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We measure the interspecies interaction strength between 7Li and 87Rb atoms through cross-dimensional
relaxation of two-element gas mixtures trapped in a spherical-quadrupole magnetic trap. We record the relaxation
of an initial momentum-space anisotropy in a lithium gas when cotrapped with rubidium atoms, with both species
in the |F = 1, mF = −1〉 hyperfine state. Our measurements are calibrated by observing cross-dimensional
relaxation of a 87Rb-only trapped gas. Through Monte Carlo simulations, we compare the observed relaxation to
that expected given the theoretically predicted energy-dependent differential cross section for 7Li-87Rb collisions.
The experimentally observed relaxation occurs significantly faster than predicted theoretically, a deviation that
appears incompatible with other experimental data characterizing the 7Li-87Rb molecular potential.
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In ultracold atomic gas experiments, a detailed and specific
characterization of collisions within the gas is crucial to con-
trolling the gas and understanding its dynamics and thermody-
namics. This characterization is achieved by collating diverse
sources of information on the interatomic potential, e.g., from
direct measurement of the interatomic collision cross section
and of the interatomic interaction energy in an ultracold
regime, from photoassociation spectroscopy, and from the
observation of magnetic-field-induced Fano-Feshbach reso-
nances [1,2]. Given the low temperature at which atom-atom
collisions occur, a characterization of just the lowest-energy
partial waves is sufficient to guide and interpret experiments.
An increasing number of experiments study quantum gas
mixtures in which atoms of more than one element or isotope
are held in the same trap and collide with one another. Each
combination requires a new set of experiments to characterize
the particular collisions within each gas.

I. INTRODUCTION

In this work, we consider cold collisions between 7Li and
87Rb atoms, with collision energies in the range of several
100 μK. Low-energy collisions between these elements have
previously been characterized by observing thermalization
between Li and Rb gases with both atoms held in the mag-
netically trapped |F = 2, mF = 2〉 hyperfine ground state [3],
via which the magnitude of the triplet scattering length for
7Li-87Rb collisions could be inferred. Previous measurements
of collisional Fano-Feshbach resonances between atoms, both
in the |F = 1, mF = +1〉 hyperfine state, observed at large
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magnetic fields [4,5], together with photoassociation [6–8]
and Raman spectroscopy [9] of several isotopologues of the
LiRb molecule, have led to the development of an empiri-
cally based model of the LiRb molecular potentials [5], from
which the low-energy scattering amplitudes can in principle
be predicted for all hyperfine-state combinations undergoing
low-temperature collisions.

In our experiment, we prepare laser-cooled gases of both
7Li and 87Rb and load them with an anisotropic momentum-
space distribution within a spherical-quadrupole magnetic
trap with both species of atoms being polarized in the |F =
1, mF = −1〉 state. We then observe the cross-dimensional re-
laxation [10] of the momentum-space distribution after a vari-
able interaction time. The experimentally measured timescale
for cross-dimensional relaxation is compared to a numerical
model in which collisions are assumed either to occur through
an energy-independent, isotropic cross section or through the
energy-dependent differential cross section predicted theoret-
ically [5]. Our experimental results are calibrated by perform-
ing experiments both with Li-Rb mixtures and also with a Rb-
only gas. We observe the Li-Rb cross-dimensional relaxation
to occur faster than predicted theoretically, implying that the
theoretical models underestimate the collision cross section in
the energy range probed by our experiment.

Our measurements are the first to test these model predic-
tions for collisions between 7Li and 87Rb atoms with each
atom in its magnetically trapped |F = 1, mF = −1〉 hyperfine
state (as opposed to the |F = 2, mF = 2〉 state [3]) at near-
zero magnetic field. Such measurements are vital for assessing
the prospects for sympathetic evaporative cooling of gases in
these trapped states. Testing the model predictions also leads
to better predictions for the nature of heteronuclear spinor
Bose-Einstein gases composed of both 7Li and 87Rb gases in
the F = 1 spin manifolds. Novel phenomena in heteronuclear
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spinor Bose-Einstein gases of 23Na and 87Rb gases have been
recently reported [11] in which spin-dependent interactions
between two spinor Bose-Einstein gases lead to coherent
exchange of spin polarization between them. The interaction
strength measured in the present work, being sensitive to both
the electron singlet and triplet molecular potentials, can help
improve our knowledge of the spin-dependent interactions in
the F = 1 7Li-87Rb system.

Our paper is structured as follows. Section II describes
our experimental setup for laser-cooling gases of lithium
and rubidium, trapping them magnetically, and then measur-
ing their momentum distributions. In Sec. III, we describe
our observations of cross-dimensional relaxation of atomic
gases that evolve within the spherical-quadrupole magnetic
trap. We characterize the evolution of three gas samples.
Observations on a lithium-only gas, exhibiting very weak
interatomic interactions, confirm the fact that motion in a
spherical-quadrupole trap is nonergodic in the absence of col-
lisions. Observations on a rubidium-only gas, whose stronger
interatomic interactions are well characterized [12], show
rapid cross-dimensional relaxation and are used to calibrate
our experimental method. Finally, observations of the cross-
dimensional relaxation of the lithium momentum distribution
within a lithium-rubidium gas mixture serve as a measurement
of the Li-Rb interaction strength.

Section IV discusses how measurements of the cross-
dimensional relaxation rate are related to predictions for the
energy-dependent cross section for elastic collisions. We de-
rive analytic expressions that relate the measured relaxation
rate to a “cross-dimensional relaxation cross section,” σcdr,
if we assume such a cross section to be isotropic and en-
ergy independent. These analytic expressions allow for rough
comparisons between the experimentally measured relaxation
rate and the theoretically predicted cross section and for
the propagation of experimental and modeling errors. More
precise experiment-theory comparisons are performed using
Monte Carlo simulations that account for energy dependence
and anisotropy in the differential cross section, and also for
modifications of the magnetic trap potential that occurs at high
magnetic fields. The conclusion of this precise comparison
is that our experimental measurements indicate the collision
cross section between 7Li and 87Rb atoms to be larger than
predicted, within the energy range probed in our experiment.

In Sec. V, we attempt to reconcile the tension between
our experimental findings and theoretical models of 7Li-87Rb
atomic interactions. We explicate how theoretical models of
the 7Li-87Rb molecular potential are constrained by several
prior measurements, most significantly by measured positions
of several Fano-Feshbach resonances [4,5]. Our conclusion is
that the discrepancy between our experimental findings and
the predictions of theoretical models remains significant and
unresolved.

II. PREPARATION OF LITHIUM-RUBIDIUM
LASER-COOLED GAS MIXTURES

For this work, laser-cooled gas mixtures of 7Li and 87Rb
were produced using a Zeeman slower, a magneto-optical
trap (MOT), and sub-Doppler laser cooling. A two-element

Zeeman-slowed atomic beam was produced by first generat-
ing a collimated effusive atomic beam from a dual-species
effusive oven. In this oven, a lower-temperature chamber, con-
taining metallic rubidium and maintained at around 150 ◦C,
emits a Rb atomic flux into a higher-temperature chamber
containing metallic lithium and maintained at around 500 ◦C.
The two gases mix within this high-temperature oven and then
propagate through a capillary-array nozzle into a high-vacuum
chamber. The atoms pass through an additional differential-
pumping chamber before entering the Zeeman slower. The
Zeeman slower, described in Ref. [13], is designed to decel-
erate both Li and Rb atoms simultaneously. However, in the
present work, the slower was operated for each of the elements
sequentially.

The Zeeman-slowed beam was trapped within a two-
species magneto-optical trap. In each experimental cycle, the
trap was initially loaded just with Li atoms, which were
slowed by sending only the lithium-slowing light through the
increasing-field Zeeman slower and tuning the slower and
the magneto-optical trap magnetic fields so as to optimize
the lithium MOT loading rate. After loading the lithium
MOT for a variable time, we switched the Zeeman slower
field and illumination to produce a Zeeman-slowed Rb beam.
Similar to Refs. [14,15], we observe Rb atoms and Rb-cooling
light to cause strong light-induced losses of lithium atoms
from the MOT. To mitigate these losses, we displaced the
center of the Rb MOT by applying an additional “pusher”
light beam to produce an imbalanced radiation pressure force
onto the rubidium atoms while the MOT operates for both
elements. Following the loading of both species into the
MOT, we extinguished the pusher beam over 20 ms to al-
low the two elements to overlap within the MOT. We then
compressed both MOTs for 2 ms to increase the density of
both species [16]. The MOT magnetic field was then rapidly
turned off.

Following a brief delay to allow residual eddy fields to
decay, we applied a 2-ms pulse of D1 gray molasses and
dark-state cooling to the Li atoms [17,18]. For this, along
all directions of the previously applied Li MOT beams, we
insert light that is 2π × 35 MHz blue-detuned from the |F =
2〉 → |F ′ = 2〉 transition on the D1 line. On this light, we
add also an 802.7-MHz frequency sideband, using an electro-
optical modulator, with a power of 4% of the carrier beam.
This sideband drives a two-photon resonance between the 7Li
ground hyperfine states, creating a velocity-dependent dark
state into which the atoms are cooled. Through this method,
we cooled almost all lithium atoms from the compressed MOT
to a final temperature of around 40 μK in all directions.
During this time, rubidium atoms were subject to polarization
gradient cooling and brought thereby to a similar temperature
as the lithium gas.

The laser-cooled gas was then trapped within a spherical-
quadrupole magnetic trap, formed by sending a large current
through the coils previously used for the MOT. The number
of trapped atoms was enhanced by applying optical pumping
to both elements just before magnetic trapping. We trap as
many as 6 × 108 Rb atoms and 2 × 107 Li atoms within the
magnetic trap. For several of the measurements reported here,
the atom number in each element was adjusted by reducing
the MOT loading times appropriately, or by changing the

012703-2



CROSS-DIMENSIONAL RELAXATION OF … PHYSICAL REVIEW A 101, 012703 (2020)

composition of the effusive atomic beam by adjusting tem-
peratures in the two-element oven.

Important to this work, the atomic momentum distribution
in the spherical-quadrupole trap is initially anisotropic. This
anisotropy arises from a mismatch between the spherical
or slightly prolate spatial distribution of the atoms at the
end of laser cooling and the oblate equipotential lines of
the spherical-quadrupole trap. As a result of this mismatch,
following a few oscillation periods in the magnetic trap, the
gases evolve to a quasi-steady-state distribution in which the
ensemble-averaged kinetic energy Ez along the axial trap
direction is larger than that along the radial directions (Ex and
Ey). Any initial center-of-mass motion of the magnetically
trapped gases is also dissipated within a few periods of
motion.

The atom number and momentum distribution for each
element is measured by switching off the magnetic trap,
allowing the gas to expand, and then imaging its distribution
with resonant absorption imaging. To relate the observed
distribution accurately to the momentum distribution of the
trapped gas, it is necessary to account for the noninstanta-
neous switch-off of the magnetic trapping field; we observe
that the magnetic field is effectively ramped off over around
1.5 ms, a timescale that is set by electronic components in our
setup. This gradual switch-off has a particularly significant
impact on the propagation of the lithium gas, which is allowed
a total time of flight of only up to 5 ms. To account for
this impact, we performed numerical simulations of classical
motion in the spherical-quadrupole trap as it is ramped down,
allowing us to relate the position-space distribution after time
of flight to the momentum-space distribution before the trap
is turned off.

III. CROSS-DIMENSIONAL RELAXATION
MEASUREMENTS

Cross-dimensional relaxation has been used to determine
the collision properties of single-element [19] and two-
element atomic gases [20,21]. These experiments have typi-
cally been performed on atoms trapped in harmonic potentials,
generated either magnetically or optically. In such potentials,
the motion of noninteracting atoms separates into decoupled
equations of motion in three directions corresponding to the
principal axes of the trap. Therefore, a distribution of nonin-
teracting atoms prepared initially with an energy anisotropy in
each principal direction of motion will retain that anisotropy
indefinitely. Collisions cause the energy to be redistributed,
relaxing toward a thermal equilibrium distribution.

Our experiment differs slightly from previous work in that
it is performed with atoms trapped in a spherical-quadrupole
magnetic trap, with a total field B(r) = B′( x

2 ,
y
2 ,−z). Neglect-

ing geometric effects of the motion of spins in an inhomoge-
neous magnetic field and nonadiabatic Majorana loss effects
[22,23], atoms at low energy move in a potential of the form

U (x, y, z)lin = μB′√z2 + (x2 + y2)/4, (1)

where x, y, and z are Cartesian coordinates, B′ is the mag-
netic field gradient along the trap axis, and μ = μB/2 is the
atomic magnetic moment at low field in the |F = 1, mF =
−1〉 hyperfine state, with μB being the Bohr magneton. We

neglect the small nuclear magnetic moments. This expression
for the potential is accurate only in the regime where the
linear Zeeman shift is far smaller than the atomic hyperfine
splitting. Outside this regime, a more accurate form of the po-
tential can be derived using the Breit-Rabi formula [24]. This
intermediate-field correction to the magnetic trap potential is
relevant to our trapped lithium gas, given the small hyperfine
splitting in the 7Li ground state. We account for the full
Breit-Rabi expression for the magnetic potential in our Monte
Carlo simulations. In contrast, for our trapped rubidium gas,
the linear Zeeman energy expression is sufficiently accurate
[25].

While the equations of motion are not plainly separable, it
is observed through numerical simulation that single-particle
motion in the spherical-quadrupole potential is quasiperiodic
and nonergodic [26]. As a result, in the absence of colli-
sions, an anisotropy in the momentum-space distribution of
an atomic gas trapped in such a spherical-quadrupole trap is
expected to persist indefinitely.

We confirm this expectation experimentally by observing a
trapped gas containing just bosonic 7Li. We produce this gas
using the method outlined above, while skipping the rubidium
loading cycle and turning off all rubidium-cooling light. The
initial anisotropy in the ensemble- and cycle-averaged kinetic
energies of the trapped atoms is maintained for as long as
40 s, approaching the vacuum-limited magnetic trap lifetime.
The interactions between 7Li atoms in the |F = 1, mF =
−1〉 state are extremely weak, characterized by an s-wave
scattering length aLi,Li of just 5 aB [27], and thus a collision
cross section of just 8πa2

Li,Li = 1.8 × 10−14 cm2. Therefore,
at the density (nLi ∼ 109 cm−3 at the trap center) and kinetic
temperatures (Tx,z = 2Ex,z/kB ∼ 290 μK in each direction) of
the trapped Li gas, the atoms collide with a per-atom rate of
just �Li,Li = 0.002 s−1. Thus, the atoms are essentially nonin-
teracting, and their motion nonergodic, over the experimental
timescale. Nonergodic motion in a spherical-quadrupole trap
was observed previously in experiments using spin-polarized
6Li atoms, which, being fermions, are strictly noninteracting
at the zero-collisional-energy limit [28,29].

By comparison, in the presence of collisions, the ini-
tially anisotropic momentum distribution is observed to re-
lax toward an isotropic distribution. We observe this cross-
dimensional relaxation in two variations of our experiment. In
the first variation, we observe cross-dimensional relaxation of
a gas composed just of Rb atoms. The strength of Rb-Rb col-
lisions is already well determined [30]; thus, measurements of
cross-dimensional relaxation in this single-element gas allow
us to confirm and calibrate our experimental method. In the
second variation, we observe cross-dimensional relaxation of
the momentum-space distribution of Li atoms in the presence
of Rb atoms. The relaxation of the lithium distribution can be
ascribed completely to Li-Rb collisions.

For the first, Rb-only experimental variation, we placed a
small number of rubidium atoms (around 1.7 × 107) in the
spherical-quadrupole trap with B′=328 G/cm, at a temper-
ature around 220 μK, and observed their collisional ther-
malization from an initial distribution where Ez is about
20% larger than Ex. We determined the ratio Ez/Ex through
time-of-flight absorption imaging after a variable time of
evolution in the magnetic trap. As shown in Fig. 1, the
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FIG. 1. Cross-dimensional relaxation of 87Rb after introducing
an anisotropy between the kinetic energies in the axial (Ez) and radial
(Ex) directions. Measured (red circles) and simulated (gray circles)
ratios Ez/Ex vs hold time in the B′ = 328 G/cm spherical-quadrupole
trap. The inset shows the theoretically calculated Rb-Rb cross section
as a function of collisional energy [31]. The dashed orange line
represents the s-wave cross section. The solid blue line represents
the d-wave cross section.

ratio is observed to relax to near unity within a couple of
seconds.

The measured relaxation time τ
(ex)
Rb,Rb is determined by fit-

ting the measured Ez/Ex to an equation describing exponential
decay to equilibrium [21],

Ez

Ex
= 1 + 2ε exp

( − t/τ (ex)
Rb,Rb

)
1 − ε exp

( − t/τ (ex)
Rb,Rb

) , (2)

where ε quantifies the initial departure from equilibrium. For
the data of Fig. 1, this relaxation time is measured to be
τ

(ex)
Rb,Rb = 4.4(3) s.

In the second Li-Rb experimental variation, we trapped
both lithium and rubidium atoms in the magnetic trap. At
the much larger Rb atom numbers (about 6 × 108) used in
these two-element experiments, collisions between rubidium
atoms quickly evolve the rubidium gas to a state of thermal
equilibrium in the trap. For 87Rb, in addition, we have a
microwave tone on during the experiment. However, with this
microwave knife, the trap depth for 87Rb is still deep enough
so that there is no noticeable forced evaporation happening
and 87Rb stays at a constant temperature, with an around 14%
decrease in total atom number over the entire experimental
window. In these experiments, we monitored the evolution
of the momentum distribution of the cotrapped gas of around
2 × 107 lithium atoms.

In contrast with the apparent nonergodicity of the lithium-
only gas, here we observe the initially anisotropic lithium
momentum distribution begin to relax toward an isotropic dis-
tribution through collisions with the rubidium atoms (Fig. 2).
The cross-dimensional relaxation time of the lithium gas,
τ

(ex)
Li,Rb, is determined by fitting the ratio Ez/Ex of the lithium

gas to the same fitting function as above. The lithium gas un-
dergoes cross-dimensional relaxation over timescales (many
seconds) that are much longer than the timescale for relaxation
of the rubidium gas (hundreds of ms at the high Rb atom
number used here). This stark difference demonstrates that the
rate of Li-Rb collisions (per Li atom) is much smaller than that
of Rb-Rb collisions (per Rb atom).
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FIG. 2. Cross-dimensional relaxation of 7Li atoms within a co-
trapped 87Rb gas. Red circles show the measured kinetic energy
ratio (Ez/Ex) for the lithium gas. Gray circles show results of Monte
Carlo simulations accounting for experimental parameters and the
theoretically predicted energy-dependent differential cross section
derived using the 7Li-87Rb molecular potential modeled in Ref. [5].
Results at two trap strengths are shown: B′ = 249 G/cm (a) and
B′ = 170 G/cm (b). Inset: neither Ez (solid blue) nor Ex (hollow
orange), at B′ = 249 G/cm trap strength, reaches the isotropic kinetic
energy of the cotrapped rubidium gas (solid black line) during the
accessible evolution time.

While the lithium gas evolves toward an isotropic momen-
tum distribution, it does not fully thermalize (i.e., reach a com-
mon temperature) with the rubidium gas over the timescales
of our measurement. Rather, we observe cross-dimensional
relaxation to happen faster than thermalization (see Fig. 2
inset). The large difference between the cross-dimensional
relaxation and thermalization rates is explained by the large
mass difference between lithium and rubidium atoms. In
the limit that the rubidium mass is infinite, a lithium atom
undergoing an s-wave collision with a rubidium atom would
emerge with a completely isotropic momentum probability
distribution, so that cross-dimensional relaxation occurs in
just a single collision (per atom) for a homogeneous system.
In that same collision, the lithium atom would exchange no
energy with the rubidium atom, meaning that the collisions
could not alter the total energy, and hence the temperature,
of the lithium gas. The true mass ratio between rubidium
and lithium (87/7) is large, implying that cross-dimensional
relaxation of lithium still occurs within the order of just
one collision per atom with the rubidium gas. In contrast,
thermalization to a common temperature of the lithium and
rubidium gases requires a larger number of collisions, roughly
2.7/ξ = 9.8, where ξ = 4mLimRb

(mLi+mRb )2 [3], assuming, again, s-wave
interactions with constant cross section.
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IV. MODELING CROSS-DIMENSIONAL RELAXATION
AND COMPARISON TO THEORY

Numerical simulations are used to relate cross-dimensional
relaxation to the collisions that produce such relaxation.
We first consider an approximate treatment where cross-
dimensional relaxation is assumed to occur through isotropic
(s-wave) collisions with an energy-independent scattering
cross section σcdr. In this manner, we can interpret our
measurement as an indirect determination of a hypotheti-
cal “cross-dimensional relaxation cross section,” σcdr, which
causes cross-dimensional relaxation that matches experimen-
tal measurements. The utility of this approach is that it allows
us to make analytic estimates of the relation between the
relaxation time τ and the cross-dimensional relaxation cross
section σcdr, and that σcdr can be related intuitively to the
actual theoretically predicted cross section for collisions.

As an analytic estimate, we consider that the cross-
dimensional relaxation time is simply τ = α/�, where � is
the appropriate mean per-particle collision rate and α is a
constant of order unity. We consider small anisotropic pertur-
bations atop the isotropic distributions of two trapped gases,
with atom numbers Na and Nb, at the separate temperatures Ta

and Tb, respectively. We calculate � as the ensemble-averaged
per atom collision rate of atoms of type a with atoms of type
b evaluated for the isotropic momentum distributions of the
trapped gases. Integrating over velocity and position in the
spherical-quadrupole trap, and neglecting gravity and Breit-
Rabi corrections to the magnetic trap potential, we obtain

τ = α
32π (Ta + Tb)3

k3Nbσcdrvrel
, (3)

where k = μB′/kB, vrel =
√

8kB
π

(
Ta
ma

+ Tb
mb

)
is the ensemble-

averaged relative velocity in a collision between atoms of type
a and b, and ma,b are the respective atomic masses. We apply
this expression to the rubidium-only experimental variation
by assigning both the labels a and b to the rubidium gas, and
to the lithium-rubidium experimental variation by assigning
label a to lithium, and label b to rubidium. The constants α

are expected to differ for these two experimental variations.
This analytic expression clarifies the functional dependence
of τ on experimental parameters such as atom number, trap
strength, and temperatures.

Monte Carlo numerical simulations confirm this functional
dependence and provide numerical values for the constant α in
the two experimental variations. For the rubidium-only case,
αRb,Rb is determined to be 2.68(6). For the lithium-rubidium
case, αLi,Rb is determined to be 1.71(9). Note that in applying
our analytic expression to the lithium-rubidium case, we make
use of the fact, observed both experimentally and within
our Monte Carlo simulations [32], that the cross-dimensional
relaxation occurs faster than thermalization, allowing us to
assign different temperatures to the lithium and rubidium
gases. The difference between αRb,Rb and αLi,Rb is due to the
different mass imbalance in the two cases.

The empirically determined cross sections for cross-
dimensional relaxation are obtained by comparing results of
the Monte Carlo model to the experimentally measured cross-
dimensional relaxation rates, with the results presented in

Table I. For the Rb-only measurements, we obtain σ
(ex)
cdr =

7.27 × 10−12 cm2. This value is close to the known Rb-
Rb collision cross section at the limit of zero tempera-
ture, σ = 8πa2

Rb,Rb = 7.09 × 10−12 cm2, determined from the
zero-energy s-wave scattering length aRb,Rb = 100.40 a0 [12],
where a0 is the Bohr radius.

In fact, this close agreement is somewhat fortuitous. It
is known that in 87Rb-87Rb collisions, the s-wave scattering
cross section begins to fall off for collision energies above
about 100 μK, as shown in the caption of Fig. 1. However,
this falling off is compensated by the emergence of strong
d-wave scattering owing to a shape resonance at a collision
energy of about 275 μK [33,34]. We performed a Monte Carlo
simulation that takes into account the theoretically predicted
energy-dependent differential cross section, including both
s-wave and d-wave collision channels and using measured ex-
perimental settings. Simulation predictions for the ratio Ez/Ex

are compared to measurements in Fig. 1. The theoretically
predicted cross-dimensional relaxation time, τ (th) = 4.9(1) s
(see Table I), which is obtained by fitting to the Monte Carlo
data, agrees with the experimental measurement within about
10%. The good agreement between our measurements and
simulation demonstrates the validity of our method for mea-
suring the collision cross section through cross-dimensional
relaxation.

The Li-Rb measurements were performed at two different
trap strengths. When accounting for the different experimental
settings at which measurements are performed, we obtain
two values for σ

(ex)
cdr that agree with one another within the

estimated error, using Eq. (3) to propagate statistical and
systematic errors in our measurements of temperature, trap
strength, and atom number (see Supplemental Material [32]).

We compare these measurements to Monte Carlo numer-
ical simulations that account for both the anisotropy and the
energy dependence of the differential collision cross section.
This differential cross section includes contributions from
both s and p partial waves; higher partial waves are irrelevant
at the collision energies of our experiments [35]. Our simula-
tions take into account the slight Rb atom loss observed in our
experiments over the long measurement times. The result of
this comparison is shown both in Table I and Fig. 3.

This comparison highlights the significant deviation be-
tween our experimental findings and theoretical predic-
tions. In brief, we observe Li-Rb collisions to cause cross-
dimensional relaxation at a rate that is 2.5 times faster than is
predicted by simulations based on the predicted differential
cross section. Equivalently, we observe a cross section for
cross-dimensional relaxation that is 2.5 times larger than
predicted theoretically.

We note that the energy anisotropy Ez/Ex should not ap-
proach unity through purely exponential decay [i.e., following
Eq. (2)]. There exist particle trajectories for trapped lithium
atoms, e.g., those with large axial angular momentum, whose
trajectory-averaged rubidium gas density is lower than the
volume average. Lithium atoms in such trajectories collide
less frequently than those that experience higher rubidium
gas density. Nonexponential decay may be further enhanced if
the cross section has a rapid energy dependence, such as that
predicted by theory (Fig. 3). We find evidence of the resulting
nonexponential decay of the momentum distribution toward
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TABLE I. Measured cross-dimensional relaxation rates and comparisons to theory. Experimental settings are characterized by trapping
magnetic field gradients B′, initial trapped atom numbers NLi and NRb, and measured temperatures upon cross-dimensional relaxation TLi and
TRb. For Rb-only experiments, we include only information on the Rb gas. Monte Carlo simulations for atoms interacting with the theoretically
predicted differential cross section, under conditions matching the experimental settings, are used to determine a theoretically predicted cross-
dimensional relaxation time τ (th). Separate Monte Carlo simulations for atoms interacting via energy-independent s-wave cross section σcdr,
under conditions matching the experimental setting, are used to determine a linear relationship between σ−1

cdr and relaxation time (Fig. 3 inset).
This relation is used to drive σ

(ex)
cdr from τ (ex) and σ

(th)
cdr from τ (th). σ

(ex)
T is the implied experimental value from the thermally averaged cross

section, see Sec. V for details. All 1-sigma error estimates are for statistical errors. Errors in determining experimental settings yield systematic
errors at the level of around 5% for σ

(ex)
cdr , where the systematic error related to 87Rb atom number calibration is not included. 87Rb atom number

calibration is constrained by the 87Rb -only experiment to 10% percent level.

B′ NLi TLi NRb TRb τ (ex) σ
(ex)
cdr σ

(ex)
T τ (th) σ

(th)
cdr

328 G/cm – – 1.66(6) × 107 223(2) μK 4.4(3) s 7.3(6) × 10−12 cm2 – 4.9(1) s 6.6(3) × 10−12 cm2

249 G/cm 2 × 107 290(9) μK 6.4(1) × 108 418(4) μK 28(4) s 8.5(1.1) × 10−14 cm2 8.6(1.2) × 10−14 cm2 69(1) s 3.5(1) × 10−14 cm2

170 G/cm 2 × 107 243(6) μK 5.8(2) × 108 300(2) μK 37(6) s 10.3(1.8) × 10−14 cm2 12.3(2.0) × 10−14 cm2 95(2) s 4.0(2) × 10−14 cm2

isotropy in numerical simulations, where we find that the
fitted value for τ varies with the range of simulated data used
for the fit, with later-time data giving systematically longer
relaxation times. However, our experimental data are too
noisy to confirm this nonexponential decay. To make a direct
comparison between experiment and theory, we compare τ ex

to τ th with a 28 second fitting window, corresponding to
the experiment duration. Nevertheless, the experimentally
observed relaxation occurs always significantly faster than
theoretically predicted.
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FIG. 3. Comparison between experimental measurements and
theoretically predicted cross section for 7Li-87Rb collisions. The
solid blue (dashed orange) lines give the s-wave (p-wave) cross
section calculated using the Maier et al. model potential. The shaded
gray area represents the smallest and largest theoretical allowable
s-wave cross section with χ 2

5 < 20 (see Sec. V). For comparison, we
show σcdr obtained either experimentally [red circles (upper), with
1-sigma statistical error bars] or theoretically [gray circles (lower),
based on the Maier et al. model potential]. These are plotted at the
thermally averaged collision energies determined by experimental
conditions. The corresponding cross-dimensional relaxation times
derived from experiment and theory are shown in the insert (same
color scheme). We show also Monte Carlo simulated results (black
symbols) under experimental conditions using a series of energy-
independent isotropic cross sections from which a linear relationship
between σ−1

cdr and the cross-dimensional relaxation time τ is obtained.

V. THEORETICAL INVESTIGATIONS
OF THE CROSS SECTION

This section describes the explorations we have carried out
to modify the theoretical description of two-body Li-Rb scat-
tering in a way that preserves existing agreement between the-
ory and experimentally measured Fano-Feshbach resonance
properties while also agreeing with the present experimental
results. The modified theoretical model considered in this
study starts with the LiRb singlet and triplet potential energy
functions that were previously optimized by Maier et al. [5].
Our approach is to modify this potential, as described below,
and then to solve the coupled differential equations relevant
to cold collisions with a finite element method (FEM)-R
matrix calculation [36]. We explored but do not rely here upon
approximate quantum defect theory treatments [35,37,38].

We confirm that our calculation method is valid by us-
ing the Maier et al. model potentials and reproducing the
calculated positions of several reported s-, p-, and d-wave
Fano-Feshbach resonances in 7Li-87Rb. The agreement be-
tween these theoretical predictions and experimental findings

is quantified by calculating χ2
5 = ∑ (Bcalc−Bexp )2

(δB)2 , where the
sum is taken over the five measured Fano-Feshbach reso-
nances, with Bcalc being the theoretically predicted and Bexp

the experimentally measured magnetic field position of the
resonance, and δB = 0.5 G being the experimentally reported
uncertainty. For the Maier et al. model potential, which was
selected to match all experimental data on the LiRb poten-
tial at the time of its publication (obviously excluding the
present measurements), one finds χ2

5 = 11. The Maier et al.
model potential is used to derive the s- and p-wave collision
cross sections as functions of the collision energy, which are
presented in Fig. 3. As discussed previously, this energy-
dependent differential cross section is used within Monte
Carlo simulations to derive a cross-dimensional relaxation
cross section (also in Fig. 3) that is significantly smaller than
that determined by measurement.

We explored the elasticity of the model predictions to
variations in several model parameters, i.e., we explore to
what extent the collision cross section between 7Li and 87Rb,
with both atoms in the |F = 1, mF = −1〉 hyperfine state, can
vary while maintaining agreement also with the measured
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Fano-Feshbach resonance positions. For this, we consider
three modifications of the two-body potential: a modification
of the inner part of the spin-singlet potential (X 1�+), a mod-
ification of the inner part of the spin-triplet potential (a3�+),
and a modification of the C6 coefficient that characterizes
the long-range van der Waals interaction. After making such
modifications, we recompute the predicted positions of the
five Fano-Feshbach resonances for comparison with the Maier
et al. measurements [5].

We also compute the energy-dependent differential cross
section with both atoms in the |F = 1, mF = −1〉 and at
low magnetic field [39]. In order to compare this energy-
dependent function to our experimental findings, rather than
resorting in all cases to detailed Monte Carlo calculations of
cross-dimensional relaxation, we compute instead the ther-
mally averaged cross section σT . For this, we assume Li and
Rb gases that are at uniform density and that are each at
thermal equilibrium at the temperatures TLi and TRb that are in-
dicated in Table I. For example, the thermally averaged cross
sections found in this manner, using the Maier et al. potential,
are shown also in Table I. For this estimation, we only include
s-wave contribution. We compare these thermally averaged
cross sections to an implied experimental value, σ

(ex)
T , which

we obtain by scaling up the result from the Maier et al. model
by the ratio τ th/τ ex in that table.

We consider modifications to the LiRb molecular potential
that remain somewhat consistent with the measured positions
of the Fano-Feshbach resonances, where we qualify a
modification as consistent as long as χ2

5 remains of the same
order as its value for the Maier et al. potential. Specifically,
by assessing how the inferred Fano-Feshbach resonance
positions and also the thermally averaged cross section
vary linearly with the three potential model modifications, we
determine model settings that produce the largest and smallest
σT within the space bounded by χ2

5 < 20 (Fig. 3 shaded area).
We compute the full energy-dependent cross section for these
two model settings. As shown in Fig. 3, constraining the
model to remain consistent with the measured positions of the
Fano-Feshbach resonances permits only slight modifications,
at the level of less than 10%, to the predicted collision cross
section and, similarly, to the predicted cross-dimensional
relaxation rate. These modifications are insufficient to bridge
the difference between our experimental findings and theo-
retical predictions. Overall, we conclude that the measured
Fano-Feshbach resonance potentials and our measured cross-
dimensional relaxation rate cannot all be made simultaneously
consistent with present-day models of the LiRb molecular
potential.

VI. CONCLUSION

We have characterized 7Li-87Rb collisions at a collision
energy that is in the range of several hundreds of μK by
observing cross-dimensional relaxation of gases trapped in a
spherical-quadrupole magnetic trap. To our knowledge, ours
is the first use of a spherical-quadrupole trap in a two-species
cross-dimensional relaxation measurement. Our experimental

method makes use of several specific properties of the two
elements that we have chosen to study. In this specific in-
stance, one of the elements (element a; here 7Li) has very
weak interactions and is very dilute, so that the collision rate
�aa within the single-element gas is small. For this reason,
loaded on its own into a spherical-quadrupole trap, this gas
evolves nonergodically for a very long time, as we have
confirmed experimentally. The other element (element b; here
87Rb) has higher density and stronger interactions, so that
the collision rate �bb in a single-element gas is large. Thus,
this gas thermalizes rapidly on its own in the magnetic trap.
The interaction between the two elements, characterized by
collision rate �ab, is intermediate between �aa and �bb. This
fact allows us to ascribe the cross-dimensional relaxation of
element a in the presence of element b as being solely due
to a-b collisions, and, also, to treat the relaxation process
quantitatively by assuming element b is always at thermal
equilibrium. Another specific feature of our experiment is the
large mass ratio mRb/mLi, owing to which the lithium gas
undergoes cross-dimensional relaxation well before it under-
goes full thermalization with the rubidium gas with which
it interacts. Our measurements show clearly the difference
between the cross-dimensional relaxation and thermalization
timescales.

We measure the cross-dimensional relaxation rate for the
7Li gas in the presence of 87Rb under two experimental set-
tings. These measured rates disagree significantly with theo-
retical predictions based on Monte Carlo simulations of cross-
dimensional relaxation under our experimental conditions,
and on the theoretically predicted, energy-dependent different
cross section for Li-Rb collisions. A careful theoretical inves-
tigation shows that it is hard to incorporate our results into
the existing model for the 7Li87Rb potential without inducing
a disagreement between predicted and measured positions of
several Fano-Feshbach resonances.

Future investigations to address this disagreement are war-
ranted. It may be valuable to characterize elastic collisions
among atoms in the |F = 1, m f = −1〉 atoms of 7Li and 87Rb
over a wider range of collision energies. This can be done
by repeating cross-dimensional relaxation experiments at var-
ious gas temperatures, or by characterizing cold collisions at
well-defined and variable collision energy [30,34,40]. Such
measurements could confirm the sharp energy dependence
of the cross section, which is predicted theoretically, with
the exact energy of the zero crossing of the s-wave scat-
tering phase providing a very tight constraint for theoretical
models. It will also be valuable to examine spin-dependent
interactions between the F = 1 7Li and 87Rb spinor-gas sys-
tems, providing more information on both the singlet and
triplet scattering lengths for heteronuclear collisions. Ex-
perimental measurements on Fano-Feshbach resonances in
7Li-87Rb collisions could be refined by applying methods
such as rf modulation or interferometric measurements [41]
to identify and measure the energies of shallow molecular
bound states. Such experiments could supplement the existing
measurements [5] to determine the resonance positions with
more certainty.
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