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We investigate the dynamics of relativistic electrons interacting with intense laser fields in a linear or circular
polarization. First, we study the momentum distributions of a single spatially localized wave packet. We find
that these distributions are squeezed in the polarization plane (y-z) as well as along the laser propagation (x)
direction. In a chosen gauge, the squeezing direction is controlled by the laser vector potential A and the electron
initial momentum. For the case when the electron initial momentum is zero the squeezing occurs directly along
the direction of A. We obtain analytical expressions within linear momentum approximation that explain the
squeezing features very well by defining a squeezing vector and rotational angle of the squeezed momentum
distribution. We analyze the symmetric properties of the momentum distributions viewed in different momentum
planes and discuss the effects of different helicity of circular laser polarizations and the direction of the spin
quantization. An unexpected feature of bending of momentum distribution is found for very intense laser fields.
We extend our investigation to the momentum distribution of two spatially separated wave packets, particularly
the orientations of two crossing distributions. It is found that the absolute phase of the initial laser field affects
the orientation of the electron momentum distributions while quantum superposition of two states with the same
spin gives interference in the momentum distributions that depends on the quantum phase of the electron.
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I. INTRODUCTION

In connection with recent extraordinary development of
high power laser sources much effort has been devoted to
the theory of interaction of intense radiation with matter. At
currently available lasers exceeding intensities 1018 W/cm2

[1,2] relativistic description based on the Dirac equation is
necessary. This is a theoretical challenge since no analytic
solutions are known for the Dirac equation describing the
dynamics of an atomic (bound) electron interacting with an
intense laser field. Most theoretical work is based on the
premise that at high fields the solution of the Dirac equation
is known for an unbound electron interacting with an elec-
tromagnetic classical plane wave (called the Volkov solution).
This solution was found long ago, in 1935, by Volkov [3].
Its derivation can also be found in the textbook [4] and in
a recent review [5]. This exact analytical solution appeared
to be very useful in the description of various phenomena,
particularly in description of photoionization of atoms in the
framework of the so-called strong-field approximation, the
approach developed by the pioneering work of Reiss [6,7].
In this framework the Volkov solution is incorporated in
the transition amplitude and the approximation consists in
treating electron-nucleus interaction as perturbation. In the
nonrelativistic limit [8] and within the dipole approximation
one can derive an important nonrelativistic long-wavelength
limit called the Keldysh tunneling theory of photoionization
[9]. As shown by Reiss and Krainov [10] and later by Bauer
[11], the nonrelativistic Volkov solution can be used to obtain
analytical solutions for the electron wave function in the

atomic Coulomb potential interacting with a strong circularly
polarized laser field.

The Volkov wave function has also been applied in various
other phenomena such as scattering problems [12,13], non-
linear Compton scattering (see [14] and references therein),
and also quantum dynamics of free electrons in problems
involving electron-spin dynamics in a quantized laser field
[15]. Recent works also generalize the Volkov solutions to a
medium with refractive index [16] and inclusion of photon
effective mass in plasma [17], which involves solving second-
order differential equations and incorporating the WKB ap-
proach to strong-field QED [1]. The Volkov solution will
also be useful in connection with recent investigations of the
problem of the transfer of photon momentum from a laser into
an electron and nucleus in intense laser fields (see [18] and
references therein).

We note that the original Volkov wave function used in
most of the above-mentioned applications corresponds to
plane-wave-like electron states. In order to describe a local-
ized electron it is necessary to construct a suitable superposi-
tion of Volkov states each labeled by the momentum vector p
with amplitudes c(p) inside the superposition. Several authors
studied this problem recently. Two different approaches have
been used. In the first approach [19,20] one assumes ad hoc
the shape of these amplitudes c(p) (assumed as Gaussians)
where in another approach [21] one assumes a known spatial
shape of the wave packet at some specific (initial) time when
the electromagnetic field is nonzero. In the latter approach
the amplitudes c(p) should be calculated by projecting the
known spatial shape on the Volkov wave functions. In this
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paper we follow the latter approach described in detail in
[21] where the amplitudes are computed numerically and
used to study the evolution in configuration space at later
times. In our paper we investigate in detail the surprising
squeezed shapes of momentum distributions described by
|c(p)|2 which were not discussed in [21]. In nonrelativistic
laser electron dynamics (based on the dipole approximation)
a simple Gaussian spatial wave packet corresponds to simple
Gaussian momentum amplitudes c(p). However, we find that
in the relativistic case the simple Gaussian spatial wave packet
is built with more complex (squeezed and rotated) momentum
amplitudes c(p).

Next we investigate the relativistic phenomena of quantum
superpositions of two wave packets, i.e., superposition of two
states of an electron (namely, different spin and spatially
separated center of wave-packet degrees of freedom) on the
momentum distributions under linearly, circularly, or ellipti-
cally polarized intense laser fields. In practice, a relativistic
electron generated in a particle accelerator can travel in two
opposite directions. The setup can be achieved by passing the
electron through a double slit (depicted in Fig. 1) where the
electron is spin flipped if passing through the lower slit and its
direction can be controlled by the presence or absence of the
mirror.

The laser-electron system is described by the covariant
Dirac equation which includes not only relativistic speed [22]
but also the spin property of the electron, as given in Sec. II.
Full analytical solutions of the time-dependent wave functions
are obtained for an initial Gaussian spatial wave packet in
Sec III. Results of three-dimensional (3D) plots in momentum
space are obtained. In Sec IV, we analyze the momentum
distributions of the relativistic electron states and see how they
are affected by the laser parameters such as field strength,
polarization, and spatial-temporal dependence of the laser
phase. This paper provides insights on the effects of intense
fields on the quantum superposition properties of the electron.

II. INTERACTION OF ELECTROMAGNETIC FIELDS
WITH A RELATIVISTIC ELECTRON

In the presence of EM fields interacting with a spin particle,
the Dirac equation is [4]

(/p − e/A − mc)ψ s = 0 (1)

with /A = γ μAμ, /p = γ μ pμ = γ μih̄∂μ, and the four-
component spinor ψ s as the solutions, with the matrix
written as

γ =
(

0 σ̂

−σ̂ 0

)
, (2)

where σ̂ represents the usual three 2 × 2 Pauli matrices. The
derivation of the Volkov equation as the solution of the Dirac
equation is given in Appendix A.

General elliptically polarized laser

The Dirac equation is solved in Appendix A, giving the
final Volkov wave function (for any plane-wave laser, not

FIG. 1. Schematic of a generally elliptically polarized laser field
interacting with an electron initially in the superposition of spin
up and spin down for chosen initial positions and quasimomenta
of which are our choice. The picture in the middle shows how the
superposition state can be created by a double slit setup with spin
flip and a � phase control apparatus. The bottom picture shows the
squeezing vector V defined in Eq. (55) and the rotational angle α of
the squeezed momentum distribution in the y-z plane, perpendicular
to the x direction.

necessarily monochromatic) [21]

ψ±(p; r, t ) = N (E )

(
1 ± e/k /A

2k · p

)
u±(p)eiS±

(3)

where the action phase is

S± = ∓ p · x

h̄
+
∫ k·x

−∞

[
− eA · p

h̄(k · p)
± e2A2

2h̄(k · p)

]
dϕ (4)

with k · p = ω
c

E
c − kx px, A · p = φ

c
E
c − A · p = − Ay py −

Az pz, and A2 = ( φ

c )2 − |A|2. The upper (lower) sign is for
positive (negative) energy.

We assume the laser beam propagates along the x direc-
tion k = kxx̂ as a monochromatic plane wave with a general
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elliptically polarized vector potential

A(ϕ) = ayŷ cos ϕ + azẑ cos(ϕ + δ) (5)

which satisfies the transversality condition k · A = 0, where
ϕ = ωt − kxx.

The bracket matrix in Eq. (3) takes the form⎛
⎜⎝

1 ∓ iY ε ±Zε ∓Z ±iY
∓Zε 1 ± iY ε ∓iY ±Z
∓Z ±iY 1 ∓ iY ε ±Zε

∓iY ±Z ∓Zε 1 ± iY ε

⎞
⎟⎠ (6)

with Y = k0eAy (ϕ)
2k·p , Z= k0eAz (ϕ)

2k·p , Ay=ay cos ϕ, Az = az cos(ϕ +
δ), ε = kx

k0
, and k0 = ω

c . We have assumed the Coulomb
gauge with scalar potential φ = 0, hence the electric field
is E = − ∂A

∂t , antiparallel to A. Note that the amplitude of
the Volkov solution acquires significant time dependence
through ϕ at high field as the magnitude of k0eay,z

2k·p can become
comparable to or greater than unity.

Putting in the zero-field solutions u± we have the four
solutions

ψ1 = N

⎛
⎜⎝

1 + iY (P+ − ε) − ZPz

−iY Pz + Z (P+ − ε)
Pz(1 − iY ε) + Z (εP+ − 1)
P+ + iY (εP+ − 1) − ZεPz

⎞
⎟⎠eiS+

, (7)

ψ2 = N

⎛
⎜⎝

−iY Pz + Z (ε − P−)
1 + iY (ε − P−) − ZPz

P− + iY (1 − εP−) − ZεPz

−Pz − iY εPz + Z (1 − εP−)

⎞
⎟⎠eiS+

, (8)

ψ3 = N

⎛
⎜⎝

Pz + iY εPz + Z (1 − εP+)
P+ + iY (1 − εP+) + ZεPz

1 + iY (ε − P+) + ZPz

iY Pz + Z (ε − P+)

⎞
⎟⎠eiS−

, (9)

ψ4 = N

⎛
⎜⎝

P− + iY (εP− − 1) + ZεPz

−Pz + iY εPz + Z (εP− − 1)
iY Pz + Z (P− − ε)

1 + iY (P− − ε) + ZPz

⎞
⎟⎠eiS−

(10)

where Pj = cp j

E+mc2 , j = z,±.

III. PROBABILITIES IN MOMENTUM SPACE

The spatial-temporal dynamics of the relativistic electron
is described by superpositions of wave functions ψ s(p; r, t )
of the four solutions of the Dirac equation; each is a four-
component spinor, containing amplitudes and phases of elec-
tron spin up (s = 1), electron spin down (s = 2), positron spin
up (s = 3), and positron spin down (s = 4):

(r, t ) =
∫

d3 p
4∑

s=1

cs(p)ψ s(p; r, t ). (11)

Consider that the initial state of the electron is a superposition
of spin up and spin down, each with a central momentum p j

and central position r j described by a Gaussian-type wave

packet, and e−(r−r j )2/2d2
j is introduced into the cw laser field

at a specific time, such that θ j = ωt0 − kxx j , corresponding to
laser vector potential A = a√

2
(ŷ + ẑ) cos θ j for linear polariza-

tion (when δ = 0) and A = a√
2
(ŷ cos θ j − ẑ sin θ j ) for circular

polarization (when δ = ±π/2):

(r, t0) = N0
[
ei�1 e−(r−r1 )2/2d2

1 ψ1(p1; r, t0)

+ ei�2 e−(r−r2 )2/2d2
2 ψ2(p2; r, t0)

]
(12)

where the normalization parameter for the given initial condi-
tion is N2

0

∑2
j=1

∫
e−(r−r j )2/d2

j |ψ j (p j ; r, t0)|2d3r = 1.
In practice the phase difference � = �1 − �2 may be

controlled to give the desired interference effect. We also no-
tice that the time-averaged intensity (|A|2 integrated over one
cycle) is the same for both linear and circular polarizations.

The initial states (for electron spin up and spin down) are,
respectively,

ψ1(p1; r, t0) = N1

⎛
⎜⎜⎝

iY1(P1+ − ε) − Z1P1z + 1
Z1(P1+ − ε) − iY1P1z

P1z(1 − iY1ε) + Z1(εP1+ − 1)
P1+ − Z1εP1z+ iY1(εP1+− 1)

⎞
⎟⎟⎠eiS+(p1,ϕ0 ),

(13)

ψ2(p2; r, t0) = N2

⎛
⎜⎜⎝

−iY2P2z + Z2(ε − P2−)
1 + iY2(ε − P2−) − Z2P2z

P2−+ iY2(1 − εP2−) − Z2εP2z

−P2z− iY2εP2z+ Z2(1 − εP2−)

⎞
⎟⎟⎠eiS+(p2,ϕ0 )

(14)

where Yj = k0eay

2k·p j
cos ϕ0, Zj = k0eaz

2k·p j
cos(ϕ0 + δ), ϕ0 =

k · x0 = ωt0 − kxx, Nj =
√

Ej+mc2

(2π )32Ej
, and

S+(p j, ϕ0) = p j ·r − Ejt0
h̄

+ 1

h̄k · p j

[
ep jyay sin ϕ0

+ ep jzaz sin(ϕ0 + δ) +
(eay

2

)2
g(ϕ0)

+
(eaz

2

)2
g(ϕ0 + δ)

]
(15)

where g(u) = u + 1
2 sin 2u.

To compute the coefficient cs(p′), the probability ampli-
tude for finding the system in any time in the Volkov state
ψ s(p′; r, t ), following San Roman et al. [21], we take the
projection of the known initial wave function (r, t0) in
Eqs. (11) and (12) at time t0 on ψ s(p′; r, t0), which is the scalar
product

cs(p) =
∫

d3rψ s∗(p; r, t0)(r, t0) (16)

= N0

2∑
j=1

ei� j

∫
d3re−(r−r j )2/2d2

j ψ s∗(p; r, t0)ψ j (p j ; r, t0)

(17)

where we use the orthonormality
∫

d3rψ r∗(p′; r, t )
ψ s(p; r, t )=δ(p′ − p)δsr or 〈ψ s(p; r, t )|ψ r (p; r, t )〉 = δsr .
The normalization of the wave function (r, t ) =∑

s=1...4 s(r, t ) gives
∫

d3r|s(r, t )|2 = ∫
d3 p|cs(p)|2

and N0 ∼ ( 2π

d
√

π
)
3/2

.
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Here Y is replaced by Y0 = k0eay

2k·p cos ϕ0 and Z is replaced by

Z0 = k0eaz

2k·p cos(ϕ0 + δ). The phase of ψ s(p; r, t0) in Eqs. (7)–
(10) depends on t0, which determines the initial condition
(such as position, momentum of the electron, and the field

experienced). Thus, according to Eq. (16) cs(p) does not
change with time and is fixed by the initial condition.

Four different paired products need to be calculated; a
general paired product is expressed as

ψ s∗(p; r, t0)ψ j (p j ; r, t0) = 1

(2π )3

√
E + mc2

2E

√
Ej + mc2

2Ej
us†(p; r, t0)u j (p j ; r, t0)ei[−S±(p;ϕ0 )+S+(p j ;ϕ0 )], (18)

S±(p; ϕ0) = ∓Et0 − p · r
h̄

+ 1

h̄k · p

[
epyay sin ϕ0 + epzaz sin(ϕ0 + δ) ±

(eay

2

)2
g(ϕ0) ±

(eaz

2

)2
g(ϕ0 + δ)

]
. (19)

The general argument has the form

us†(p; r, t0)u j (p j, r, t0) = f1 +
∑

d=0,δ

{ f2d cos(ϕ0 + d ) + f3d cos2(ϕ0 + d )} + f23 cos ϕ0 cos(ϕ0 + δ) (20)

and the exponential

−S±(p; ϕ0) + S+(p j, ϕ0) = (±p − p j ) · x0

h̄
+ 1

h̄

∫ k·x0

−∞
e

[
p

k · p
− p j

k · p j

]
· A(ϕ′)dϕ′

+ 1

h̄

∫ k·x0

−∞

[
1

(k · p j )
∓ 1

(k · p)

]
1

2
e2A(ϕ′)2dϕ′ (21)

= ϕ∓
j + f∓

4 j ·r +
∑

d=0,δ

{ f5 jd sin(ϕ0 + d ) + f ∓
6 jd sin 2(ϕ0 + d )} (22)

where

h̄ϕ∓
j =

{
(− ∓ E − Ej ) + Wj∓

[(
eay

2

)2

+
(

eaz

2

)2]
ω

}
t0 + Wj∓

(
eaz

2

)2

δ, (23)

h̄f∓
4 j = (∓p + p j ) − kWj∓

[(
eay

2

)2

+
(

eaz

2

)2]
, (24)

h̄ f5 j = −e� jyay, h̄ f5 jδ = −e� jzaz, (25)

h̄ f ∓
6 j = Wj∓

(
eay

2

)2 1

2
, h̄ f ∓

6 jδ = Wj∓

(
eaz

2

)2 1

2
, (26)

with � jy = py

k·p − p jy

k·p j
,� jz = pz

k·p − p jz

k·p j
,Wj∓ = 1

k·p j
∓ 1

k·p , and a2 = a2
y + a2

z .
The f coefficients all depend on the indices s and j. For example, for s = 1 and j = 1

u1†(p; r, t0) =

⎛
⎜⎜⎝

−iY0(P− − ε) − Z0Pz + 1
Z0(P− − ε) + iY0Pz

Pz + iY0εPz + Z0(εP− − 1)
P− − Z0εPz − iY0(εP− − 1)

⎞
⎟⎟⎠

T

, (27)

u1(p1, r, t0) =

⎛
⎜⎜⎝

iY1(P1+ − ε) − Z1P1z + 1
Z1(P1+ − ε) − iY1P1z

P1z − iY1εP1z + Z1(εP1+ − 1)
P1+ − Z1εP1z + iY1(εP1+ − 1)

⎞
⎟⎟⎠. (28)

The coefficients can be written in the general form

cs(p) = N0

(2π )3

√
E + mc2

2E

2∑
j=1

√
Ej + mc2

2Ej
ei� j eiϕ∓

j ei( f ∓
4 jyy j+ f ∓

4 jzz j )e− f ∓
4 jy

2d2
j /2e− f ∓

4 jz
2d2

j /2(2πd2
j

)

×
∫ ∞

−∞
e−(x−x j )2/2d2

j us†(p; r, t0)u j (p j, r, t0)e
i f ∓

4 jxx+i
∑

d=0,δ

{ f5 jd sin(ϕ0+d )+ f ∓
6 jd sin 2(ϕ0+d )}

dx (29)

where the superscript “−(+)” corresponds to s = 1, 2, (3, 4) and we have used∫ ∞

−∞
e−(z−z j )2/2d2

j ei f ∓
4 jzzdz = ei f4 jzz j

∫ ∞

−∞
e−z′2/2d2

j ei f ∓
4 jzz′

dz′ = ei f ∓
4 jzz j e− f ∓

4 jz
2d2

j /2(2πd2
j

)1/2
. (30)
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The coefficients can be evaluated analytically as (only for the cw laser field)

cs(p) = N0

(2π )3

√
E + mc2

2E

2∑
j=1

ei� j

√
Ej + mc2

2Ej
eiϕ∓

j e− f4 jy
2d2

j /2e− f4 jz
2d2

j /2ei f4 jyy j ei f4zz j
(
2πd2

j

)3/2 ∑
n,n′,nδ ,n′

δ

eigm Jm

×
[

Fe−q2
md2

j /2eiqmx j + 1

2
{ei(qm+kx )x j e− 1

2 (qm+kx )2d2
j e−iωt0 ( f2 + f2δe−iδ ) + ei(qm−kx )x j e− 1

2 (qm−kx )2d2
j eiωt0 ( f2 + f2δeiδ )}

+ 1

4
{ei(qm+2kx )x j e− 1

2 (qm+2kx )2d2
j e−i2ωt0 F−

3 + ei(qm−2kx )x j e− 1
2 (qm−2kx )2d2

j ei2ωt0 F+
3 }
]

(31)

where

qm = f ∓
4 jx − Mkx, (32)

M = n + 2n′ + nδ + 2n′
δ, (33)

gm = Mωt0 + (nδ + 2n′
δ )δ, (34)

Jm = Jn( f5)JN ( f6)JN ( f5δ )JN ( f6δ ), (35)

F = f1 + 1
2 f3 + 1

2 f3δ + 1
2 f23 cos δ, (36)

F±
3 = f3 + f3δe±i2δ + f23e±iδ. (37)

Note that although Eq. (31) is a nice analytical expression
it has fourfold summations involving the Bessel functions
and this is a major factor which makes the computational
process much slower compared to direct numerical integration
of the integral using Eq. (29). The step for x in the integral
of Eq. (29) has to be several times smaller than π/ max | f4x|
to obtain correct results. It is more efficient to evaluate the
coefficient cs(p) numerically than to do it analytically because
analytical expression involves a fourfold infinite series that
would be too computationally expensive. The coefficients
f1, f2d , f3d , and f23 in Eq. (29) are most efficiently found
numerically by multiplying the two vectors, e.g., Eqs. (27) and
(28).

IV. MOMENTUM SQUEEZING ANALYSIS

Using the dipole approximation by setting x = x j in
Eqs. (3) and (6) and keeping only the linear terms x − x j in the
Taylor expansion of the S± functions will allow us to evaluate
the integration over x from the previous section. Thus we
will obtain simple expressions which will help us to interpret
squeezing in the momentum spectra obtained in the previous
section via numerical integration.

Let us separate out the x-dependent term �(x) in the phase
factor

−S±(p; ϕ0) + S+(p j, ϕ0) = (±E − Ej )t0
h̄

− (±py − p jy)y

h̄

− (±pz − p jz )z

h̄
+ �(x) (38)

and define it as

�(x) = − (±px − p jx )x

h̄
+ 1

h̄

∫ k·x0

−∞
eQ · A(ϕ′)dϕ′

−1

h̄

∫ k·x0

−∞
Wj∓

1

2
e2|A(ϕ′)|2dϕ′

= − (±px− p jx )(x′+ x j )

h̄
+1

h̄

∫ ωt0−kx (x′+x j )

−∞

[
eQ · A(ϕ′)

−Wj∓
1

2
e2|A(ϕ′)|2

]
dϕ′ (39)

where Q = p j

k·p j
− p

k·p = (−� jy,−� jz ) = p j−p
k·p j

+ p
k·p j

− p
k·p =

pWj− − p−p j

k·p j
and the relative coordinate x′ = (x − x j ). We set

φ = 0, so A · p = −A · p and A2 = −|A|2. Alternatively, the

x-dependent phase factor e
i f ∓

4 jxx+i
∑

d=0,δ

{ f5 jd sin(ϕ0+d )+ f ∓
6 jd sin 2(ϕ0+d )}

in the integral of Eq. (29) is defined as

�(x) = f ∓
4 jxx +

∑
d=0,δ

{ f5 jd sin(ϕ0 + d ) + f ∓
6 jd sin 2(ϕ0 + d )}.

(40)
The integral over x (for the positive-energy case) can be
evaluated and the squeezing effect can be understood by ob-
taining an approximate analytical expression through Taylor
expansion around x j for sin(ωt0 − kxx) = sin(ωt0 − kxx j ) −
kx(x − x j ) cos(ωt0 − kxx j ) in the phase of Eq. (29), which
becomes

∫ ∞

−∞
e−(x−x j )2/2d2

j ei�(x)dx = ei�(x j )
∫ ∞

−∞
e−x′2/2d2

j eiGj x′
dx′

= ei�(x j )

a
√

2
e−G2

j /4a2

= ei�(x j )d je
−G2

j d
2
j /2 (41)

where

�(x) ≈ �(x j ) + Gjx
′, (42)

�(x j ) = f ∓
4 jxx j +

∑
d=0,δ

{ f5 jd sin(θ j + d ) + f ∓
6 jd sin 2(θ j+ d )},

(43)

Gj = f −
4 jx − kx

∑
d=0,δ

{ f5 jd cos(θ j + d ) + f ∓
6 jd 2 cos 2(θ j + d )}

(44)

with θ j = ωt0 − kxx j .
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An alternative expression suited for further analysis is

�(x j ) = − (±px − p jx )x j

h̄
+ 1

h̄

∫ θ j=ωt0−kxx j

−∞

×
[

eQ · A(ϕ′) − Wj∓
1

2
e2|A(ϕ′)|2

]
dϕ′. (45)

Using Leibniz’s rule and considering the positive-energy case,

Gj = d�(x′)
dx′ = d�(x′)

dϕ0

dϕ0

dx′ = − (px − p jx )

h̄

− 1

h̄
kx

[
eQ · A(θ j ) − Wj−

1

2
e2|A(θ j )|2

]
(46)

= − (px− p jx )

h̄
+ 1

h̄
kx

(p − p j ) · eA(θ j )

(k · p j )
− 1

h̄
kxWj−χ (47)

and the nonlinearity in the squeezing is governed by

χ = ep · A(θ j ) − e2|A(θ j )|2
2

. (48)

An alternative expression is

h̄G j = −(px − p jx ) + kx

[
p

k · p
− p j

k · p j

]
· eA

+ kx

(
1

k · p j
− 1

k · p

)
e2|A(θ j )|2

2
. (49)

Using k · p = ω
c

E
c − kx px and the Taylor expansions

around p jq(q = x, y, z) we have

E − Ej � (p − p j ) · (2p j + p − p j )

2m
� 1

m
(p − p j ) · p j

+ |p − p j |2
2m

, (50)

Wj−(p, p j ) = ω(E − Ej )/c2 − kx(px − p jx )

(k · p j )(k · p)

�
ω
c

1
mc (p − p j ) · p j + ω

c
|p−p j |2

2mc − kx(px− p jx )

(k · p j )2
.

(51)

After rearranging the terms, Eq. (44) or Eq. (46) can be
rewritten as

h̄G j = −(px − p jx )

[
1 − kxξ

k · p j

(
1 − p jx

εmc

)]

+ kx(p − p j )

k · p j
·
[
eA(θ j ) − p j⊥

εmc
ξ
]

− H (52)

where p j⊥ = [0, p jy, p jz] and

ξ = kx

(k · p j )
χ (p j ) � ε

(
1 + cp jx

E j

)
c

Ej

×
[

ep j · A(θ j ) − e2|A(θ j )|2
2

]
, (53)

H =
ω
c

k · p j

|p − p j |2
2mc

ξ +
(

ω
c (p − p j ) · p j

mc

k · p j
− kx(px − p jx )

k · p j

)

×
(

kx(p − p j )

k · p j
· eA(θ j )

)
. (54)

FIG. 2. Distributions of the �s=1:4|cs(p)|2 on the y-z momentum
plane for electron initial momenta p1 = 0 and at p1x = ±0.2mc for
linear (δ = 0◦) and circular (δ = 90◦) polarization lasers.

Equation (52) is the main analytical expression for further
analysis, containing the linear terms in pq − p jq, and the
quadratic terms in pq − p jq are contained in H . The important
scalar product (p − p j ) · V in the second term of Eq. (52),
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FIG. 3. Distributions of the �s=1:4|cs(p)|2 on the y-z momentum plane for electron initial momenta p1 = 0 for stronger laser fields. The
arrows on top show the direction of the vector potential for the respective θ .

with the vector (illustrated in Fig. 1)

V = eA(θ j ) − p j⊥
εmc

ξ = (0,Vy,Vz ), (55)

clearly explains the features such as rotation and squeezing
seen in all the plots presented in the next subsections that are
obtained from the exact equations above. Note that rotation
and squeezing are controlled by V, particularly ξ and the
relative direction of both vectors p j⊥ and A(θ j ), which are
on the y-z plane or polarization plane.

A. Squeezing

If p j⊥ = 0 is finite but parallel to A, the squeezed mo-
mentum distribution is orthogonal to A(θ j ). Squeezing oc-
curs along A(θ j ) but there is no squeezing in the direction
perpendicular to A(θ j ). There are two interesting cases when
squeezing in a certain direction does not occur for specific
field values. First, when the two vectors A and p j⊥ are
antiparallel, at a specific value of the laser field they may
cancel and V is zero. In this case, Vy and Vz are zero or
eAu � β juξ , so no (transverse) squeezing occurs along p j⊥ or
in the polarization plane but may occur in the px direction. In
the second case, at a specific field intensity such that ξ is zero
no squeezing will occur in the px direction but may occur in
the direction of p j⊥ only.

B. Rotation

When the initial momentum vector p j⊥ is finite and parallel
to the vector A(θ j ), the squeezed momentum distribution is
orthogonal to A(θ j ), i.e., the distribution is not rotated. The
strength of rotation strongly depends on the magnitude of the
ξ parameter and the relative direction of both vectors p j⊥ and
A. The strongest rotation occurs when p j⊥ is perpendicular to
A(θ j ). Strong rotations will occur when the direction of V in
Eq. (52) differs significantly from the direction of A.

A specific situation in which the squeezing and rotation can
be easily understood is when the initial momentum p j = 0 (in
Figs. 2 and 3). Here, ξ simplifies to

ξ = −|eA(θ j )|2
2mc

(56)

and the lowest-order approximation predicts that

h̄G j = −px

(
1 + |eA(θ j )|2

2m2c2

)
+ p · A(θ j )

mc
(57)

where G2
j is proportional to (p · A)2, which is symmetric

with respect to the direction of the A vector. We assume
ε = ckx

ω
� 1 and Ej � mc2 in Eqs. (52) and (53). By keeping

higher-order momentum terms in Eq. (52) we obtain G2
j ∼

[ p
mc · eA(1 + px

mc ) + ( |p||A|
2mc )2]

2
leading to bending observed at

high laser intensities in the next section.
As we will show in Fig. 3 the plot for a certain value θ (=

0, π/2) is slightly different from θ + π (= π, 3π/2). This
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asymmetry arises from p
mc · eA + ( |p||A|

2mc )2 as a whole and
cannot be due to the quadratic field term alone, which is
symmetric since

e2|A(θ j )|2
2

=
(

eay

2

)2

(1 + cos 2θ j )

+
(

eaz

2

)2

[1 + cos 2(θ j + δ)]. (58)

Analytical expressions of Gj for analysis of momentum dis-
tribution for cases of finite p jq in the figures are given in
Appendix C.

C. Angle of rotational α

The momentum distribution on the y-z plane is governed
by (p⊥ − p j⊥ ) · V, the second term of Eq. (52), which can be
viewed as rotated momentum expressed by

(py − p jy)V cos α̃ + (pz − p jz )V sin α̃ = |p⊥ − p j⊥ |V cosA.

(59)

Here, V =
√

V 2
z + V 2

y , A is the angle for the dot product,
and α = α̃ + 90◦ is the rotational angle of the squeezed
momentum distribution relative to the (horizontal) y axis, as
illustrated in Fig. 1 and defined through

tan(α − 90◦) = tan α̃ = Vz

Vy
= eaz cos(θ j + δ) − β jzξ

eay cos θ j − β jyξ
,

(60)

ξ � (1 + β jx )

(
β j⊥ · eA(θ j ) − e2|A(θ j )|2

2mc

)
(61)

where β j⊥= (0,
p jy

mc ,
p jz

mc ). So, squeezing is largest in the direc-
tion of the vector V.

Writing out all the momentum components linear in
(p − p j ) in Eq. (52), we see the contribution of a fraction p ju

mc
of the momentum ξ through

h̄G j = (px − p jx )

[
kxξ

k · p j

(
1 − β jx

ε

)
− 1

]

+ kxV

k · p j
(p⊥ − p j⊥ ). (62)

For weak field |eA(θ j )| << |p j | (constrained by |pj | < mc)
the first term of ξ [Eq. (61)] which dominates is in the order of
β jueAu, u = y, z, so the momentum width of the x component
is essentially affected by the laser fields only if pjy or p jz

is relativistic. For sufficiently high laser intensities such that
|eA(θ j )| � |p j |, the value of p jy or p jz has little effect on the
momentum width of the x component since the second term

of ξ dominates, and ξ � −(1 + β jx ) |eA(θ j )|2
2mc is negative and

V � eA(θ j ) + β j⊥
|eA(θ j )|2

2mc .

D. Momentum width

The arguments in e−G2
j d

2
j /2e− f ∓

4 jy
2d2

j /2e− f ∓
4 jz

2d2
j /2 can be com-

bined to form the 3D Gaussian exp[−(px − p jx )2/σ 2
jx −

(p⊥ − p j⊥ )2/σ 2
j⊥] with the variances

σ 2
jx = 2h̄2

d2
j

[
1 − kx

(k·p j )
ξ
]2 , (63)

σ 2
j⊥ = 2h̄2

d2
j

[
1 + kx

k·p j

√
{eay cos θ j − β jyξ}2+

{eaz cos(θ j + δ) − β jzξ}2

] , (64)

which shows the momentum widths reduce with increase of
ay, az and oscillate with θ j = ωt0 − kxx j and not just ωt0.
The “transverse” squeezing in the y-z plane can be clearly
seen from the figures with momentum widths given by the
approximate analytical expression Eq. (64). If δ = 0 and ay =
az we have σ jy = σ jz and Eq. (64) simplifies. We also have
“longitudinal” squeezing along the x direction according to
Eq. (63). However, the squeezing effect is different where the
variance has quartic dependence on the field components, ay

and az, while the variance of the transverse (y and z) compo-
nents has quadratic dependence on the field components (due
to the square root).

The longitudinal momentum squeezing is related to the
kinetic effect of the Lorentz force that is unfavorable for
recollision in the high-order harmonic generation (HHG)
process and can be overcome by using counterpropagating
equal-handed circularly polarized laser pulses [23]. Such laser
configuration is shown to produce very high spatial squeezing
and electron current when the time for a round trip in the
transverse y-z plane is equal to the electron excursion time
along the x axis which would enhance the intensity of high-
harmonic generation. The influence of the magnetic field
is equally as important as the electric field on the electron
kinetics in the HHG process and can be controlled in different
ways, by harmonic fields [24] or static magnetic fields, to
counteract the relativistic kinetic effect of the magnetic part
of the laser field to achieve higher intensity [25] and a broader
HHG plateau [26].

V. RESULTS AND DISCUSSIONS

Using Eqs. (16)–(29) we have plotted the space- and
time-independent momentum distribution

∑4
s=1 |cs(p)|2 for

linearly and circularly polarized laser fields. We use the
following default parameters unless stated otherwise: aω =
1015 V m−1, ay = az = √

0.5a, δ = 90, and the initial mo-
menta have magnitude |pjq| = 0.2mc where q = x, y, z, with
two possible signs for the momentum, giving four possibilities
for each q. The corresponding eay

mc is −5 (negative due to

electron charge), which is much greater than |p jq|
mc = 0.2, hence

ξ is negative.
Here, ω = 2c/(137aB) where aB = 0.5292 × 10−10 m is

the Bohr radius. Hence, the intensity is ((cεo)/2)(aω)2 =
1.327 × 1027 Wm−2. The central position of the single-
electron case is x1 = 0 while superposed electron states are
fixed at x1 = −30d and x2 = +30d , with d = √

2aB. For
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FIG. 4. Distributions of the �s=1:4|cs(p)|2 on the y-z momentum
plane at px = p1x for linearly (δ = 0◦) and circularly (δ = 90◦)
polarized lasers for the electron initial momenta along the y direction.

initial superposed states plotted in Figs. 7–9, we set initial
time t0 = T/4, T = 2π/ω, and relative phase � = 0.

For the plots in the y-z momentum plane, we fix px =
p1x while for the x-y momentum plane we fix pz = p1z. By
default, p1x = p1y = p1z = 0, unless stated otherwise. Note
that all the plots of momentum distributions are for the
spin-up electron only. The possible physical variables that

FIG. 5. Distributions of the �s=1:4|cs(p)|2 on the y-z momentum
plane at px = p1x for linearly (δ = 0◦) and circularly (δ = 90◦)
polarized lasers for the electron initial momenta along the z direction.

can be controlled in computations are (a) laser parameters
ω, a, ay/az, δ; (b) electron wave-packet initial mean position
r j , mean momentum p j , and width d j ; (c) momentum plane
py − pz, pz − px, or px − py; and (d) current time t and initial
time t0. However, x j and t0 are connected by the variable θ j =
ωt0 − kxx j . Thus we have chosen to plot the distributions
versus different values of θ j , electron mean momenta p1x, p1y,
and p1z and laser field polarizations. We define the laser field
vector potentials; A = a√

2
(ŷ + ẑ) cos θ j for linear polarization

and A = a√
2
(ŷ cos θ j − ẑ sin θ j ) for circular polarization. In

other words, the momentum distribution depends on the (ini-
tial) local field experienced by the electron at position x j
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at instant t0 with the momentum p j . This explains why the
momentum distribution depends strongly on θ j , as shown
in Fig. 2 for a single state (no superposition) with initial
momentum p1 = 0, a situation which allows simple physical
explanation. The dependency of the orientation or rotational
angle of the momentum distributions on θ j in the figures
agrees with the analytical prediction of Eq. (60).

Figure 2 shows that linear polarization makes the momen-
tum squeezing orientation in the z-y plane that depends on θ j .
Here, the rotational angle αx satisfies

tan(αx − π/2) = cos(θ j + δ)

cos θ j
. (65)

Circular polarization makes the squeezing orientation along
the z direction for θ j = 0 and rotates 90◦ to squeezing ori-
entation along the y direction for θ j = π/2. Finite momen-
tum along x has no effect on the orientation of squeezing
but for positive momentum it is slightly narrower and for
negative momentum it is slightly broader, due to terms non-
linear in (px − p jx ). The stronger field strength of aω = 3 ×

1015 V m−1 gives narrower squeezing but the orientation is
not changed, as shown in Fig. 3 for zero mean momentum.
However, we notice remarkable features; there is a difference
between the squeezed distributions for θ j = 0 and π (for
both polarizations) as well as between θ j = π/2 and 3π/2
(for circular polarization) in terms of the slight bending of
distributions. A closer observation reveals that, for circular
polarization, the distribution for θ j = 0 is a reflection of the
case θ j = π at y = 0 while the distribution for θ j = π/2
is a reflection of the case θ j = 3π/2 at z = 0. The results
are qualitatively the same for finite mean momentum. The
analytical expression we derived suggests that nonlinearity in
the momentum due to relativistic effect is responsible for the
bending of the distributions.

In Fig. 4, the distribution for θ j with a particular value p1y

is the same as the distribution for θ j + π with value −|p1y|,
and this is true for any polarization. Therefore the plots for
θ j = π and 3π/2 are not shown. The rotational angle αy

satisfies

tan(αy − π/2) = cos(θ j + δ)

cos θ j − 0.2
{
0.2 cos θ j + (

5
4

)
[2 + cos 2θ j + cos 2(θ j + δ)]

} . (66)

Similarly, Fig. 5 shows the distribution for θ j with values of p1z is the same as the distribution for θ j + π with values −|p1z|
for any polarization, with the rotational angle αz given by

tan(αz − π/2) = cos(θ j + δ) − 0.2
{
0.2 cos(θ j + δ) + (

5
4

)
[2 + cos 2θ j + cos 2(θ j + δ)]

}
cos θ j

. (67)

For stronger field, the squeezing orientation changes signif-
icantly. For linear polarization with θ j = 0 and p1z = +0.2mc
instead of vertical, the distribution becomes slanted to 45◦

when the laser field increases.
For linear polarization, the momentum distributions in the

y-z plane show no squeezing at θ j = π/2 and 3π/2 regard-
less of initial momentum since it corresponds to zero field
A = a√

2
(ŷ + ẑ) cos θ j . This shows that the vector potential,

or the electric field, is behind the momentum squeezing.
For circular polarization, the squeezing along the y axis
only when θ j = 0, π is due to the term kx

(k·p j )
ay cos θ j in

Eq. (52) while the squeezing along the z axis only when θ j =
π/2, 3π/2 is due to the term kx

(k·p j )
az sin θ j . A similar expla-

nation applies to momentum distributions in the x-y plane in
Fig. 6.

The squeezed distribution in Fig. 2 is tilted along 135◦ rela-
tive to the py axis for p1x = ±0.2mc where the electron moves
normal to the y-z momentum plane with a linear polarized
laser (δ = 0) corresponding to the electric field at 45◦ to the
py axis. This shows that the electric field squeezes the electron
distribution along this direction. However, the squeezed dis-
tribution for circular polarizations is aligned to a fixed angle
since the y and z components no longer exert the same effect
but depend on θ j through A = a√

2
(ŷ cos θ j − ẑ sin θ j ). For an

electron moving along +y (−y), the momentum width in the
y direction is increased (reduced). This asymmetry indicates
the importance of the electric-field direction relative to the
direction of a moving electron. The case is similar for an

electron moving along +z (−z) due to symmetry. For the x-y
momentum plane, the features in the distributions in Fig. 6 can
be explained in the same manner but the rotational angle has
to be determined by the ratio ξ{1−β jx/ε}

V .

A. Superposed spins in the y-z momentum plane

By comparing the results in subsequent figures with a
single state we can identify the features due to superposition
of two initial electron states. For t0 = T/4 the factor in
the laser field has two values corresponding to the state at
x1 (upper sign) and the state at x2 (lower sign): cos θ j =
cos(π/2 ± 30kxd ) = ∓ sin 30kxd (for linear), that gives dis-
cernible rotations in the momentum distributions on the y-z
momentum plane (normal to the laser propagation direction)
in Fig. 7 . But only one value cos(θ j + π/2) = − cos(30kxd )
for circular polarization.

This explains why we find the “X” (crossed) distributions
only when the two initial momenta are in the same direction,
which is essentially the crossings of two squeezed and rotated
wave packets. When both states of the electron initially move
in opposite directions p1q = −p2q there is only one squeezed
distribution (not shown). This happens for initial momenta in
x, y, and z directions.

When the superposed electron states initially move oppo-
site to the laser direction, p1x = p2x = −0.2mc, the squeezing
of the X distribution is reduced due to the relative direction
of the wave vector and the electron, a rather counterintuitive
effect. The strong squeezing in the distributions is due to
relativistic effect of the field on the electron.
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FIG. 6. Distributions of the �s=1:4|cs(p)|2 on the x-y momentum plane at px = p1x for linearly (δ = 0◦) and circularly (δ = 90◦) polarized
lasers for the electron initial momenta along x, y, and z directions. Here, θ = 0.

For initial momenta along the x direction (finite p jx) with
linear polarized laser fields (δ = 0) there is no X distribution
for all the four cases’ initial momenta since Vz

Vy
= cos(θ j+δ)

cos θ j
→

1. The X distribution is present for circular polarization
because Vz

Vy
= − sin θ j

cos θ j
would depend on different electron ini-

tial position x j . More importantly, the dependence on the

directionality of the initial momentum is connected to the
effect of the spin direction relative to the photon polarization.

When the initial momentum is along the y direction with
strong field, there is also crossing of two squeezed wave
packets, but for both polarizations. For linear polarization
(Fig. 7), the resulting X distributions appear rotated, cross
each other at a small angle, are nonsymmetric with respect
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FIG. 7. Distributions �s=1:4|cs(p)|2 on the y-z momentum plane at pz = p1x for an electron in the superposed state driven by linearly
polarized (δ = 0◦) and circularly polarized (δ = 90◦) lasers. Everything else is the same as in Eq. (8).

to the axes, and are also not symmetric upon reflection at
point py,z = 0. The distributions are identical for positive and
negative values of p1y = p2y, unaffected by the momentum
direction relative to the laser wave vector. The results are
qualitatively similar for the case p1z = p2z. However, for
right-circular polarization (δ = +90), the distributions are the
image reflections at py = 0 (and not pz = 0) of the left-
circularly polarized case (δ = −90) for initial momenta p1y =
p2y = ±0.2mc. Such symmetry is not seen. By symmetry we
would expect the distributions in the case p1z = p2z to be
identical or qualitatively similar to the case p1y = p2y since
the initial momenta are in the transverse y-z plane with respect
to the laser direction. However, this is not the case due to
the interactions between helicity of the polarization and the
electron spin along the z axis. The spin has no influence for
the linearly polarized laser when the initial momenta are along
the y or z direction. This observation shows there is interaction
between the helicity of circular polarization and the electron
spin when the initial electron moves along the spin axis, i.e.,
along z. This effect is the central result that emerges from
systematic analysis of our computed results.

B. Superposed spins in the x-y momentum plane

Similar features are found in Fig. 8 when the distributions
are viewed in the x-y momentum plane, but with stronger
squeezing than in the y-z momentum plane. For initial mo-
menta along the x direction, it is interesting that the squeezing
is slightly greater for case p1x = p2x with positive value than
negative value, i.e., when both initial momenta of the spin-
up electron move along the laser direction. This asymme-
try shows the subtle effect of the spin direction. For initial
momenta along the y direction and parallel, the distribution
for positive value of p1y = p2y is the mirror image of the
distribution for negative value of p1y = p2y upon reflection
at px = 0. The distributions for initial momenta along the z
direction (not shown) look quite identical to those for the x
direction with unimportant differences. The distributions for
the case of circular polarization are qualitatively the same as
in the case of linear polarization except that the squeezing is
stronger. This is because the the x-component squeezing is
stronger than y-component squeezing by a factor ξ

|eay cos θ j−β jyξ |
[according to Eq. (60)] that is greater than unity.
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FIG. 8. Distributions �s=1:4|cs(p)|2 on the x-y momentum plane at pz = p1z for an electron in the superposed state driven by linearly
polarized (δ = 0◦) and circularly polarized (δ = 90◦) lasers. Electron initial momenta along the (a) x direction and (b) y direction; plots
for the z direction are not shown since the figures are quite similar to case (a), i.e., pjx , pjy, and pjz (top to bottom panels). The initial
momenta (left to right panels) are (i) p1q = p2q = 0.2mc and (ii) p1q = p2q = −0.2mc and q = x, y, z for field aω = 1015 V m−1. (Cases for
p1q = 0.2mc, p2q = −0.2mc and p1q = −0.2mc, p2q = 0.2mc have single squeezed distributions and are not shown.)

C. Two superposed states of the same spin

When the two electrons are spin up, an interference effect
can be seen, as shown in Fig. 9 for the x-y plane and explained
by Eq. (68). So, the interference feature enables the deter-
mination of the relative phase � by measuring the phase of
the oscillations. However, no oscillations are seen in the y-z
plane because it is transverse to the line joining the electron
positions of the two states along the x axis, i.e., −x̂30d and
+x̂30d . On the other hand, if the superposed states are of
opposite spins, but at the same initial position, say, at the
origin, we also have interference in the distributions when the
initial momenta have opposite directions.

Applying the solutions to the case of two states with the
same spin, we may factor out the amplitude that contains the
free-field solutions us(p, r, t0) which depend on all momen-
tum components and also determine the momentum distribu-
tion but in a weaker manner than the exponential factors:

|c|2 = K

⎛
⎝∑

j=1,2

�2
j +

∏
j=1:2

� j2 cos(�1 − �2 + �)

⎞
⎠, (68)

� j = d3
j

√
Ej + mc2

2Ej
e−( f −

4 jy
2+ f −

4 jz
2 )d2

j /2e−G2
j d

2
j /2, (69)

� j = ϕ−
j + f −

4 jyy j + f −
4 jzz j + �(x j ) (70)

with K = N2
0

(2π )4
E+mc2

2E . The second term has an important
interference effect on the momentum distribution depicted in
Fig. 9, which is what makes the distribution different from the
simple algebraic sum.

VI. CONCLUSIONS AND OUTLOOK

In conclusion, the strong laser fields in the relativistic
regime have significantly radical and interesting effects on
the kinetics of electrons as shown through the momentum
distributions. Numerical 3D plots provide bigger and insight-
ful pictures on how the momentum distribution of relativistic
electron scattering by intense laser fields is affected by the
initial electron-spin direction, mean momentum, mean posi-
tion, and quantum superposition as well as laser field strength,
polarization, and phase. Using semianalytical solutions for
arbitrary initial momentum at arbitrary position with generally
elliptical polarization, we have systematically analyzed the
effects of directionality of the initial mean momenta p j and
initial phase θ j = ωt0 − kxx j on the symmetry of the momen-
tum distributions for linear and circular polarizations.

In addition to providing clear and insightful explanation
with analytical formulas to the momentum squeezing and ro-
tations in the squeezed orientation we also discovered features
in the momentum distributions such as bending or curvature
of the squeezed distribution at sufficiently high intensity. The
distortions occur because of relativistic effect due to nonlinear
scattering of strong electromagnetic fields by the free moving
relativistic electron even though the electron does not absorb
any photon. The work done here, despite using a cw laser,
provides a clean situation for clear and insightful understand-
ing of the kinetic effects of strong laser fields on momentum
of electrons in the relativistic regime. Further studies can
be extended to atoms to better understand relativistic effects
on momentum sharing [27], involve two laser beams with
circular polarizations [28] and few cycle pulse envelopes, as
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FIG. 9. Effects of the relative phase � between the two states on
the distributions of the �s=1:4|cs(p)|2 on the x-y momentum plane
at pz = p1z for two superposed states with the same spin (up) with
linearly polarized laser (δ = 0◦) and field strength aω = 1015 V m−1.
The plots are for cases of electron initial momenta p1q = p2q =
−0.2mc.

well as studies in strong magnetic fields and quantized laser
fields [29,30].

APPENDIX A: SOLUTIONS OF THE COVARIANT DIRAC
EQUATION

If we apply the operator (/p − e/A + mc) to the left-hand
side of each term of Eq. (1), we have the quadratic form of the
Dirac equation:[

( p̂ − eÂ)2 − 1

2
eh̄σ̂ μνFμν − m2c2

]
ψ = 0, (A1)

σ̂ μνFμν = 2i/k /A′ = 2i
1

c
α · E−2� · B (A2)

where p̂ is the operator of the canonical momentum. To
make clear the adopted convention, we give explicitly the
electromagnetic field tensor

Fμν = ∂μAν − ∂νAμ = kμA′
ν − kνA′

μ (A3)

=

⎛
⎜⎜⎜⎝

0 Ex
c

Ey

c
Ez

c

−Ex
c 0 −Bz By

−Ey

c Bz 0 −Bx

−Ez

c −By Bx 0

⎞
⎟⎟⎟⎠ =

[
1

c
E, B

]
, (A4)

and the antisymmetric tensor

σ̂ μν = i

2
[γ μ, γ ν] (A5)

=

⎛
⎜⎝

0 iα1 iα2 iα3

−iα1 0 �3 −�2

−iα2 −�3 0 �1

−iα3 �2 −�1 0

⎞
⎟⎠ = (iα,−�) (A6)

with the matrices written as

� =
(

σ̂ 0
0 σ̂

)
, α = γ 0γ =

(
0 σ̂

σ̂ 0

)
, (A7)

with �c = iγ aγ b where a, b, c = x, y, z follow the cyclic
permutations. The derivation of the solutions of the Dirac
equation is given below.

Using xμ = gμνxν or ∂ν = gνμ∂μ and the Lorentz gauge
condition ∂μAμ = ( ∂

∂ct ,−∇ ) · ( φ

c ,−A) = ∂μAμ = kμAμ′ = 0
we have the relation

σ̂ μνFμν = i[γ μ∂μγ νAν + γ ν∂νγ
μAμ] = 2i/k /A′ (A8)

since k · A = 0, γ νγ 0 = −γ 0γ ν for ν �= 0 where we
use Lorentz gauge 1

c2
∂φ

∂t + ∇ · A = 0 and ∂A
∂t + ∇φ =

−E, and its Fourier transform ω
c A + φ

c k →ω
c k · A +

φ

c k · k → k · A + φ ω
c2 =0. Also, note that (γ j=1,2,3)2 = −I4

and (γ · ∇ )(γ · A) = −I4∇ · A − i� · B.
For positive (labeled superscript “+”) and negative (la-

beled superscript “−”) energies, replace the ansatz ψ±(ϕ) =
e∓ip·x/h̄F±(ϕ)u±(p) into Eq. (A1):

[p2 + e2A2 − e(A · p) − e(p · A) − ieh̄/k /A′ − m2c2]ψ±(ϕ)

= 0 (A9)

where ϕ = k · x, u(p) is a four-component spinor, and p is a
constant 4 vector with fixed modulus given by p2 = pμ pμ =
(E/c)2 − p · p = m2c2. Note that p is the quasicanonical
momentum, from the ansatz, and it is not an eigenvalue of
momentum operator p̂.

We have the first-order linear differential equation[
2ih̄k · p

∂

∂ϕ
± e2A2 − 2e(A · p) ∓ ih̄e/k /A′

]
F± = 0 (A10)

with the solution

F±(ϕ) = exp

(
−i
∫ k·x

−∞
V (ϕ)dϕ

)
exp

(
± e/k /A

2(k · p)

)
(A11)

where V (ϕ) = [ eA·p
h̄(k·p) ∓ e2A2

2h̄(k·p) ], p2 − m2c2 = (E/c)2 −
|p|2 − m2c2 = 0. Expansion of exp (± e/k /A

2(k·p) ) gives

ψ± = N (E )

(
1 ± e/k /A

2k · p

)
u±(p)eiS±

(A12)

where

S± = ∓ p · x

h̄
−
∫ k·x

−∞

[
eA · p

h̄(k · p)
∓ e2A2

2h̄(k · p)

]
dϕ (A13)
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with the normalization factor N (E ) =
√

E+mc2

2E (2π )3 . The solutions

of the free-field Dirac equation are given in Appendix B.

APPENDIX B: SOLUTIONS OF THE FREE-FIELD DIRAC
EQUATION

In the absence of vector and scalar potentials, the Dirac
equation for spins with the quantization axis defined along the
z direction (see Fig. 1) has the solutions

u+ =
(

χs

cσ̂ ·p
E+mc2 χs

)
, u1 =

⎛
⎜⎜⎜⎝

1
0

pzc
E+mc2

(px+ipy )c
E+mc2

⎞
⎟⎟⎟⎠,

u2 =

⎛
⎜⎜⎜⎝

0
1

(px−ipy )c
E+mc2

−pzc
E+mc2

⎞
⎟⎟⎟⎠, E > 0, (B1)

u− =
(

cσ̂ ·p
|E |+mc2 χs

χs

)
, u3 =

⎛
⎜⎜⎜⎝

pzc
|E |+mc2

(px+ipy )c
|E |+mc2

1
0

⎞
⎟⎟⎟⎠,

u4 =

⎛
⎜⎜⎜⎝

(px−ipy )c
|E |+mc2

−pzc
|E |+mc2

0
1

⎞
⎟⎟⎟⎠, E < 0 (B2)

where p± = px ± ipy. Here, us(p) are the free-particle Dirac
solutions; s = + represents 1 (spin up) and 2 (spin down) with
positive energies, and s = − represents 3 (spin up) or 4 (spin
down) with negative energies. The spin vectors are χ↑ = (1

0)

and χ↓ = (0
1), s =↑,↓.

APPENDIX C: ANALYSIS OF SPECIAL CASES

The following equations are helpful for analysis of the effects of different cases of initial momenta on the momentum
squeezing in the figures:

h̄G j = �p jx

(
kxξ

k · p j
(1 − β jx ) − 1

)
+ �pjy

kx

k · p j
{eay cos θ j − β jyξ} + �p jz

kx

k · p j
{eaz cos(θ j + δ) − β jzξ} (C1)

= �p jx

(
kx

k · p j

{
e(β jyAy + β jzAz ) − e2|A|2

2mc

}
(1 − β jx ) − 1

)
+ (C2)

kx

(k · p j )

(
�p jy

{(
1 − β2

jy

)
eAy − β jyβ jzeAz + β jy

e2|A|2
2mc

}
+ �p jz

{
−β jzβ jyeAy + (

1 − β2
jz

)
eAz + β jz

e2|A|2
2mc

})
.

where �pju = pu − p ju, β ju = p ju

mc , u = x, y, z.

1. For p j = 0

h̄G j = −(px )

(
1 + kx

k · p j

e2|A(θ j )|2
2mc

)
+ kx

k · p j
[(py)eay cos θ j + (pz )eaz cos(θ j + δ)]. (C3)

2. For finite pjx

h̄G j = −(px − p jx )

(
1 + kx

(
1 − β2

jx

)
k · p j

e2|A(θ j )|2
2mc

)
+ kx

k · p j
e[pyay cos θ j + pyaz cos(θ j + δ)]. (C4)

3. For finite pjy

h̄G j = −px

(
1 − kxξ

k · p j

)
+ kx

k · p j
[(py − p jy){eay cos θ j − β jyξ} + (pz )eaz cos(θ j + δ)] (C5)

ξ � eβ jyay cos θ j − e2|A(θ j )|2
2mc

. (C6)

4. For finite pjz

h̄G j = −(px )

(
1 − kxξ

k · p j

)
+ kx

k · p j
[(py)eay cos θ j + (pz − p jz ){eaz cos(θ j + δ) − β jzξ}] (C7)

ξ � eβ jzaz cos(θ j + δ) − e2|A(θ j )|2
2mc

. (C8)
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For finite p jz, the distribution in the x-y plane generally depends on p jz and becomes independent of p jz only when θ j + δ = π/2,
because the term eaz cos δ would vanish.
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