∑

α

e−βE [D]
α

∣∣	[D]
α

〉〈
	[D]

α

∣∣, (17)

where β = 1/(kBT ) is the inverse temperature (with kB as the
Boltzmann constant) and Z [D] = ∑

α e−βE [D]
α is the partition

function of the composite system in the dressed basis. The
optimal final state becomes

�(tf ) = (1/Z [D])
∑

γ

e−βE [D]
γ |	γ 〉〈	γ | (18)

and the optimal unitary transformation is

U(α)(tf ) =
∑

γ

|	γ 〉〈	[D]
α(γ )

∣∣. (19)

It is evident that this state differs from the thermal state in the
bare basis.

Since the BE and the corresponding unitary transformation
are obtained, one only needs to obtain the optimal control
potential in minimum time. A remark is in order here. After re-
moving the interaction Hamiltonian Hint , we note that through
OCT techniques the optimal unitary transformation for reach-
ing a desired passive state can be determined by a proper laser
pulse train—see Appendix A. However, as we later argue in
Sec. V, in some particular dissociation processes related to a
quantum tunneling and/or photoionization process, the laser
pulse controlling can also lead to removing the interaction
Hamiltonian. In fact, in the tunneling case, the dissociation
is enhanced by the quantum tunneling effect.

The unitary transformations U(tf ) are members of the
unitary group eL generated by Lie algebra L defined by the
Hamiltonian of the system. The dynamics of the evolution
U(tf ) obeys the Schrödinger equation and depends on a
control potential V (t ). The transformation U(tf ) is reachable
kinematically for some control potential. Here, we focus on
attainable controls that can be realized by a suitable laser pulse
train. In this method, the upper bound on the applied field
V (t ) is often limited by the laser power, and its lower bound
is determined by the intensity modulator’s extinction ratio
(M−

i j /M+
i j as defined below). The rise-fall time of the potential

switching is also limited by the frequency response of the
laser intensity modulator (N∓

i j ), which is the frequency which
determines how fast one can change the laser intensity. Thus,
for a pulse train which creates different dipole interactions
between levels |	[D]

i 〉 and |	[D]
j 〉 (Vi j), we have the following

constraints:

M−
i j � Vi j (t ) � M+

i j , (20)

N−
i j � 1

Vi j (t )

dVi j (t )

dt
� N+

i j . (21)

(See also our detailed discussion in Sec. V B.)

The cost function in this optimal control problem is the
time minimization

tf =
∫ tf

0
dt, (22)

subject to the dynamical equation (9) and with some other
constraints. Time minimization of this optimal process can be
obtained by Pontryagin’s maximum principle. This principle
states that, at any instant of time, the optimal control must
maximize the corresponding system “control Hamiltonian” H.
This Hamiltonian is given by introducing conjugate variables
λs, λ

′
s �=0; s ∈ {0, (i, j)} and i, j ∈ {1, . . . , d} in the following

form:

H = λ0f0 +
d,d∑

i, j=1

(λi jfi j + λ′
i jRi j ), (23)

where fi j’s are the elements of the left-hand side of Eq. (9)
in the dressed state basis, Ri j = (1/Vi j )dVi j/dt , and f0 is the
integrand of the time functional (which here is simply 1) with
λ0 as its “conjugate” variable in Pontryagin’s theory. At first
glance, according to Eq. (9), the elements of V (t ) seem to
be the relevant control parameters of the system. However,
since practically jump with infinite tilt is impossible, rather
than Vi j , the modulation bandwidth of the laser pulses Ri j
are the more suitable control parameters. Since the control
Hamiltonian is linear vs the control parameters Ri j , according
to Pontryagin’s maximum principle, the control Ri j’s are
of the bang-bang type [13]. More rigorously, one can see
that H = A + ∑

λ′
i jRi j is maximized when Ri j acquires its

maximum or minimum—depending on the sign of the λ′
i j’s.

The explicit form of A and λ′
i j can be readily derived by

Eq. (23). Hence the optimal control problem is reduced to
a two-point (initial and final) boundary value problem. This
considerable reduction makes the control problem amenable
to laser pulses to steer the system from its initial state to the
target state in minimum time [31].

C. Example: Atom cavity

We now consider an example where breaking the bond
releases energy and the initial state of the system is pure; thus
the correlation removing is plausible.

Consider a system consisting of a two-level atom and a
cavity interacting with the Jaynes-Cummings Hamiltonian,

H = 1
2 h̄ωA σz + 1

2 h̄ωB â†â + g (σ+ ⊗ â + σ− ⊗ â†), (24)

where σz is the z-Pauli matrix, σ± = σx ± iσy (with σx and
σy being the other Pauli matrices), â (â†) is the annihilation
(creation) operator of the cavity, ωA is the energy gap of the
atom, ωB is the resonance frequency of the cavity, and g is the
coupling strength. Note that the unexcited atom-cavity system
experiences no interaction, hence no binding energy—a case
which may appear in rare gas halogenide molecules [32]. Here
we assume the atom-cavity molecule in the strong coupling
regime and that only one photon contributes to the evolution
[33]. Thus the eigenstates of this Hamiltonian (dressed states)
are limited to {|0, gs〉, |±〉, |1, es〉}, where

|+〉 = cos φ|0, es〉 + sin φ|1, gs〉, (25)

|−〉 = − sin φ|0, es〉 + cos φ|1, gs〉, (26)

013403-4



BINDING ENERGY OF BIPARTITE QUANTUM SYSTEMS: … PHYSICAL REVIEW A 101, 013403 (2020)

FIG. 3. (a) By changing the position of the optical tweezer
the atom is moved to a node in the cavity, where the interaction
Hamiltonian is off. (b) By turning off the optical tweezer the atom
leaks out of the cavity.

with tan(φ/2) = 2g (ωA − ωB) [27]. The atom-cavity system
prepared in either of the dressed states remains there forever
unless the interaction is interrupted. Considering the initial
system state to be the nonpassive state |+〉 or |−〉, the atom-
cavity molecule dissociation occurs when both the interaction
and the quantum correlation (here entanglement) are switched
off. Assuming the atom is trapped in the cavity by an optical
tweezer [34], by properly changing the optical tweezer’s beam
waist position with respect to the trapped atom’s position, the
atom can gain a desired velocity after switching off the optical
tweezer and thus will exit the cavity [35]. As depicted in
Fig. 3, along the cross section of the cavity center the coupling
strength is almost constant. If one adjusts the velocity of the
atom such that φ(τ ) = nπ for n ∈ N (τ = x/v is the flying
time through the cavity and v is the velocity) for the initial
states |+〉 (|−〉), the final state of the atom-cavity becomes
the bare state |0, es〉 (|1, gs〉), respectively [see Eqs. (25)
and (26)]. This state still needs to be passivated. In the case
of |1, gs〉, by employing a proper pulse on the atom, the
passive state |0, gs〉 can be generated [36]; in the case of
|0, es〉, the photon can escape from the cavity by changing the
cavity resonance frequency, e.g., by activation of a saturable
absorber in the cavity. As a result, this scenario can lead to
the final passive state, which is the requirement of the bond
breaking of the atom-cavity system.

V. TUNNELING-INDUCED BOND BREAKING

A. General considerations

In addition to active control by laser pulses, it has also
been demonstrated that “quantum tunneling” may be an
effective phenomena in controlling chemical reactions and
molecular dissociation [4]. For example, photodissociation
of the formaldehyde H2CO molecule by employing quantum
tunneling effect has already been reported in Ref. [37]. This
molecule absorbs a UV-Vis photon to get excited to its upper
electronic level (called “S1”), then it experiences a nonra-
diative emission to the upper vibrational levels of the lower
electronic state (called “S0”). Now, the electron has the chance
to tunnel through the potential barrier and thus the molecule
is decomposed to H2 + CO. Another case in which quantum
tunneling results in bond breaking is the α-decay event—see
Fig. 4 and Ref. [1].

In some molecules attractive and repulsive forces may
result in a potential barrier and tunneling effect. Alternatively,
one may employ an external field, such as electrostatic and

FIG. 4. Potential vs distance: a typical well with tunneling effect.
A hallmark example is the “α-decay” event in particle physics [1].

optical radiation fields, to induce a potential barrier in a
bipartite system to control decomposition rate of the system.
For example, electron emission may be induced by tunneling
from a conductor surface in a high electric field [38]. In
this case, the required work for the potential reconfiguration
should also be taken into account in the calculation of the BE.

Figure 4 shows a typical potential barrier. Energy levels
of systems with finite-width barrier can be divided into three
groups: (i) bound levels, for which the tunneling rate is
zero, (ii) tunneling levels with finite tunneling rate, and (iii)
unbounded levels, where the tunneling probability is one. Tun-
neling transitions in Fig. 4 are of the tunneling-decay group,
where the decay transition is responsible for the depopulation
of higher levels radiatively or nonradiatively. Depending on
the ratio of the tunneling and decay rates of the level, the
following behaviors can be discerned.

(i) In a bipartite system with long tunneling time relative
to the decay rate, transition to bound states is faster than
the tunneling-induced decomposition process. In this case, if
tunneling does not occur, the multistep excitation to tunneling
states should be performed as long as the decomposition
can happen. For simplicity, here we only consider radiative
transitions, which implies that there is no energy dissipation.
Thus populating unbounded levels may energetically cost
more than multistep excitation of the tunneling levels. Note
that this condition is not dominant, because by modification
of the width of the potential barrier the tunneling time can
be arbitrarily reduced. Moreover, putting the molecule in a
suitable cavity could increase the decay time.

(ii) When the tunneling rate is greater than the decay
rate, dissociation of the molecule will be observed before the
transition to the bound states.

Note that, in both cases, after the tunneling process the
linear momentum of the excited state is precisely determined.
Due to the uncertainty relation, the position can have large
uncertainty; hence the interaction will practically vanish in the
molecular dissociation process.
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FIG. 5. (a) Potential step V (x) with well width a and height
V0, for x � a. There are four bound states (|k〉, k = 1, 2, 3, 4),
and no tunneling occurs here. (b) Modified potential barrier
where V (x) = V0 for a � x � b and V (x) = V ′

0 < V0 for x > b.
Here, a = 2.62 × 10−10 m, b = 2.80 × 10−10 m, V0 = 80 eV, V ′

0 =
42 eV, E1 = 4.2 eV, E2 = 18.9 eV, E3 = 42 eV, and E4 = 72.3 eV.

Since in this paper we have assumed the system to be
subject to unitary evolutions, the initial and final states should
have the same number of populated energy levels. Thus, if the
number of the tunneling levels is less than the number of the
populated levels in the initial state, one may need a multistep
excitation process so that the tunneling can happen.

B. Example

Consider an electron of mass me in the step potential
depicted in Fig. 5(a). The energy levels E of this potential can
be obtained readily by solving the equation tan(

√
2meEa) =

−√
E/(V0 − E ) [19]. For specificity, we choose V0 = 80 eV

and a = 2.62 × 10−10 m, which gives only four bound states.
We also take the initial state of the system in the following
mixed state with no coherence:

�i = α1|1〉〈1| + α2|2〉〈2|, (27)

where α1 > α2 � 0 and α1 + α2 = 1. For a quantum poten-
tial well in this shape quantum tunneling is not allowed in
any energy level. Thus we apply an external control such
that it only changes the potential for x > b by producing a
finite-width barrier—to keep simplicity, we approximate this

modification as in Fig. 5(b). The barrier width is designed
such that there exist two tunneling states in the system; we
choose b = 2.8 × 10−10 m and V ′

0 = 42 eV.
Note that, in some cases, the system should be excited

to upper levels; �i → �′
i. Since the evolution is unitary, the

excited state �′
i has the same dimension as that of the initial

one. Let us denote the number of no-tunneling and tunneling
levels, respectively, with nnt and nt . When nt � nnt, the excited
state �′

i is diagonal with the same diagonal elements as in �i.
When nt < nnt, the �′

i can be written versus the upper nt − nnt

no-tunneling levels and nnt tunneling levels. In such states the
decomposition is a multistep procedure. Overall, this is the
initial state �i that determines which scenario applies.

In our case, nt = nnt and �′
i is written versus all tunneling

state basis. To find the best configuration of the excited
state �′

i, the tunneling probability of each tunneling level is

needed. This probability, given by P = e−2
∫ b

a

√
2me(V0−E ) dx in

the WKB approximation [19], for the first tunneling state [|3〉
in Fig. 5(a)] and the second tunneling state [|4〉 in Fig. 5(b)]
can be obtained as P3 = 0.15 and P4 = 0.40, respectively. The
tunneling time of these two levels can also be calculated.
Using the WKB method [19,39,40], we obtain τ3 = 0.65 ×
10−17 s for the level |3〉 and τ4 = 1.31 × 10−17 s for the level
|4〉. In these calculations, the tunneling rate is defined as the
inverse of the product P(2A/v) with v being the speed of the
tunneling particle. As it is clear the tunneling time for both
levels is relatively smaller than the decay time of the system
(which is, e.g., of the order of nanosecond for hydrogen).

Although the tunneling probability from the upper tun-
neling level (|4〉) is higher, the tunneling time of the lower
tunneling state (|3〉) is sufficiently short that we do not need
to force the system to the upper tunneling level. With these
considerations, the system should be excited to

�′
i = α1|3〉〈3| + α2|4〉〈4|. (28)

Note that with this choice less energy is needed to decompose
the system. The corresponding unitary evolution is

U = |3〉〈1| + |4〉〈2| + |1〉〈3| + |2〉〈4|. (29)

Now, we want to drive the system in the optimal path which
satisfies this unitary evolution and reaches the desired final
state. To do so, we employ laser pulses based on OCT methods
[24,41]. Specifically, we employ the group decomposition
method of Ref. [31]—see also Appendix A for a review—and
Pontryagin’s method to determine the optimal control path
in minimum time tf . In the group decomposition, the unitary
operator is decomposed into a product of operators each of
which is illustrative of a laser pulse [42]. Then, the phase
and the energy of a sequence of pulses that drive the system
through the optimal path to the desired state can be com-
puted [Eq. (A8)]. Through the method of Ref. [31], one can
construct the optimal pulse sequence by finding appropriate
pulses each of which induces a transition to an upper level.
Our numerical calculations shows that the pulse train for
the evolution of �i to �′

i should be applied in the following
sequence:

U = U23(t4) U34(t3) U12(t2) U23(t1), (30)
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FIG. 6. Envelope of the pulse sequence for the example intro-
duced in Sec. V B: shape or envelope (A in the the SI units of kg m/s)
vs time (t in the unit of ps). Due to Pontryagin’s maximum principle,
the finite rise-fall time of the pulse and its maximum reachable power
[as explained in Eqs. (20) and (21)] are needed to calculate the
optimal pulse trains and their duration. Here the maximum amplitude
of each pulse and the modulation bandwidth (inverse of the rise-fall
time) have been assumed, respectively, 38.8 × 104 (in the SI units)
and 40 GHz. See Appendix B for further details.

where Ui i+1(tk ), generated by a laser pulse with the shape
fi(t ) = 2Ai(t ) cos(ωit + φi ), induces the dipole transition be-
tween the ith and (i + 1)th levels of the (composite) system
in the time interval t ∈ [tk−1, tk] (the duration of the pulse).
Details of the calculations of the shape and duration of the
pulses can be found in Appendix B.

The laser pulse shapes are generated by intensity modula-
tors where the slopes of intensity increasing or decreasing are
limited by the intensity modulator bandwidth. The fall time
is the stored energy divided by the rate of the energy dissi-
pation. Since energy is proportional to the V 2

i j [or |Ak (t )|2],
it is straightforward to see that 1/τfall = −(1/Vi j )dVi j/dt �
�modulator, where �modulator is the modulator bandwidth.
Hence, to apply this restriction in the optimization process, the
quantity −(1/Vi j )dVi j/dt should be considered as the control
parameter in the Hamiltonian (23).

Moreover, the laser intensities are limited by the laser
sources, which here we assume as 20 mW. Based on the
conditions in Eqs. (20) and (21), the optimal potential Vi j (t )
acquires its maximum and minimum values during the evolu-
tion through an exponent

1

Vi j (t )

dVi j (t )

dt
= − 1

�modulator
, (31)

which yields some jumps with the rise and the fall times of the
order τfall = 1/(40 GHz) = 25 ps. Thus the pulse shapes can
be approximated as squares. See Appendix B for details.

Figure 6 shows the result for the optimal pulse shapes and
durations. By applying this pulse train, the system is totally in
the tunneling levels (thus tunneling becomes possible). Since
tunneling is a probabilistic phenomena, the system should
spend sufficient time in the unbounded tunneling levels in
comparison to the transition time from the tunneling levels
to the lower levels in this state to experience tunneling; oth-
erwise, the system decays to the stable states and dissociation
does not occur. Although the essential time for dissociation
is unspecified in this method, we use less energy than the

step size to decompose the composite system. However, this
uncertainty in time is considerably small, as estimated above.

Remark. In closed-system scenarios, time minimization
alone can yield specific shapes for control Hamiltonians [43],
whereas the group decomposition technique alone does not fix
necessarily the pulse shape (one can choose pulse shapes more
conducive to practical considerations) [31]. In such cases,
the dissociation energy becomes independent of the shape
of the laser pulses. However, in more realistic cases when
environmental effects might be present, time minimization
is indeed crucial to ensure relevance of the calculated disso-
ciation energy. This minimization, together with appropriate
practical considerations, determines the pulse shape (as in
Fig. 6). Note that finite lifetime and environmental noise
mechanisms can result in the depopulation of the excited
states. To partially mitigate this effect, extra laser pulses may
be required, which in turn may give rise to an increase in the
dissociation energy. A correct framework to investigate such
open-system scenarios requires employment of an appropriate
master equation rather than the Schrödinger equation. This
extension can be important for practical purposes, but it is
out of the scope of the current paper and is left as an open
problem.

VI. SUMMARY

We have introduced a physically motivated and general
definition for the binding energy of bipartite quantum systems.
In the making, we have used an optimal time-dependent con-
trol potential to offset the interaction Hamiltonian and remove
work-generating correlations between the subsystems. We
have considered realization of the optimal potential through
finite-intensity and finite-rate laser pulses which induce par-
ticular transitions in the system. We have noted that, for
some systems, one may have further control in the form of
making the interaction Hamiltonian time-dependent and then
resetting it to zero. We have also extended the definition of
the binding energy to probabilistic events, and through an
example have demonstrated that the probabilistic dissociation
may be induced by quantum tunneling.
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APPENDIX A: MINIMUM DISSOCIATION TIME tf

Our calculation is based on the group factorization and
Pontryagin’s maximum principle. The Lie group decompo-
sition of a unitary operator can be employed to obtain the
optimal control signal. There exist several methods for group
decomposition. Here we employ the planar rotation decom-
position discussed in Ref. [31]. A laser pulse of the following
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form is applied to the system:

fk (t ) = 2Ak (t ) cos(ωkt + φk ), (A1)

in which Ak (t ) is the pulse envelope and ωk is the frequency
of the |	[D]

k 〉 → |	[D]
k+1〉 transition. The system interacts with

the applied laser field through its dipole moment; thus the
interaction Hamiltonian (under some conditions) is given by

Hk (t ) = DkkAk (t )
[
ei(ωkt+φk )

∣∣	[D]
k

〉〈
	

[D]
k+1

∣∣ + H.c.
]
, (A2)

where “H.c.” denotes Hermitian conjugate, and

Di j = −e
〈
	

[D]
i

∣∣ x
∣∣	[D]

j

〉
(A3)

is the electric dipole moment of the electron transition
|	[D]

i 〉 → |	[D]
j 〉 caused by the laser pulse, with e being the

electron charge and x the position operator.
Let us consider the following anti-Hermitian matrices as a

basis for the su(d ) Lie algebra:

ŜR
m,n = ∣∣	[D]

m

〉〈
	[D]

n

∣∣ − ∣∣	[D]
n

〉〈
	[D]

m

∣∣, (A4)

ŜI
m,n = i

(∣∣	[D]
m

〉〈
	[D]

n

∣∣ + ∣∣	[D]
n

〉〈
	[D]

m

∣∣), (A5)

Ŝm = ∣∣	[D]
m

〉〈
	[D]

m

∣∣ − ∣∣	[D]
m+1

〉〈
	

[D]
m+1

∣∣, (A6)

where 1 � m � d − 1 and m � n � d . It is straightforward
to see that X̂k := ŜR

k,k+1 and Ŷk := ŜI
k,k+1, 1 � k � d , suffice

to generate the Lie algebra L0 ⊂ su(d ), which contain the
generators X̂k and Ŷk for 1 � k � d − 1. One can show that
if the Lie algebra L0 contains one of the pairs (X̂1, Ŷ1) or
(X̂d , Ŷd ), then it must contain all the other generators. Using
this, starting from any level in an atom, one can go up or down
step by step to reach the desired level.

The sequences in which the fields should be turned on and
off are obtained by decomposition of U(t ) into a product of

generators of the dynamical Lie group,

U(t ) = U0(t )UK UK−1 . . . Uk . . . U1, (A7)

with U0(t ) = e−itH/h̄. In the interaction picture and by apply-
ing the rotating-wave approximation, the interaction-picture
Schrödinger equation becomes

∂UI (t )

∂t
= 1

h̄

M∑
k=1

Ak (t ) Dkk[X̂k sin φk − Ŷk cos φk]UI (t ).

Then if we apply in the interval tk−1 � t � tk a resonant pulse,
then one can see that UI (tk ) = UkUI (tk−1), where

Uk = eCσ (k)[X̂σ (k) sin φk−Ŷσ (k) cos φk ], (A8)

with

Cσ (k) = (1/h̄)Dσ (k) σ (k)

∫ tk

tk−1

Aσ (k)(t ) dt (A9)

and σ (k) being a mapping from the index set {1, . . . , K} to
the control index set {1, . . . , M} that specifies the control
Ak which is on in the time interval [tk−1, tk]. Here K is the
optimal number of the dipole transitions and M is the number
of possible dipole transitions in the (composite) system.

APPENDIX B: OPTIMAL PULSES FOR
THE EXAMPLE OF SEC. V B

As explained in the previous Appendix, we need to decom-
pose the unitary evolution operator into a product of unitary
operators each of which is illustrative of a laser pulse which
interacts with the dipole moment associated to a specific pair
of consecutive levels of the Hamiltonian of the composite
system. Each pulse is a d × d matrix (in the {|	[D]

i 〉}d
i=1 basis)

with a nontrivial 2 × 2 block whose elements are specified by
the dipole moments of the transitions |	[D]

k 〉 → |	[D]
k+1〉,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
1

...
. . .

...
cos(Cσ (k) ) i eiφσ (k) sin(Cσ (k) )

i e−iφσ (k) sin(Cσ (k) ) cos(Cσ (k) )
...

. . .
...

1
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (B1)

where Cσ (k) is given by Eq. (A9) and φσ (k) is the phase of the
pulse. This is the identity matrix except in the position of the
nontrivial block.

To find the pulse sequence, we shall follow the steps of
the algorithm introduced in Ref. [31]. Here the target unitary
operator is given in Eq. (29), which can be written in the
{|k〉}4

k=1 basis as

U =

⎛
⎜⎝

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

⎞
⎟⎠. (B2)

We now should find some unitary matrices of the form (B1)
whose multiplication by U results in the identity matrix,

WK . . .W2W1U = I. In the first step, the last column of U
should be transformed to (0 0 0 1)T (T denotes transposition).
This can be achieved by a pulse (W1) inducing the transition
between levels |2〉 and |3〉 followed by another pulse (W2)
between levels |3〉 and |4〉. The transition between levels |2〉
and |3〉 can be shown by a block-diagonal matrix of the form

W1 =

⎛
⎜⎝

1 0 0 0
0 cos(C1) i eiφ1 sin(C1) 0
0 i e−iφ1 sin(C1) cos(C1) 0
0 0 0 1

⎞
⎟⎠. (B3)

To find the unknown parameters C1 and φ1, we should use the
column vector on which the pulse is applied. For example,
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FIG. 7. Schematic of a generic pulse shape.

consider the last column of Eq. (B2), for which we have
W1(0 1 0 0)T = (0 0 1 0)T ; thence

(C1, φ1) = (π/2, π/2). (B4)

The matrix W2 corresponding to the transition between levels
|3〉 and |4〉 is in the form

W2 =

⎛
⎜⎝

1 0 0 0
0 1 0 0
0 0 cos(C2) i eiφ2 sin(C2)
0 0 i e−iφ2 sin(C2) cos(C2)

⎞
⎟⎠. (B5)

We aim to find C2 and φ2 such that W2(a′
1 a′

2 a′
3 a′

4)T =
(0 0 0 1)T , where (a′

1 a′
2 a′

3 a′
4)T = (0 0 1 0) is the last column

of W1U. Thus we obtain

(C2, φ2) = (π/2, π/2). (B6)

As a result, then the last column of W2W1U has become the
desired vector (0 0 0 1)T .

We now continue a similar procedure to transform the third
column of W2W1U—(1 0 0 0)T —to (0 0 1 0)T . This can be
done with two pulses, W3 and W4, respectively, inducing the
transition from |1〉 to |2〉 and from |2〉 to |3〉. The W3 matrix is
in the form

W3 =

⎛
⎜⎝

cos(C3) i eiφ3 sin(C3) 0 0
i e−iφ3 sin(C3) cos(C3) 0 0

0 0 1 0
0 0 0 1

⎞
⎟⎠. (B7)

The condition W3(1 0 0 0)T = (0 1 0 0)T [where (0 1 0 0)T is
the third column of W2W1U ] gives

(C3, φ3) = (π/2, π/2). (B8)

The matrix W4 is in the form of W1 [Eq. (B3)], where the
condition W4(0 1 0 0)T = (0 0 1 0)T [where (0 1 0 0)T is the
third column of W3W2W1U ] yields

(C4, φ4) = (π/2, π/2). (B9)

TABLE I. Dipole moments (D) for the example of Sec. V B.

Transition Value (×10−30 SI unit)

|1〉 → |2〉 1.75
|1〉 → |3〉 2.16
|1〉 → |4〉 2.57
|2〉 → |4〉 3.80
|2〉 → |3〉 3.17
|3〉 → |4〉 4.83

It is straightforward to see that W4W3W2W1U = I; thus the
overall pulse sequence is U = W †

1 W †
2 W †

3 W †
4 with Ck = φk =

π/2, ∀k. To find each pulse duration, we note that, on the one
hand, after learning the values of Cσ (k)’s the area covered by a
pulse Aσ (k) in the envelope-time plot,

areak =
∣∣∣∣
∫ tk

tk−1

Aσ (k)(t ) dt

∣∣∣∣ = h̄|Cσ (k)/Dσ (k) σ (k)|, (B10)

is also determined [see Eq. (A9) and Table I]. On the other
hand, from Pontryagin’s maximum principle we know that
in each interval [tk−1, tk] the corresponding A(t ) is an expo-
nential segment which is related to the modulator bandwidth
�modulator. If this bandwidth is sufficiently large, then the slope
becomes sharp and can be well replaced by a sudden jump.
That is, the pulse envelope A(t ) starts at time tk−1 from zero
and with an almost sudden jump reaches its maximum value
Amax. Next there is a waiting time interval where the slope
remains zero until at another instant tk at which it drops to
zero almost suddenly. This implies that the pulse shape is
almost a square, where the exact value of �tk→k+1 = tk − tk−1

is determined by the area condition (B10) as

�tk−1→k = areak/|Amax|. (B11)

Figure 7 depicts a generic example of the pulse.
Here is the detailed calculation of the time duration of

each pulse. The power of the laser is considered to be Plaser =
20 mW; whence the amplitude of the laser pulse needs to
satisfy

1

2
ε0c|Amax|2 = Plaser

Scross section
, (B12)

where c = 3 × 108 m/s is the speed of light, ε0 = 8.85 ×
10−12 (in the SI units) is the permittivity of the vacuum,
and Scross section is the cross section of the laser beam, which
here is considered to be 100 μm2. Hence we obtain Amax =
38.8 × 104 (in the SI units). The laser modulator bandwidth
�modulator = 40 GHz yields τfall = 25 ps, which is consid-
erably short such that we can safely consider the pulses
as square. Hence the pulse shapes are square. Now from
Eq. (B11) and Table I, we obtain �t1→2 ≈ 244 ps, �t2→3 ≈
135 ps, and �t3→4 ≈ 88 ps, and the total duration of the laser
pulse application is 601 ps—see Fig. 6.
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