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Bremsstrahlung from twisted electrons in the field of heavy nuclei
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We present a fully relativistic calculation of the bremsstrahlung emitted by twisted electrons propagating in
the field of bare heavy nuclei. The electron-nucleus interaction is accounted for to all orders in the nuclear
binding strength parameter αZ , thus allowing us to investigate the bremsstrahlung in a strong field, where the
effects of the “twistedness” are expected to be most pronounced. To explore these effects, we study the angular
and polarization properties of the photons emitted in course of the inelastic twisted electrons scattering by the
gold target. The influence of the kinematic parameters of the incident electrons on the double-differential cross
section and the degree of the linear polarization is also discussed.
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I. INTRODUCTION

The so-called twisted (or vortex) electrons presently attract
considerable interest from both experimental and theoretical
sides (see [1–3] for a review and relevant references). The
interest is partly caused by the fact that the twisted particles
can carry a large total angular momentum (TAM) projection
h̄m onto the propagation direction. In particular, twisted elec-
trons with m ∼ 1000 can be readily produced with current
experimental techniques [4]. The magnetic dipole moment
of such electrons mμB (μB is the Bohr magneton) is by
three orders of magnitude larger than one of the plane-wave
electrons. As a result, the role of the magnetic interaction
in processes involving vortex electron beams is significantly
enhanced. This makes twisted electrons a very promising
tool for studying magnetic properties of different materials
and surfaces [5–8] and for detecting various subtle magnetic
effects [9].

All these and other possible applications of twisted elec-
trons are based on properties of fundamental processes of
interaction between the twisted beams and atomic targets.
Theoretical descriptions of basic atomic processes involving
vortex electrons are, therefore, highly demanded. Up to now
such descriptions were presented for the radiative recombi-
nation [10,11], elastic scattering [12–16], impact excitation
[17], and impact ionization [18]. In the present paper, we
investigate the bremsstrahlung from twisted electrons by uti-
lizing the fully relativistic description of this process. We
follow the formalism developed in Ref. [11] and describe an
incoming twisted electron as a coherent superposition of the
conventional (plane-wave) electrons propagating in a central
potential. As a result, the amplitude of the process is expressed
as a coherent sum of the amplitudes of the bremsstrahlung
from the plane-wave electrons the evaluation of which can
be performed with the usage of well-developed techniques
[19–26]. This approach, accounting for the interaction of the
incoming and outgoing electrons with the central potential
of the target nonperturbatively, allows one to describe the
bremsstrahlung from twisted electrons in the field of heavy

atoms. Heavy systems are of particular importance for studies
of effects of “twistedness” since one may expect a strong en-
hancement of these effects due to large spin-orbit interaction.

The paper is organized as follows: In Sec. II A we re-
call basic relations for the bremsstrahlung from conven-
tional (plane-wave) electrons. The theoretical description of
the bremsstrahlung from twisted electrons is presented in
Sec. II B. In Secs. III A and III B the numerical results for
the double-differential cross section (DDCS) and the Stokes
parameters are presented, respectively. Finally, a summary
and an outlook are given in Sec. IV.

Relativistic units (me = h̄ = c = 1) and the Heaviside
charge units (e2 = 4πα) are utilized in the present paper.

II. BASIC FORMALISM

The description of the bremsstrahlung from twisted elec-
trons can be given in terms of the formulas derived for the
plane-wave electrons. We, therefore, start with the compi-
lation of the basic properties of the bremsstrahlung from
conventional (plane-wave) electrons. We apply the approach
based on the relativistic partial-wave decomposition of the
electron’s wave function and the multipole expansion of the
photon’s wave function. This approach is the most appropriate
for the description of the bremsstrahlung in the field of heavy
systems [19,20,22] where the interaction between the electron
and nucleus should be accounted for nonperturbatively.

A. Bremsstrahlung from conventional (plane-wave) electrons

The probability of an emission of a photon with the four-
momentum (ω, k) and the polarization λ in the process of the
inelastic scattering of an electron with the four-momentum
(εi, pi ) and the helicity μi from the bare nucleus is given by
[27,28]

dW (pl)
μ f ,λ;piμi

= 2π
∣∣τ (pl)

μ f ,λ;piμi

∣∣2
δ(εi − ε f − ω)dkdp f , (1)

where ε f , p f , and μ f are the energy, the asymptotic momen-
tum, and the helicity of the outgoing electron, respectively.
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Here and throughout the average number of the incident
particles is set to 1. The amplitude of the bremsstrahlung
expresses as

τ
(pl)
μ f ,λ;piμi

=
∫

dr	 (−)†
p f μ f

(r)R̂†
kλ(r)	 (+)

piμi
(r), (2)

with the photon emission operator given by

R̂†
kλ(r) = −

√
α

(2π )2ω
α · ε∗

λe−ik·r, (3)

where α stands for the vector of Dirac matrices and the
Coulomb gauge defines the polarization vector. The wave
functions of the incoming 	 (+)

piμi
and outgoing 	 (−)

p f μ f
electrons

express as follows [29–31]:

	 (±)
pμ (r) = 1√

4π pε

∑
κmj

C jμ
l0 1/2μ

il
√

2l + 1e±iδκ

× D j
mjμ

(ϕp̂, θp̂, 0)	εκmj (r). (4)

Here p = |p|, κ = (−1)l+ j+1/2( j + 1/2) is the Dirac quantum
number determined by the angular momentum j and the
parity l , CJM

j1m1 j2m2
is the Clebsch-Gordan coefficient, δκ is the

phase shift induced by the scattering central potential, DJ
MM ′

is the Wigner matrix [32,33], the azimuthal ϕp̂ and polar θp̂
angles define the direction of the unit vector p̂, and 	εκmj is
the partial-wave Dirac solution (so-called Coulomb-distorted
waves), the explicit form of which can be found, e.g., in
Refs. [27,28].

Substituting Eq. (4) into Eq. (2) and utilizing the
well-known multipole expansion for the photon emission
operator (3), we obtain the final expression in the form of the
triple expansion over the electron partial waves and photon
multipoles. The partial amplitudes, i.e., terms of this sum,
are evaluated by separating the angular integration and per-
forming it analytically. The remaining integral over the radial
variable has to be calculated numerically (see, e.g., Ref. [22]).
Summing over the partial waves and multipoles up to desired
accuracy, we determine the bremsstrahlung amplitude which
defines the probability (1) and, consequently, all the properties
of the process studied.

B. Bremsstrahlung from twisted electrons

The theoretical description of the free twisted electrons is
well represented in the literature (see [1–3] for a review and
relevant references). Here we only briefly sketch the important
properties of these electrons, which are taken in the form of a
Bessel wave in the present paper. Twisted electrons possess
the well-defined energy ε, helicity μ, and the total angular m
and linear pz momenta projections onto the same direction.
The z axis is fixed along this direction. In the momentum
space, these states represent a cone with the opening angle
θp = arctan (κ/pz ) where κ = √

ε2 − 1 − p2
z stands for the

well-defined transversal momentum. The Bessel vortex elec-
tron can be described by the following wave function [13]:

ψκmpzμ(r) =
∫

dp
eimϕp

2π p⊥
δ(p‖ − pz )δ(p⊥ − κ)iμ−mψpμ(r),

(5)

FIG. 1. The geometry of the bremsstrahlung from twisted elec-
trons in the field of a single bare nucleus shifted from the z axis by
the impact parameter b.

where p‖ (p⊥) is the longitudinal (perpendicular) component
of the momentum p and the wave function of the plane-wave
electron is given by

ψpμ(r) = eip·r√
(2π )3

Upμ, (6)

with Upμ standing for the Dirac bispinor [28]:

Upμ = 1√
2ε

( √
ε + 1χ1/2μ(p̂)√

ε − 1(σ · p̂)χ1/2μ(p̂)

)
. (7)

Here σ is the vector of Pauli matrices, and χ1/2μ(p̂) is the
eigenfunction of the helicity operator (σ · p̂)/2 with the eigen-
value μ. Utilizing Eq. (5), one can unfold other distinguishing
features of the twisted electrons, namely, the inhomogeneity
of the probability distribution and the flux density with respect
to the space variable. As an example, the flux density is given
by

j (tw)
z = ψ†

κmpzμ
(r)αzψκmpzμ(r)

= p

ε(2π )3

∑
σ

4μσ
[
d1/2

σμ (θp)Jm−σ (κr⊥)
]2

, (8)

where dJ
MM ′ (θ ) is the small Wigner matrix [32,33], Jν is the

Bessel function of the first kind [34,35], and r⊥ = |r⊥| with r⊥
being the perpendicular component of r. These features result
in the dependence of the scattering process on the relative
position of the target and the vortex beam.

We start with the consideration of the bremsstrahlung from
twisted electrons in the field of a single bare nucleus, which is
shifted from the z axis by the impact parameter b = (bx, by, 0)
as shown in Fig. 1. Here and below we assume that both
the emitted photon and the outgoing electron are asymptoti-
cally described by the plane waves. This corresponds to the
assumption that detectors used in the actual experiments do
not register “twistedness” of the particles, which is the case
for the present-day experimental setups. The probability of the
process depicted in Fig. 1 is given by

dW (tw)
μ f ,λ;κmpzμi

(b)

= 2π
∣∣τ (tw)

μ f ,λ;κmpzμi
(b)

∣∣2
δ(εi − ε f − ω)dkdp f , (9)
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FIG. 2. Geometry of the bremsstrahlung process from twisted
electrons scattered by a macroscopic target.

with the scattering amplitude expressing as

τ
(tw)
μ f ,λ;κmpzμi

(b) =
∫

dr	 (−)†
p f μ f

(r − b)R̂†
kλ(r − b)	 (+)

κmpzμi
(r)

=
∫

dr	 (−)†
p f μ f

(r)R̂†
kλ(r)	 (+)

κmpzμi
(r + b). (10)

The explicit form of the wave function of the asymptotically
twisted electron propagating in the central field can be found
in Ref. [11]:

	 (+)
κmpzμi

(r + b) =
∫

dp
eimϕp

2π p⊥
δ(p⊥ − κ)δ(p‖ − pz )iμi−m

×	 (+)
pμi

(r)eip·b. (11)

Substituting Eq. (11) into Eq. (10) one can express the ampli-
tude of the bremsstrahlung from the twisted electron through
the one appearing in the plane-wave case (2):

τ
(tw)
μ f ,λ;κmpzμi

(b) =
∫

dp
eimϕp

2π p⊥
δ(p⊥ − κ)

× δ(p‖ − pz )iμi−meip·bτ (pl)
p f μ f ,kλ;pμi

. (12)

The scattering amplitude (12) defines uniquely the probability
of the process under consideration, from which all measurable
quantities can be determined.

Up to now we have considered the bremsstrahlung from
twisted electrons in a field of a single ionic or atomic target.
The experimental investigation of such a process is a challeng-
ing task. We now consider a more realistic scenario, namely,
the bremsstrahlung from the twisted electrons scattered by
the infinitely extended (macroscopic) target. We describe this
target as an incoherent superposition of ions (or atoms) being
randomly and homogeneously distributed. The fully differen-
tial cross section of this scenario being schematically depicted
in Fig. 2 is given by [13]

dσ
(tw)
μ f ,λ;κpzμi

dωd�kd� f
= 1

J (tw)
z

∫
db
πR2

dW (tw)
μ f ,λ;κmpzμi

(b)

dωd�kd� f

= 1

cos θp

∫
dϕp

2π

dσ
(pl)
μ f ,λ;pμi

dωd�kd� f
, (13)

where J (tw)
z is the averaged flux the explicit form of which will

be specified below, πR2 is the cross-section area with R being
the radius of the cylindrical box, and

dσ
(pl)
μ f ,λ;piμi

dωd�kd� f
= (2π )3

vi

dW (pl)
μ f ,λ;piμi

dωd�kd� f

= (2π )4ω2 p f ε f

vi

∣∣τ (pl)
μ f ,λ;piμi

∣∣2
(14)

is the fully differential cross section of the bremsstrahlung
from plane-wave electrons with the velocity vi. The averaged
flux of the incoming twisted electrons is given by

J (tw)
z =

∫
dr⊥
πR2

j (tw)
z = vi

(2π )3

2

πRκ

cos θp. (15)

From Eq. (13) it is seen that in the case of
the scattering of the twisted electron by the
macroscopic target the fully differential cross section does
not depend on the projection m of TAM.

In the present investigation, we restrict ourselves to the
consideration of the scenario in which the incoming twisted
electron is spin unpolarized and only the emitted photon is
detected. This process is described by the DDCS

dσλ ≡ dσ
(tw)
λ;κpz

dωd�k
= 1

2

∑
μiμ f

∫
d� f

dσ
(tw)
μ f ,λ;κpzμi

dωd�kd� f

= 1

cos θp

∫
dϕp

2π

dσ
(pl)
λ;p

dωd�k
, (16)

where

dσ
(pl)
λ;pi

dωd�k
= 1

2

∑
μiμ f

∫
d� f

dσ
(pl)
μ f ,λ;piμi

dωd�kd� f
(17)

is the DDCS for the bremsstrahlung from plane-wave elec-
trons.

III. RESULTS AND DISCUSSIONS

As already has been mentioned the effects of the “twist-
edness” are expected to be most pronounced for heavy sys-
tems. We consider, therefore, the bremsstrahlung from twisted
electrons scattered by an ionic (or atomic) gold target. The
energies of the incident electrons are chosen to be 100 and
500 keV. At such energies, the bremsstrahlung from elec-
trons comes mostly from the nuclei [22]. In what follows,
we study the scattering of twisted electrons by an infinite
macroscopic target consisting of bare gold nuclei, assuming
the scattering on the electronic shells surrounding the nuclei to
be negligible. This choice of our model allows us to explicitly
demonstrate the effects induced by the “twistedness” of the
incident electron.

A. Double-differential cross section

We start from the analysis of the DDCS for the
bremsstrahlung from 100- and 500-keV twisted electrons
scattered by the macroscopic target consisting of bare gold
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FIG. 3. The scaled DDCS dσ ≡ (ω/Z2)
∑

λ dσλ for the bremsstrahlung from the twisted electrons with the opening (conical) angle θp and
the energy εi = 100 keV (first row) and 500 keV (second row) as a function of the photon emission angle θk . The left, middle, and right panels
correspond to the energies of the outgoing electron ε f = 0.01εi, 0.1εi, and 0.5εi, respectively.

(Z = 79) nuclei. Figure 3 presents the DDCS (16) summed
over λ for three different energies of the outgoing elec-
tron ε f = 0.01εi, 0.1εi, and 0.5εi. From this figure, it is
seen that the growth of the opening angle θp leads to the
strong qualitative changes in the angular distribution of the
bremsstrahlung. These changes, however, manifest differently
for different energies of the incident electron. Indeed, for εi =
100 keV (first row in Fig. 3) the probability of the forward
bremsstrahlung increases with the growth of the opening
angle and at θp � 30◦ the DDCS turns into a monotonically
decreasing function with a maximum at θk = 0◦. In contrast
to this, for εi = 500 keV (second row in Fig. 3) the increase
of the opening angle leads to the drop of the probability of
the forward bremsstrahlung. The most significant change of
the DDCS for this incident electron energy happens at ε f =
0.5 and θp = 45◦. For these parameters, the formation of a
maximum at the photon emission angles θk from 30◦ to 60◦ is
predicted.

B. Stokes parameters

We now turn to the investigation of the “twistedness”-
induced effects on the polarization properties of the
bremsstrahlung. For this purpose, we evaluate the Stokes

parameters which are defined as

P1 = dσ0◦ − dσ90◦

dσ0◦ + dσ90◦
, P2 = dσ45◦ − dσ135◦

dσ45◦ + dσ135◦
,

P3 = dσ+1 − dσ−1

dσ+1 + dσ−1
. (18)

Here dσχ is the DDCS from Eq. (16) for the emission of
a photon with linear polarization εχ , characterized by the
angle χ , while dσ+1 and dσ−1 are the cross sections for the
emission of a right circularly and left circularly polarized
photon, respectively [22,36].

Figure 4 presents the degree of the linear polarization (the
first Stokes parameter P1) for the bremsstrahlung from twisted
electrons with energy εi = 100 and 500 keV, scattered by a
macroscopic target consisting of bare gold (Z = 79) nuclei.
We note that for the process under investigation P2 and P3 are
identically equal to zero, that is the consequence of the fact
that the electron beam is unpolarized [20]. From Fig. 4 it is
seen that, like in the case of the DDCS (see Fig. 3), the degree
of the linear polarization exhibits a strong dependence on the
kinematic parameters of the incident twisted electron. As an
example, for the 100-keV incident electron energy (first row
in Fig. 4) and θp = 45◦, the first Stokes parameter P1 takes
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FIG. 4. The degree of the linear polarization (the first Stokes parameter P1) for the bremsstrahlung from the twisted electrons with the
opening (conical) angle θp and the energy εi = 100 keV (first row) and 500 keV (second row) as a function of the photon emission angle θk .
The left, middle, and right panels correspond to the energies of the outgoing electron ε f = 0.01εi, 0.1εi, and 0.5εi, respectively.

negative values. This corresponds to the bremsstrahlung
which is linearly polarized perpendicular to the scatter-
ing plane. A similar effect was predicted for the Vavilov-
Cherenkov radiation by twisted electrons [37] and for the
radiative recombination of twisted electrons [11]. For εi =
500 keV (second row in Fig. 4) we observe a more pronounced
dependence on the opening (conical) angle θp. Already at
θp from 15◦ to 30◦, the degree of the linear polarization
undergoes qualitative changes when compared to the plane-
wave case. Such a strong dependence of the first Stokes
parameter P1 on the opening angle allows one to consider the
bremsstrahlung process as a possible tool for the diagnostics
of the twisted electron beams.

IV. CONCLUSION

In this paper we have developed a fully relativistic descrip-
tion of the bremsstrahlung by twisted electrons in the field of
heavy nuclei. Our approach accounts for the interaction of the
incoming vortex and outgoing plane-wave electrons with the
Coulomb field of the target to all orders in the nuclear binding
strength parameter αZ .

The developed approach has been applied for the
investigation of the angular and polarization properties
of the bremsstrahlung from twisted electrons scattered by the

macroscopic target consisting of bare gold nuclei. In partic-
ular, the double-differential cross section and the degree of
linear polarization P1 of the bremsstrahlung as functions of the
photon emission angle were evaluated for different energies of
the outgoing electron. It was found that both the DDCS and P1

do depend strongly on the kinematic properties of the twisted
electron, namely, the opening angle θp and the energy εi.
Additionally, the dependence on θp is qualitatively different
for different incident electron energies. As an example, for
εi = 100 keV the forward bremsstrahlung increases with the
growth of θp, while for εi = 500 keV it decreases. It was
also found that P1 exhibits a stronger dependence on θp for
500-keV twisted electrons when compared to the 100-keV
ones.
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