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Fully numerical calculations on atoms with fractional occupations
and range-separated exchange functionals
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A recently developed finite-element approach for fully numerical atomic structure calculations [S. Lehtola,
Int. J. Quantum Chem. 119, e25945 (2019)] is extended to the description of atoms with spherically symmetric
densities via fractionally occupied orbitals. Specialized versions of Hartree-Fock as well as local density and
generalized gradient approximation density functionals are developed, allowing extremely rapid calculations at
the basis-set limit on the ground and low-lying excited states, even for heavy atoms. The implementation of
range separation based on the Yukawa or complementary error function (erfc) kernels is also described, allowing
complete basis-set benchmarks of modern range-separated hybrid functionals with either integer or fractional
occupation numbers. Finally, the computation of atomic effective potentials at the local density or generalized
gradient approximation levels for the superposition of atomic potentials (SAP) approach [S. Lehtola, J. Chem.
Theory Comput. 15, 1593 (2019)] that has been shown to be a simple and efficient way to initialize electronic
structure calculations is described. The present numerical approach is shown to afford beyond micro-Hartree
accuracy with a small number of numerical basis functions, and to reproduce the literature results for the ground
states of atoms and their cations for 1 � Z � 86. Our results indicate that the literature values deviate by up to
10 μEh from the complete basis-set limit. The numerical scheme for the erfc kernel is shown to work by
comparison to results from large Gaussian basis-set calculations from the literature. Spin-restricted ground states
are reported for Hartree-Fock and Hartree-Fock-Slater calculations with fractional occupations for 1 � Z � 118.
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I. INTRODUCTION

Atoms are the simplest possible unit in chemistry, which
is why electronic structure studies on atoms have a long and
venerated history. Thanks to the high amount of symmetry
that may be used to reduce the number of degrees of freedom
in the atomic problem, fully numerical electronic structure
approaches on atoms have been possible for a very long time
[1]; for instance, a fully numerical configuration interaction
calculation on the oxygen atom was reported by Hartree and
co-workers over 80 years ago [2].

As the atomic Hamiltonian is spherically symmetric, the
exact wave function should be rotationally invariant as well.
Although the necessary symmetry requirements can straight-
forwardly be enforced in wave-function approaches, the ap-
plication of density functional theory [3,4] (DFT) on atoms is
surprisingly tricky. In the usual DFT approach, a single Slater
determinant is employed, with all orbitals below the Fermi
level being fully occupied. Nonrelativistically, all 2l + 1
atomic orbitals sharing the principal quantum number n and
angular quantum number l should be completely degenerate;
however, this behavior is already broken by conventional
DFT as well as Hartree-Fock (HF) on the first row. Different
choices for the occupied orbitals on the 2p shell yield different
final energies for, e.g., B and F, which may lead to several
kcal/mol differences in the total energy—with a symmetrized
density yielding yet another result [5]. One possibility to
obtain comparable results is to employ a standard set of
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electronic occupations [6], but such an approach does not
yield the lowest possible energy.

Pursuing the lowest energy is not unproblematic, either.
While HF is infamous for possessing variational solutions that
break symmetry in systems with a high degree of symmetry
[7], symmetry breaking is a problem in DFT as well [8]. In
atoms, broken symmetries often arise for open shells, and
the effect of nonspherical densities is known to be more pro-
nounced with functionals at the generalized gradient approx-
imation (GGA) level, and especially the meta-GGA (mGGA)
level, than at the local density approximation (LDA) level
[9–12]; even optimized effective potential exact-exchange
calculations are subject to spurious energy splittings [13].
Inclusion of current density dependence leads to improvement
of GGA and mGGA results [11,12], but the proper orbital
degeneracy is still not fully restored.

Symmetry-breaking effects in atoms can already be seen
at the simplest possible level of DFT, that is, the exchange-
only LDA, which is also commonly known as Hartree-Fock-
Slater (HFS) theory. For example, HFS calculations on the F
atom reveal milli-Hartree decreases of the total energy upon
addition of d as well as f functions, which is at variance
to the generally accepted electronic configuration of fluorine
as 1s22s22p5. Interestingly, this kind of symmetry breaking
sometimes happens even in the case of closed-shell atoms;
see, for instance, our recent finite-element reproduction [14]
of calculations on atomic anions [15] where symmetry break-
ing was observed for H−, Be, Li−, and Na−.

In addition to being degenerate due to symmetry (as often
occurs in atoms), orbitals may also be degenerate by accident.
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Since the aufbau rule implies populating the orbitals in in-
creasing energy, it is tempting to divide the occupations evenly
in the case of degeneracies. This paves the way for the use of
fractional occupations, which in the case of atoms naturally
yield a spherically symmetric density thanks to Unsöld’s the-
orem [16]; the use of fractional occupations can be formally
justified within the theory of ensemble representable densities
[17–19].

Fractionally occupied orbitals should especially be used in
the case where there is a negative gap between the highest
occupied and lowest unoccupied orbital, no matter which
way the orbitals are occupied; this happens when the highest
occupied and lowest unoccupied orbital switch places during
the orbital optimization. In this case, the total energy can be
lowered by moving a fraction of an electron from the highest
occupied orbital to the lowest unoccupied orbital, and at some
point the two levels should cross.

Fractional occupations have been shown to yield better
results for strongly correlated systems [20–24]. However,
fractional occupations can only be justified at the Fermi
level [25] and, more recently, it has been shown that energy
minimization naturally leads to integer occupations below the
Fermi level, and possible fractional occupations at the Fermi
level for independent particle models such as HF and DFT
[26].

While in some systems it is clear a priori from sym-
metry arguments or the orbital energies how many orbitals
should be fractionally occupied, this is generally not the case.
However, fractional occupations can be obtained as [27] the
zero-temperature limit of finite-temperature DFT (FT-DFT)
[28,29]. In a finite-temperature approach, the fractional orbital
occupation numbers are determined by the orbital energies ac-
cording to some smearing scheme that is typically controlled
by a single parameter, i.e., an electronic temperature. Because
of the simplicity and favorable computational scaling of FT-
DFT, it has become a powerful tool for approximate modeling
of systems exhibiting strong correlation; such approaches
have been used to obtain promising results for a variety of
systems [30–44].

Finite electronic temperatures may also be used to aid the
convergence of self-consistent field calculations of molecules
[45]; in the solid state, the use of fractional occupation num-
bers is often mandatory in order to attain convergence [46].
Although finite-temperature approaches are more attractive
for DFT where all electrons experience the same potential,
finite-temperature approaches can also be used in the context
of HF calculations where they may offer good active spaces
for post-HF calculations on strongly correlated systems [47].

Although several types of smearing schemes have been
suggested, including Fermi-Dirac [28], Gaussian smearing
[48], Methfessel-Paxton smearing [49], cold smearing [50],
and others [51], they have been shown to yield similar results
if the parameters are adjusted properly [47,52,53]; however,
the behavior with respect to temperature needs to be carefully
checked in each case to ensure convergence [54]. Note that the
evaluation of forces in finite-temperature calculations requires
the consideration of an additional entropic term that arises
from the noninteger occupations and that depends on the
smearing function [55,56].

Regardless of the used temperature, calculations with frac-
tional occupations are more involved than those with integer
occupations. Convergence acceleration techniques, such as di-
rect inversion in the iterative subspace [57,58] (DIIS), become
invalid when the orbital occupation pattern changes, even
though the self-consistent field problem itself may become
easier with fractional occupation numbers [45]. Determining
the correct occupations is hard since the orbital occupations
depend on the orbital energies, which in turn depend on
the orbital occupations. The changes in the occupations may
also cause changes in the shapes of the orbitals, meaning
that the orbitals, their energies, and their occupations need
to be solved self-consistently. Several approaches have been
proposed for solving this problem both for zero [27,59–61]
and finite electronic temperatures [51,62–66].

In systems with a high degree of symmetry such as atoms,
the fractional occupations can be defined by symmetry block.
Fractional occupations for atoms are typically defined in terms
of atomic shells, over which the electrons are equally divided.
For instance, the 1s22s22p5 configuration for F implies that
the hole in the 2p shell be split in three, resulting in the
minority-spin occupations 2p2/3

x 2p2/3
y 2p2/3

z ; a spin-restricted
variant would employ occupations of 2p5/6

x 2p5/6
y 2p5/6

z in both
spin channels. Indeed, this is the method of choice for fully
numerical density functional calculations on atoms [1], and it
has been used, e.g., in [67] for local density calculations on
1 � Z � 92 at the ground-state electronic configuration from
experiment, and in [68] for Perdew-Burke-Ernzerhof (PBE)
[69,70] calculations on 1 � Z � 20 and 31 � Z � 36.

Atomic calculations with fractional occupation numbers
are typically used to generate pseudopotentials [71,72], nu-
merical atomic orbital basis functions [73,74], and Gaus-
sian basis sets [75–77]. Spin-restricted spherically symmetric
atoms may be used for setting up frozen-core calculations
within all-electron approaches, and to determine approximate
binding energies [78]. We have also recently shown that
the radial potential from atomic calculations with fractional
occupation numbers can be used to formulate efficient initial
guesses for electronic structure calculations on polyatomic
systems via the superposition of atomic potentials (SAP)
approach [79].

In the typical case, electrons are divided evenly among the
2l + 1 orbitals that are degenerate by symmetry. However,
the fractional occupations can be generalized beyond integer
occupations per shell, in case accidental degeneracy is also
present. Early multiconfigurational HF calculations on atoms
found that the 3d orbitals become occupied before the 4s
orbitals in transition metals [80,81], which was solved by
moving fractions of an electron between the shells. One ex-
ample of this approach is the iron atom, where the [Ar]3d5

1 4s1
1

and [Ar]3d5
2 4s1

0 configurations both turn out to have a negative
gap in the local density approximation [82], with the upper
and lower indices denoting spin-up and spin-down electrons,
respectively. With the Vosko-Wilk-Nusair (VWN) local den-
sity functional, the lowest-energy configuration is found to be
[Ar]3d5

1.3984s1
0.602 [27].

A systematic, nonrelativistic study for spherical atoms in
the range 1 � Z � 86, has recently been presented by Kraisler
et al. for the local density and PBE functionals based on
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three local density functionals, employing 16 000 point grids
and wave functions converged to 2 μEh [83]. It was found
in [83] that the ground state of most atoms does not involve
fractional splitting of electrons between shells, indicating that
a fully numerical program for modeling atoms with spherical
densities would go a long way towards the final solution.

While several programs exist for either wave-function
or density-functional-based fully numerical calculations on
atoms [1], we are not aware of any publicly available software
that supports hybrid functionals, except the recently published
HELFEM program [14,84], which also includes a fully numer-
ical approach for diatomic molecules that similarly supports
hybrid functionals [85]. Most publicly available programs
for fully numerical density functional calculations on atoms
target the generation of projector-augmented wave (PAW)
setups [86] or pseudopotentials [87]. Although Hartree-Fock
pseudopotential generators have been available for some time
[88,89], which allowed the use of non-self-consistent pseu-
dopotentials for hybrid functionals [90], surprisingly, the self-
consistent generation of pseudopotentials for hybrid function-
als has only been described as of last year [91], explaining the
scarcity of such programs.

Interestingly, the work of Yang et al. in [91] did not employ
fractionally occupied Hartree-Fock calculations, but rather
followed Slater’s multiconfigurational approach, which is at
odds with the density functional description used in the work,
as the exact exchange and density functional parts experi-
ence different electron densities. In contrast, when fractional
occupations are employed as in the present work, the ex-
act exchange operator becomes independent of the magnetic
quantum number m, as will be shown in Sec. II B, and both the
density functional and exact exchange operators are evaluated
with the same density matrix.

Although a general-use atomic program, such as the one
in HELFEM, can be straightforwardly adapted to calculations
on spherically symmetric densities by employing fractional
occupation numbers in the construction of the density matrix,
a more efficient approach is afforded by taking the assumption
of the spherical symmetry of the density matrix deeper in
the algorithms. As a result, some or even all of the angular
integrals can be eliminated from the calculations, reducing
the problem to a small number of dimensions; indeed, this is
exactly what is done in the multiconfigurational HF approach
Slater proposed 90 years ago [92].

In the present work, we describe the extension of the
atomic program in HELFEM to the description of atoms with
spherical symmetric density via fractional occupation num-
bers. Like the other programs in HELFEM, the spherically
symmetric atomic program is interfaced to the LIBXC library
of density functionals [93] and can be used with all supported
density functionals therein. Specialized implementations for
atomic calculations with fractional occupations are developed
for local density approximation (LDA) and generalized gra-
dient (GGA) functionals as well as HF exchange, yielding
significant reductions in the dimensionality of the problem,
whereas meta-GGA functionals can be used via an interface
to the algorithms previously developed in [14].

Importantly, we also describe the implementation of
Yukawa and complementary error function (erfc) range-
separated exchange for atomic calculations in HELFEM with

either fractional or integer occupations, allowing com-
plete basis-set benchmarks of recently developed exchange-
correlation functionals such as the CAM-QTP family by
Bartlett and co-workers [94–96], the N12-SX and revM11
functionals by Truhlar and co-workers [97,98], and the
ωB97X-V and ωB97M-V functionals by Mardirossian and
Head-Gordon (without the nonlocal correlation part) [99,100].
While the spherical harmonics decomposition for the Yukawa
kernel is well known, the decomposition for the erfc kernel
was only derived some time ago [101] and does not appear to
have been implemented within a generally applicable, fully
numerical approach for atoms. Results for H and He with
relatively low-order B-spline basis sets have, however, been
published almost simultaneously to our work [102]. Finally,
we also describe the analytic calculation of the radial poten-
tials necessary for the SAP orbital guess [79].

In Sec. II, we derive the equations for fractionally occupied
HF and DFT at the LDA and GGA levels within the used
finite-element approach. Then, in Sec. III, we present appli-
cations of the program to reproducing ground states for the
neutral atoms and cations 1 � Z � 86 and compare with [83];
we reproduce the long-range corrected density functional
calculations on closed-shell atoms of [15] to show that the
range-separation scheme works; and, finally, we report the
nonrelativistic ground states of all atoms in the periodic table
at HF and HFS levels of theory. The article concludes with a
brief summary and discussion in Sec. IV.

II. METHOD

A basis set of the form

χnlm(r) = r−1Bn(r)Y m
l (θ, φ) (1)

is adopted as in the integer-occupation program described in
[14]. Here, Bn(r) are the piecewise polynomial-shape func-
tions of the finite-element method, which have been discussed
extensively in [1] and [14] to which we refer for further
details.

A. Range-separated exchange

As discussed in [1] and [14], the key to fully numerical
electronic structure calculations on atoms is the Laplace ex-
pansion

1

r12
= 4π

r>

∞∑
L=0

1

2L + 1

(
r<

r>

)L L∑
M=−L

Y M
L (�1)

[
Y M

L (�2)
]∗

, (2)

which factorizes the two-electron integrals

(i j|kl ) =
∫

χi(r)χ∗
j (r)χk (r′)χ∗

l (r′)
|r − r′| d3rd3r′ (3)

into a radial and an angular part.
In range-separated density functional theory [103,104], the

Coulomb interaction is split into a short-range (sr) and a long-
range (lr) part as

1

r
= φsr(r)

r
+ 1 − φsr(r)

r
= φsr(r)

r
+ φlr(r)

r

= 1 − φlr(r)

r
+ φlr(r)

r
, (4)
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where φsr(r) = 1 − φlr(r) is a splitting function. Typically, the
short-range part is described using density functional theory
and the long-range part with HF theory, but in practice many
functionals employ more flexibility: for instance, the CAM-
B3LYP functional [105] contains 19% short-range and 65%
long-range exact exchange.

The evaluation of the range-separated exchange function-
als is simple if one has access to the Green’s function expan-
sion of the range-separated kernel as

φsr (r)

r12
=

∞∑
L=0

4π

2L + 1
GL(r<, r>,μ)

×
L∑

M=−L

[
Y M

L (�1)
]∗

Y M
L (�2), (5)

where GL(r>, r<,μ) is the Green’s function, r> and r< are
the greater and smaller of r1 and r2, respectively, and μ is
the range-separation parameter. The Green’s function for the
(unscreened) classical Coulomb interaction can be identified
from Eq. (2) as

GCoulomb
L (r>, r<) = rL

<

rL+1
>

. (6)

The implementation of the integrals in HELFEM is based on the
primitive integrals defined in [14] as

IL
i jkl = 4π

2L + 1

∫
dr1dr2Bi(r1)Bj (r1)

× Bk (r2)Bl (r2)GL(r>, r<,μ), (7)

where Bi(r) are the piecewise polynomial basis functions of
Eq. (1).

1. Yukawa kernel

The Yukawa-screened [106] potential, φsr(r12) =
exp(−λr12), has a relatively well-known simple expansion,

e−λ|r−r′|

|r − r′| = 4πλ

∞∑
L=0

iL(λr<)kL(λr>)

×
L∑

M=−L

Y M
L (�1)

[
Y M

L (�2)
]∗

, (8)

where iL and kL are regular and irregular modified Bessel
functions that are regular at zero and infinity, respectively.
Due to the separability, Yukawa-screened functionals are easy
to handle in fully numerical approaches. Indeed, the Yukawa
Green’s function is employed in several recently developed
linear scaling approaches for solving the HF or Kohn-Sham
equations for bound orbitals in molecular systems via the
Helmholtz kernel [107–111]. The Yukawa interaction is also
straightforward to implement in calculations with Slater-type
orbitals [112–114]. It turns out that Yukawa screening can be
implemented with Gaussian-type orbitals in a rather straight-
forward manner [115], as analogous integrals also arise within
r12 wave-function theory [116,117]. Such implementations
are, however, rare at the moment, even though it has been
claimed that Yukawa screening yields more accurate atomiza-
tion and charge transfer excitation energies than erfc screening
[118]. The Green’s function for the Yukawa interaction can be

read from Eq. (8) as

GYukawa
L (r>, r<, λ) = (2L + 1)λiL(λr<)kL(λr>). (9)

As the Yukawa interaction factorizes in r> and r<, it can
be implemented in a similar fashion to the full Coulomb
interaction, given by Eq. (6), along the lines of [14].

2. erfc kernel

Most range-separated functionals, however, are based on
the complementary error function (erfc) kernel φsr(r) =
erfc (μr). Such functionals are easy to implement in
Gaussian-basis programs, requiring but simple modifications
to the two-electron integrals [119,120], as well as plane-wave
programs since the kernel has a simple Fourier transform
which is strongly attenuated at large momentum. In contrast,
the implementation of the erfc kernel is more complicated
in real-space approaches. Fortunately, spherical harmonic ex-
pansions for the erfc Green’s functions are available in the
literature [101,121], but their form is more involved than that
of the Yukawa function in Eq. (8). The main complication
is that the Green’s function does not factorize in r< and r>,
which means that two-dimensional quadrature is always re-
quired. In the approach of [101], new variables are introduced
as 	 = μR and ξ = μr, and

GL(R, r; μ) = μ�L(	, ξ ), (10)

where �L is a scaled radial function given by

�n(	, ξ ) = Fn(	, ξ ) +
n∑

m=1

Fn−m(	, ξ )
	2m + ξ 2m

(	ξ )m Hn(	, ξ ),

(11)

Fn(	, ξ ) = 2√
π

n∑
p=0

(
− 1

4	ξ

)p+1 (n + p)!

p!(n − p)!

× [
(−1)n−pe−(ξ+	)2 − e−(ξ−	)2]

, (12)

Hn(	, ξ ) = 1

2(ξ	)n+1

[(
	2n+1 + ξ 2n+1

)
erfc (	 + ξ )

− (
	2n+1 − ξ 2n+1)erfc (	 − ξ )

]
(13)

(note that the lower limit of the sum in Eq. (12) is incorrect in
[101], where it reads p = 1 instead of p = 0). Equations (11)
to (13) are numerically unstable in the short range, which is
why when either ξ < 0.4, or 	 < 0.5 and 0 < ξ < 2	 [101],
the Green’s function is evaluated with a Taylor expansion,

�n(	, ξ ) =
∑

k

Dn,k (	)

	n+1
ξ n+2k, (14)

Dn,0(	) = erfc 	+ exp(−	2)√
π

(2	2)n+1
n∑

m=1

(2	2)−m

(2n−2m−1)!!
,

(15)

Dn,k (	) = exp(−	2)√
π

(2	2)n+1 2n + 1

k!(2n + 2k + 1)

×
k∑

m=1

(
m−k−1

m−1

)
(2	2)k−m

(2n + 2k − 2m − 1)!!
, k � 0.

(16)
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Despite the lack of factorization of the erfc Green’s func-
tion, its evaluation can be carried out analogously to the
Coulomb and Yukawa kernels. The primitive integrals, given
by Eq. (7), can be divided into two cases thanks to the
finite support of the piecewise polynomial basis functions,
as discussed in [14]. In an intraelement integral, both i j and
kl are within the same element, whereas in an interelement
integral, i j are in one element and kl are in another. In analogy
to the scheme for Coulomb integrals discussed in [14], the
interelement integrals are evaluated with Nquad quadrature
points in both i j and kl , whereas the intraelement integrals
employ Nquad points in i j, and the kl quadrature is split
into Nquad intervals, all of which employ a fresh set of Nquad

quadrature points.

B. Self-consistent field calculations with fractional occupations

It is well known that atomic orbitals can be written in the
form

ψnlm(r) = Rnl (r)Y m
l (r̂). (17)

Employing smeared occupations as

n(r) =
∞∑

n=1

∞∑
l=n−1

fnl

l∑
m=−l

|ψnlm(r)|2 (18)

=
∑

nl

fnl
(2l + 1)R2

nl (r)

4π
= n(r), (19)

where fnl is the occupation number of all the 2l + 1 orbitals
on the (n, l ) shell, one immediately sees that the density
matrix is diagonal in l and m,

Pσ
μν = δlμ,lν δmμ,mν

Plμ;σ
μν , (20)

and that the elements of the density matrix only depend on the
value of l .

The spherical averaging yields huge simplifications for
density functional calculations. Now, the density is only a
function of the radial coordinate, and its gradient,

∇n = ∂rnêr, (21)

only depends on the radial coordinate. Following the usual
projective approach [14,122], the LDA and GGA matrix ele-
ments,

Kxc;σ
μν =

∫ {
δ fxc

δnσ (r)
φμ(r)φν (r) +

[
2

δ fxc

δγσσ (r)
∇ρσ (r)

+ δ fxc

δγσσ ′ (r)
∇ρσ ′ (r)

]
· ∇[φμ(r)φν (r)]

}
d3r, (22)

become greatly simplified as only the radial terms are picked
up, and as the same radial basis is used for all l, m; see
Eq. (1). Note, however, that meta-GGAs that depend on the
kinetic-energy density cannot be handled in the same fashion,
as the kinetic-energy density is not manifestly dependent only
on the radial coordinate as discussed, e.g., in [123]. Like
the exact exchange discussed below, the meta-GGA potential
turns out to depend on the l channel. Meta-GGA functionals
can be used in the present program via a fractional-occupation
interface to the full atomic routines discussed in [14].

The Coulomb matrix arising from Eq. (2) trivially re-
duces to a single term as the spherically symmetric density
only consists of a single L = 0, M = 0 component. Exact
exchange—either with the full Coulomb form of Eq. (6) or
the range-separated versions in Eqs. (9) and (10)—is a bit
more complicated, as both the integrals and the density matrix
carry a dependence on the orbital angular momenta in the
well-known equation

Kμν =
∑
στ

(μσ |ντ )Pστ . (23)

By employing the blocking of the density matrix given in
Eq. (20), the exchange matrix can be written as

Klout
μν =

∑
στ

(μσ |ντ )Pστ =
lin+lout∑

L=|lin−lout|
IL
μσντ Plin

στ

1

2lout + 1

×
lin∑

min=−lin

lout∑
mout=−lout

GMmin,lout
Llin,mout

GMmin,lout
Llin,mout

, (24)

where L is a coupled angular momentum with z projection,
M = mout − min. Rearranging the contractions, it is then seen
that

Klout
μν =

∑
L

IL
μσντ

⎛
⎝∑

lin

Plin
στ

⎡
⎣ 1

2lout + 1

×
lin∑

min=−lin

lout∑
mout=−lout

GMmin,lout
Llin,mout

GMmin,lout
Llin,mout

⎤
⎦

⎞
⎠,

(25)

where the evaluation is done from the inside-most bracket out.

C. Cusp condition

One way to diagnose atomic wave functions is the Kato-
Steiner cusp condition [124,125],

C = − 1

2Z

d ln n(r)

dr

∣∣∣∣
r=0

= − 1

2Z

n′(0)

n(0)
, (26)

which yields the value C = 1 for the exact HF or density
functional solution [126]. The electron density n(r) at the
nucleus was obtained in [14] via l’Hôpital’s rule as

n(0) = Pμν lim
r→0

Bμ(r)Bν (r)

r2
(27)

= Pμν lim
r→0

d2

dr2 Bμ(r)Bν (r)
d2

dr2 r2
(28)

= PμνB′
μ(r)B′

ν (r). (29)

Its derivative at the nucleus also turns out to have a simple
expression:

n′(0) =Pμν lim
r→0

[
B′

μ(r)Bν (r)

r2
+ Bμ(r)B′

ν (r)

r2
− 2

Bμ(r)Bν (r)

r3

]

= Pμν lim
r→0

[
d3

dr3 Bμ(r)Bν (r)
d2

dr2 r2
− 2

d3

dr3 Bμ(r)Bν (r)
d3

dr3 r3

]

= PμνB′′
μ(0)B′

ν (0). (30)
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The value of the cusp is printed out at the end of all atomic
calculations in HELFEM.

D. Effective radial potential for SAP

In the SAP approach discussed in [79], approximate or-
bitals for a molecule are obtained by diagonalizing an effec-
tive one-body Hamiltonian in an external potential obtained as
a superposition of radial atomic potentials. Once the atomic
ground state has been found with any supported method in
HELFEM, including HF and hybrid and meta-GGA functionals,
the radial effective potential for the SAP approach can be
calculated based on any LDA or GGA functional. Extensions
to the exact exchange, as in the optimized effective potential
method [127], as well as generalized Kohn-Sham methods for
the radial potentials from meta-GGA functionals are left for
future work.

If the radial potential is self-consistent, i.e., the same func-
tional is used for both the atomic orbitals and the potential,
the SAP guess will reproduce the atomic orbitals exactly
[79]. The atomic potential comprises Coulomb and exchange-

correlation contributions, the calculation of which is presented
in the following.

1. Coulomb potential

Employing the Laplace expansion, given by Eq. (2), the
Coulomb potential at a point r for a spherically symmetric
charge distribution is

V (r) =
∫ ∞

0

1

r>

n(r′)r2dr′. (31)

Expressing the orbitals as in Eq. (17) yields potential matrix
elements of the form

Vi j (r) =
∫ ∞

0

1

r>

Bi(r
′)Bj (r

′)dr′ (32)

= 1

r

∫ r

0
Bi(r

′)Bj (r
′)dr′ +

∫ ∞

r

1

r′ Bi(r
′)Bj (r

′)dr′, (33)

and one gets three cases depending on whether or not r is
inside the element where i and j reside. Let the element begin
at rb and end at re. Now,

Vi j (r) =

⎧⎪⎪⎨
⎪⎪⎩

r−1
∫ re

rb
Bi(r′)Bj (r′)dr′, r > re,

r−1
∫ r

rb
Bi(r′)Bj (r′)dr′ + ∫ re

r r′−1Bi(r′)Bj (r′)dr′, rb < r < re,∫ re

rb
r′−1Bi(r′)Bj (r′)dr′, r < rb.

(34)

Like the two-electron integrals discussed above, the in-
element potential rb < r < re has to be evaluated by slices at
every radial quadrature point (r0, r1, . . . , rn−1),∫ rk−1

rb

Bi(r
′)Bj (r

′)dr′ =
∫ r0

rb

Bi(r
′)Bj (r

′)dr′

+
k−1∑
l=1

∫ rl

rl−1

Bi(r
′)Bj (r

′)dr′, (35)

∫ re

r
r′−1Bi(r

′)Bj (r
′)dr′ =

∫ re

rn−1

r′−1Bi(r
′)Bj (r

′)dr′

+
n−1∑
l=k

∫ rl

rl−1

r′−1Bi(r
′)Bj (r

′)dr′.

(36)

2. Exchange-correlation potential
The functional derivative satisfies

δE = E [n + δn] − E [n] =
∫

δE

δn
δnd3r, (37)

and so

δE =
∫ (

δE

δn
δn + δE

δ∇n
δ∇n

)
d3r. (38)

Integrating by parts, one gets∫
δE

δ∇n
δ∇nd3r =

[
δE

δ∇n
δnd3r −

∫
∇ δE

δ∇n
δnd3r

]
(39)

= −
∫

∇ δE

δ∇n
δnd3r, (40)

from which one can identify

v(r) = δE

δn
− ∇ δE

δ∇n
. (41)

Expressing the functional in terms of

γ σσ ′ = ∇nσ · ∇nσ ′
, (42)

one has
δ

δ∇n
= δγ

δ∇n

δ

δγ
= 2∇n

∂

∂γ
, (43)

and so,

v(r) = δE

δn
− 2∇ ·

(
δE

δγ
∇n

)
(44)

or, for an open-shell system,

vσ (r) = δE

δnσ
− ∇ ·

(
2

δE

δγ σσ
∇nσ + δE

δγ σσ ′ ∇nσ ′
)

, (45)

where σ �= σ ′.
To guarantee accuracy, the gradient terms have to be evalu-

ated analytically. Fortunately, there is only radial dependence,
so the gradient

∇ f =
(

∂ f

∂r
, 0, 0

)
(46)

can be replaced by a radial derivative, and the divergence with

∇ · A =
[

1

r2

∂

∂r
(r2Ar ), 0, 0

]
=

(
∂

∂r
Ar + 2Ar

r
, 0, 0

)
. (47)
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TABLE I. Total energies of neutral atoms for calculations with the local spin density exchange functional and the Vosko-Wilk-Nusair
correlation functional (VWN), and a Perdew-Burke-Ernzerhof exchange-correlation functional based on the VWN parametrization for the
correlation energy of the homogeneous electron gas (PBE). The differences �E = E (present work) − E [83] are calculated relative to the
fully numerical values from [83] and are reported in micro-Hartree.

Z E (VWN) �E (VWN) E (PBE) �E (PBE) Z E (VWN) �E (VWN) E (PBE) �E (PBE)

1 −0.478671 0 −0.499963 −0 44 −4439.044607 1 −4443.255631 −6
2 −2.834836 0 −2.893287 −1 45 −4683.360538 1 −4687.685035 −6
3 −7.343957 0 −7.462726 −0 46 −4935.368406 0 −4939.811859 −5
4 −14.447209 −0 −14.630525 −0 47 −5195.037351 1 −5199.600560 −6
5 −24.353614 0 −24.606283 −0 48 −5462.390982 1 −5467.070748 −5
6 −37.470031 0 −37.795116 −0 49 −5737.313809 −0 −5742.114862 −6
7 −54.136799 0 −54.537743 −0 50 −6019.972345 0 −6024.895821 −6
8 −74.527410 0 −75.003219 −1 51 −6310.419326 1 −6315.467009 −6
9 −99.114192 0 −99.668342 −1 52 −6608.650476 0 −6613.811930 −6
10 −128.233481 −0 −128.869661 −1 53 −6914.777857 1 −6920.056261 −6
11 −161.447625 −0 −162.176267 −1 54 −7228.856106 1 −7234.254478 −7
12 −199.139406 −0 −199.958820 −1 55 −7550.561866 0 −7556.083016 −7
13 −241.321156 −0 −242.236076 −1 56 −7880.111578 −0 −7885.752916 −7
14 −288.222945 0 −289.236535 −1 57 −8217.648931 91 −8223.406822 220
15 −340.005794 −0 −341.120757 −2 58 −8563.489711 880 −8569.364450 663
16 −396.743948 0 −397.951200 −1 59 −8917.715777 6966 −8923.707847 6539
17 −458.671463 −0 −459.976078 −2 60 −9280.405670 16518 −9286.515623 16052
18 −525.946195 0 −527.352025 −2 61 −9651.650420 13676 −9657.878495 13601
19 −598.206032 −0 −599.716752 −2 62 −10031.516930 6437 −10037.864135 6383
20 −675.742283 0 −677.355243 −2 63 −10420.023146 1 −10426.490411 −8
21 −758.685248 0 −760.397795 −3 64 −10817.148260 858 −10823.727509 285
22 −847.314902 −0 −849.129808 −3 65 −11223.108037 4860 −11229.800083 3513
23 −941.786662 −0 −943.704413 −2 66 −11637.977781 11030 −11644.783485 9215
24 −1042.218348 −0 −1044.239902 −3 67 −12061.832318 18521 −12068.752563 16445
25 −1148.644093 0 −1150.765417 −3 68 −12494.746152 26769 −12501.781831 24564
26 −1261.223291 6017 −1263.441835 4291 69 −12936.809752 19185 −12943.957962 20751
27 −1380.193787 716 −1382.508399 831 70 −13388.048594 1 −13395.317842 −9
28 −1505.672905 1 −1508.087914 −4 71 −13848.234767 1 −13855.623680 −9
29 −1637.793358 0 −1640.310279 −4 72 −14317.517965 2 −14325.032671 −9
30 −1776.573850 0 −1779.194575 −4 73 −14795.971453 1 −14803.612704 −9
31 −1921.851924 −0 −1924.582672 −3 74 −15283.610347 2 −15291.380462 −9
32 −2073.829860 0 −2076.672928 −4 75 −15780.381133 2 −15788.268506 −8
33 −2232.587154 0 −2235.545023 −4 76 −16286.434007 2 −16294.440422 −9
34 −2398.134930 0 −2401.196896 −4 77 −16801.850893 2 −16809.976281 −8
35 −2570.626651 −0 −2573.796934 −4 78 −17326.660985 3 −17334.912620 −10
36 −2750.147940 1 −2753.430126 −4 79 −17860.796573 2 −17869.175326 −10
37 −2936.342160 0 −2939.739646 −5 80 −18404.274220 1 −18412.777007 −10
38 −3129.453161 1 −3132.963153 −5 81 −18956.962102 1 −18965.593468 −10
39 −3329.525142 0 −3333.148098 −5 82 −19519.010773 2 −19527.771776 −10
40 −3536.771074 −0 −3540.515940 −5 83 −20090.453943 1 −20099.346370 −9
41 −3751.295618 0 −3755.160742 −6 84 −20671.273855 2 −20680.287630 −9
42 −3973.162595 −0 −3977.149787 −5 85 −21261.559507 2 −21270.697436 −10
43 −4202.348934 1 −4206.446961 −5 86 −21861.346869 3 −21870.611766 −9

Now,

∂r

(
δE

δγ σσ ′ ∂rnσ ′
)

=
(

∂r
δE

δγ σσ ′

)
· ∂rnσ ′ + δE

δγ σσ ′ ∂
2
r nσ ′

, (48)

where

∂r

(
δE

δγ σσ ′

)
= ∂nτ

∂r

(
∂

∂nτ

δE

δγ σσ ′

)
+ ∂γ ττ ′

∂r

(
∂

∂γ ττ ′
δE

δγ σσ ′

)
= gτ δ2E

δnτ δγ σσ ′ + (lτ gτ ′ + gτ lτ ′
)

δ2E

δγ ττ ′
δγ σσ ′ , (49)

where we have defined gτ = ∂rnτ and lτ = ∂2
r nτ , and the extra 2Ar/r term from the divergence, given by Eq. (47), yielding

2

r

(
2

δE

δγ σσ
gσ + δE

δγ σσ ′ g
σ ′

)
. (50)
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TABLE II. Total energies of atomic cations for calculations with the local spin density exchange functional and the Vosko-Wilk-Nusair
correlation functional (VWN), and a Perdew-Burke-Ernzerhof exchange-correlation functional based on the VWN parametrization for the
correlation energy of the homogeneous electron gas (PBE). The differences �E = E (present work) −E [83] are calculated relative to the
fully numerical values from [83] and are reported in micro-Hartree.

Z E (VWN) �E (VWN) E (PBE) �E (PBE) Z E (VWN) �E (VWN) E (PBE) �E (PBE)

1 0.000000 0 0.000000 0 44 −4438.767375 1 −4442.987586 −6
2 −1.941703 0 −1.993741 −1 45 −4683.055688 −0 −4687.391656 −6
3 −7.142818 −0 −7.257274 −0 46 −4935.023835 −0 −4939.477807 −6
4 −14.115512 −0 −14.299957 −0 47 −5194.755725 0 −5199.329663 −6
5 −24.038275 −0 −24.294185 −0 48 −5462.065582 1 −5466.758188 −6
6 −37.037413 0 −37.365761 −1 49 −5737.101461 1 −5741.909394 −6
7 −53.585407 −0 −53.989486 −1 50 −6019.697098 0 −6024.624904 −6
8 −74.016721 −0 −74.500466 −1 51 −6310.085269 0 −6315.135445 −6
9 −98.450427 0 −99.012379 −1 52 −6608.317272 0 −6613.492318 −6
10 −127.418114 −0 −128.061506 −1 53 −6914.378893 1 −6919.666895 −6
11 −161.250340 0 −161.979238 −2 54 −7228.394173 0 −7233.799075 −7
12 −198.855669 0 −199.679196 −1 55 −7550.416737 0 −7555.942187 −7
13 −241.100595 0 −242.016828 −2 56 −7879.920522 984 −7885.569221 813
14 −287.918773 −0 −288.932217 −1 57a −8217.455429 1545 −8223.221428 2463
15 −339.618451 −0 −340.732787 −2 58 −8563.294377 7617 −8569.175665 6993
16 −396.356540 0 −397.574834 −1 59 −8917.518819 20242 −8923.517325 19853
17 −458.184562 0 −459.496045 −2 60 −9280.230184 12512 −9286.344462 14304
18 −525.360439 −0 −526.770845 −2 61 −9651.482296 5894 −9657.715083 7570
19 −598.039506 −0 −599.553203 −2 62 −10031.348348 2185 −10037.700262 3563
20 −675.514035 −0 −677.132344 −3 63 −10419.820399 1 −10426.294380 −8
21 −758.442642 1812 −760.161910 1575 64 −10816.942313 782 −10823.528176 −8
22 −847.065015 2847 −848.886280 2949 65 −11222.899249 11493 −11229.597850 8739
23 −941.523838 0 −943.448454 −2 66 −11637.769436 20564 −11644.578605 20710
24 −1041.944126 0 −1043.972993 −3 67 −12061.641951 12969 −12068.562285 16381
25 −1148.368924 −0 −1150.502293 −3 68 −12494.571851 7644 −12501.608100 10480
26 −1260.927746 −0 −1263.157817 −3 69 −12936.633640 4018 −12943.786682 5267
27 −1379.896444 0 −1382.218969 −3 70 −13387.827982 1 −13395.103732 −10
28 −1505.370040 0 −1507.793428 −4 71 −13847.999554 2 −13855.396289 −9
29 −1637.485140 0 −1640.010907 −4 72 −14317.267886 1533 −14324.788056 2091
30 −1776.217890 0 −1778.850041 −3 73 −14795.705335 1 −14803.354716 −8
31 −1921.629140 −0 −1924.365546 −4 74 −15283.334783 2 −15291.113757 −9
32 −2073.533337 0 −2076.379628 −4 75 −15780.100605 2 −15788.005290 −8
33 −2232.220332 0 −2235.179888 −4 76 −16286.150952 2 −16294.166211 −8
34 −2397.770127 −0 −2400.845945 −4 77 −16801.535551 3 −16809.673022 −8
35 −2570.180737 −0 −2573.360358 −4 78 −17326.305178 1 −17334.567568 −10
36 −2749.623528 1 −2752.911995 −4 79 −17860.511437 0 −17868.901185 −10
37 −2936.183045 0 −2939.584557 −5 80 −18403.949940 1 −18412.465847 −10
38 −3129.240801 −0 −3132.756842 −5 81 −18956.753577 1 −18965.392384 −10
39 −3329.295616 −0 −3332.926478 −5 82 −19518.743995 2 −19527.509994 −10
40 −3536.524561 871 −3540.277393 131 83 −20090.133387 2 −20099.028863 −9
41 −3751.036938 0 −3754.910732 −5 84 −20670.954321 2 −20679.981706 −9
42 −3972.894262 −0 −3976.890719 −5 85 −21261.180969 2 −21270.328813 −8
43 −4202.074923 0 −4206.181883 −5 86 −21860.912366 3 −21870.184141 −9

aAn incorrect value was reported in [83] for La+; see main text.

Thus, altogether, the radial exchange(-correlation) potential is given by

vσ
xc(r) = δE

δnσ
− ∇ ·

(
2

δE

δγ σσ
∇nσ + δE

δγ σσ ′ ∇nσ ′
)

= vσ
LDA(r) − 2

r

[
2

δE

δγ σσ
gσ + δE

δγ σσ ′ g
σ ′

]
(51)

− 2

[
gτ δ2E

δnτ δγ σσ
gσ + (lτ gτ ′ + gτ lτ ′

)
δ2E

δγ ττ ′
δγ σσ

gσ + δE

δγ σσ
lσ

]

−
[

gτ δ2E

δnτ δγ σσ ′ g
σ ′ + (lτ gτ ′ + gτ lτ ′

)
δ2E

δγ ττ ′
δγ σσ ′ gσ ′ + δE

δγ σσ ′ l
σ ′

]
, (52)
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where the various derivatives of the exchange-correlation
functional are available in LIBXC [93].

III. RESULTS

To demonstrate the routines, we reproduce the literature
values for the ground states of the neutral and cationic atoms,
1 � Z � 86, with the VWN functional, accurate values for
which were obtained in [83] with 10 000 radial grid points.
A Perdew-Burke-Ernzerhof (PBE) [69,70] functional variant
described in [83] is also considered, where the correlation
energy in the homogeneous electron gas limit is given by
the VWN parametrization instead of the Perdew-Wang [128]
parametrization of the original PBE correlation functional.

We found that by using a radial basis consisting of ten
15-node elements and a practical infinity r∞ = 40a0, the
energy has converged beyond micro-Hartree accuracy, even
though this basis contains just 139 radial basis functions—
almost two orders of magnitude fewer degrees of freedom than
used in [83]. These results, with differences to the reference
data from [83], are shown in Table I for neutral atoms and
Table II for their cations.

The agreement, for the most part, is excellent: large pos-
itive differences that indicate that the value of [83] is lower
are seen for the species for which the calculations in [83]
transferred fractional charge across shells. Otherwise, the
differences become noticeable for heavier atoms, nearing
−10 μEh when Z → 86, indicating that the data in [83] are not
fully converged to the basis-set limit. In our VWN calculation
on the La+ cation, it was discovered that the energy for the
4 f 0.945

0 5d0.575
0 6s0.480

0 state reported in [83] was incorrect; the
correct energy is −8217.456974 [129].

Next, we demonstrate that the erfc range-separation
scheme works by reproducing the literature values for the
total energies of the spherically symmetric atoms on the first
two rows using the long-range corrected BLYP functional
[15,130,131]. In [14], we investigated the accuracy of the
aug-pc-∞ Gaussian basis set that was used in [15]. The study
was restricted to nS states to avoid symmetry-breaking effects,
which were still observed for H−, He, Li−, and Na−, as was
discussed in Sec. I. Reproducing symmetry-preserving data
with ERKALE [132], we found that the truncation error of the
aug-pc-∞ basis set is less than 1 μEh for light atoms and tens
of μEh for heavier atoms in Hartree-Fock and BHHLYP [133]
calculations.

Because the screening is evaluated analytically in
Gaussian-basis calculations [119] and the accuracy of the aug-
pc-∞ basis set has been established [14], the values reported
in [15] offer an ideal reference for the present work. The com-
parison of results obtained in the present work with Eqs. (11)
to (16) and a numerical basis set with five 15-node radial ele-
ments and a practical infinity r∞ = 40a0 is shown in Table III,
demonstrating excellent agreement between the fully numer-
ical and Gaussian-basis calculations. The values are in full
agreement after rounding to the same accuracy for the light
atoms, while the fully numerical values are slightly below
the Gaussian-basis values for the heavier atoms, as expected
based on the basis-set truncation errors observed in [14].

Finally, the spin-restricted ground states for all atoms
in the periodic table at HF and HFS levels of theory are

TABLE III. Comparison of the total energies of spherically sym-
metric atoms with the LC-BLYP functional with the range separa-
tion constant ω = 0.3 reproduced with finite-element calculations
(present work) and a Gaussian basis-set calculation [15].

Atom Finite element Gaussian basis

H− −0.519949 −0.51995

He −2.866811 −2.86681

Li− −7.435511 −7.43551

Be −14.584723 −14.58472

N −54.482223 −54.48222

F− −99.766050 −99.76604

Ne −128.816627 −128.81661

Na− −162.136564 −162.13655

Mg −199.907036 −199.90702

P −341.069932 −341.06992

Cl− −460.080588 −460.08057

Ar −527.321257 −527.32124

shown in Tables IV and V, respectively; these calculations
also used ten 15-node radial elements. The data reveal that
in some cases, a lower-lying configuration has been seen
in the brute-force search, but that it failed to converge. In
the HF calculations, the 6s24 f 25d1 state of Pr converges
without problems; however, the 6s24 f 3 configuration has a
lower energy, but its wave function failed to converge. Similar
issues are observed in the HFS calculations for Cf, Es, and
Fm, where the 5 f n−17s1 state converges without problems,
but a lower energy is observed for a 5 f n configuration, the
wave function of which fails to converge.

The HF results can be compared to the high-accuracy
data for multiconfigurational HF of Saito [134]. Because
the present calculations are spin restricted with fractional
occupations, the energies are higher than those reported in
[134]. However, the agreement for the noble gases is perfect,
underlining the high accuracy of the computational approach
used in the present work, which was outlined in [14], even
though only 139 radial basis functions were employed.

IV. SUMMARY AND DISCUSSION

We have described efficient implementations of range-
separated functionals as well as fractional occupations for
atomic electronic structure calculations with HELFEM, and
demonstrated that beyond micro-Hartree accuracy can be
achieved with just 139 numerical radial basis functions. We
have tested the program by reproducing local density approxi-
mation (LDA) and generalized gradient approximation (GGA)
total energies for 1 � Z � 86 at the basis-set limit, and shown
that the literature values deviate from the complete basis-set
limit by up to 10 μEh. The approaches developed in the
present work could be straightforwardly extended to fractional
occupations per shell in future work, requiring the addition of
a logic to formulate the fractional occupation numbers.

The capabilities added to HELFEM in the present work
allow for self-consistent benchmarking of density function-
als at the basis-set limit, which is useful for development
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TABLE IV. Nonrelativistic spin-restricted spherical HF configurations for all elements in the periodic table. Entries in italics indicate that
a lower-lying configuration was identified but it failed to converge.

H 1s1 −0.357710 Nb [Kr]5s24d3 −3753.033166 Tl [Xe]4 f 145d106s26p1 −18961.740923

He 1s2 −2.861680 Mo [Kr]4d6 −3974.815043 Pb [Xe]4 f 145d106s26p2 −19523.831389

Li [He]2s1 −7.378133 Tc [Kr]4d7 −4204.141902 Bi [Xe]4 f 145d106s26p3 −20095.328128

Be [He]2s2 −14.573023 Ru [Kr]4d8 −4441.038680 Po [Xe]4 f 145d106s26p4 −20676.283998

B [He]2s22p1 −24.384693 Rh [Kr]4d9 −4685.600291 At [Xe]4 f 145d106s26p5 −21266.749081

C [He]2s22p2 −37.344157 Pd [Kr]4d10 −4937.921024 Rn [Xe]4 f 145d106s26p6 −21866.772241

N [He]2s22p3 −53.852155 Ag [Kr]4d105s1 −5197.639939 Fr [Rn]7s1 −22475.826522

O [He]2s22p4 −74.297532 Cd [Kr]4d105s2 −5465.133143 Ra [Rn]7s2 −23094.303666

F [He]2s22p5 −99.067145 In [Kr]4d105s25p1 −5740.082317 Ac [Rn]7s26d1 −23722.073196

Ne [He]2s22p6 −128.547098 Sn [Kr]4d105s25p2 −6022.746221 Th [Rn]7s26d2 −24359.362900

Na [Ne]3s1 −161.808533 Sb [Kr]4d105s25p3 −6313.211503 Pa [Rn]7s25 f 3 −25006.406325

Mg [Ne]3s2 −199.614636 Te [Kr]4d105s25p4 −6611.551696 U [Rn]7s25 f 4 −25663.398242

Al [Ne]3s23p1 −241.782323 I [Kr]4d105s25p5 −6917.837495 Np [Rn]7s25 f 5 −26330.321976

Si [Ne]3s23p2 −288.637472 Xe [Kr]4d105s25p6 −7232.138364 Pu [Rn]5 f 77s1 −27007.271797

P [Ne]3s23p3 −340.381142 Cs [Xe]6s1 −7553.899845 Am [Rn]5 f 9 −27694.356363

S [Ne]3s23p4 −397.202080 Ba [Xe]6s2 −7883.543827 Cm [Rn]5 f 10 −28391.573019

Cl [Ne]3s23p5 −459.286063 La [Xe]6s25d1 −8220.935691 Bk [Rn]5 f 11 −29098.977559

Ar [Ne]3s23p6 −526.817513 Ce [Xe]6s25d2 −8566.342481 Cf [Rn]5 f 12 −29816.624759

K [Ar]4s1 −599.124244 Pr [Xe]6s24 f 25d1 −8920.094872 Es [Rn]5 f 13 −30544.570349

Ca [Ar]4s2 −676.758186 Nd [Xe]6s24 f 4 −9282.434373 Fm [Rn]5 f 14 −31282.870930

Sc [Ar]4s24p1 −759.556762 Pm [Xe]6s24 f 5 −9653.359914 Md [Rn]5 f 147s1 −32031.135295

Ti [Ar]4s23d2 −847.933865 Sm [Xe]6s24 f 6 −10032.949725 No [Rn]5 f 147s2 −32789.512140

V [Ar]4s23d3 −942.147322 Eu [Xe]4 f 76s2 −10421.286649 Lr [Rn]5 f 147s26d1 −33557.812903

Cr [Ar]4s23d4 −1042.342957 Gd [Xe]6s14 f 9 −10818.487373 Rf [Rn]5 f 147s26d2 −34336.316816

Mn [Ar]3d7 −1148.803487 Tb [Xe]4 f 11 −11224.646666 Db [Rn]5 f 147s26d3 −35125.088022

Fe [Ar]3d8 −1261.579698 Dy [Xe]4 f 12 −11639.819030 Sg [Rn]5 f 146d6 −35924.293864

Co [Ar]3d9 −1380.817569 Ho [Xe]4 f 13 −12064.074984 Bh [Rn]5 f 146d7 −36733.871607

Ni [Ar]3d10 −1506.669759 Er [Xe]4 f 14 −12497.495312 Hs [Rn]5 f 146d8 −37553.863992

Cu [Ar]3d104s1 −1638.899667 Tm [Xe]4 f 146s1 −12939.976389 Mt [Rn]5 f 146d9 −38384.313942

Zn [Ar]3d104s2 −1777.848116 Yb [Xe]4 f 146s2 −13391.456193 Ds [Rn]5 f 146d10 −39225.264332

Ga [Ar]3d104s24p1 −1923.166449 Lu [Xe]4 f 146s26p1 −13851.687533 Rg [Rn]5 f 146d107s1 −40076.301440

Ge [Ar]3d104s24p2 −2075.150884 Hf [Xe]4 f 146s25d2 −14320.929628 Cn [Rn]5 f 146d107s2 −40937.797856

As [Ar]3d104s24p3 −2233.924574 Ta [Xe]4 f 146s25d3 −14799.321729 Nh [Rn]5 f 146d107s27p1 −41809.456590

Se [Ar]3d104s24p4 −2399.595885 W [Xe]4 f 145d6 −15286.959470 Fl [Rn]5 f 146d107s27p2 −42691.493680

Br [Ar]3d104s24p5 −2572.270918 Re [Xe]4 f 145d7 −15783.943765 Mc [Rn]5 f 146d107s27p3 −43583.961779

Kr [Ar]3d104s24p6 −2752.054977 Os [Xe]4 f 145d8 −16290.259414 Lv [Rn]5 f 146d107s27p4 −44486.902550

Rb [Kr]5s1 −2938.319660 Ir [Xe]4 f 145d9 −16805.965623 Ts [Rn]5 f 146d107s27p5 −45400.354767

Sr [Kr]5s2 −3131.545686 Pt [Xe]4 f 145d10 −17331.121868 Og [Rn]5 f 146d107s27p6 −46324.355815

Y [Kr]5s25p1 −3331.559557 Au [Xe]4 f 145d106s1 −17865.342083

Zr [Kr]5s24d2 −3538.662298 Hg [Xe]4 f 145d106s2 −18408.991495

and implementation purposes. For instance, Clementi-Roetti
wave functions [135] are often used for non-self-consistent
benchmarks of density functionals, but the availability of
a program for self-consistent calculations is certain to help
future developments as numerical instabilities in a functional
may not be detected in non-self-consistent calculations.

Furthermore, we have reported the nonrelativistic spin-
restricted ground-state configurations of all atoms in the pe-
riodic table at HF and HFS levels of theory. Such knowl-
edge is useful for implementations of the superposition of
atomic densities guess [136,137], which is often implemented
based on spin-restricted fractionally occupied calculations.
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TABLE V. Nonrelativistic spin-restricted spherical HFS configurations for all elements in the periodic table. Entries in italics indicate that
a lower-lying configuration was identified but it failed to converge.

H 1s1 −0.406534 Nb [Kr]4d35s2 −3747.428127 Tl [Xe]4 f 145d106s26p1 −18948.496862

He 1s2 −2.723640 Mo [Kr]5s14d5 −3969.125868 Pb [Xe]4 f 145d106s26p2 −19510.422489

Li [He]2s1 −7.174881 Tc [Kr]4d65s1 −4198.246878 Bi [Xe]4 f 145d106s26p3 −20081.732046

Be [He]2s2 −14.223291 Ru [Kr]4d8 −4434.888516 Po [Xe]4 f 145d106s26p4 −20662.460965

B [He]2s22p1 −24.050406 Rh [Kr]4d9 −4679.115070 At [Xe]4 f 145d106s26p5 −21252.645251

C [He]2s22p2 −37.053605 Pd [Kr]4d10 −4931.010033 Rn [Xe]4 f 145d106s26p6 −21852.321426

N [He]2s22p3 −53.567903 Ag [Kr]4d105s1 −5190.567420 Fr [Rn]7s1 −22461.201212

O [He]2s22p4 −73.925425 Cd [Kr]4d105s2 −5457.821825 Ra [Rn]7s2 −23079.470637

F [He]2s22p5 −98.456607 In [Kr]4d105s25p1 −5732.640932 Ac [Rn]7s25 f 1 −23707.189388

Ne [He]2s22p6 −127.490741 Sn [Kr]4d105s25p2 −6015.182678 Th [Rn]5 f 27s2 −24344.622650

Na [Ne]3s1 −160.628228 Sb [Kr]4d105s25p3 −6305.500906 Pa [Rn]5 f 37s2 −24991.833379

Mg [Ne]3s2 −198.248792 Te [Kr]4d105s25p4 −6603.649656 U [Rn]7s15 f 5 −25648.893676

Al [Ne]3s23p1 −240.346857 I [Kr]4d105s25p5 −6909.683446 Np [Rn]7s15 f 6 −26315.863733

Si [Ne]3s23p2 −287.145287 Xe [Kr]4d105s25p6 −7223.657213 Pu [Rn]7s15 f 7 −26992.780160

P [Ne]3s23p3 −338.804261 Cs [Xe]6s1 −7545.272707 Am [Rn]5 f 87s1 −27679.697021

S [Ne]3s23p4 −395.481609 Ba [Xe]6s2 −7874.734118 Cm [Rn]5 f 97s1 −28376.667807

Cl [Ne]3s23p5 −457.333996 La [Xe]6s24 f 1 −8212.148603 Bk [Rn]5 f 107s1 −29083.745568

Ar [Ne]3s23p6 −524.517426 Ce [Xe]6s24 f 2 −8557.852692 Cf [Rn]5 f 117s1 −29800.983007

K [Ar]4s1 −596.699051 Pr [Xe]4 f 36s2 −8911.927706 Es [Rn]5 f 127s1 −30528.432552

Ca [Ar]4s2 −674.160118 Nd [Xe]4 f 46s2 −9274.451612 Fm [Rn]5 f 137s1 −31266.146407

Sc [Ar]4s23d1 −757.000629 Pm [Xe]4 f 56s2 −9645.500832 Md [Rn]5 f 147s1 −32014.176598

Ti [Ar]4s23d2 −845.497930 Sm [Xe]4 f 66s2 −10025.150892 No [Rn]5 f 147s2 −32772.269829

V [Ar]3d34s2 −939.796100 Eu [Xe]4 f 76s2 −10413.476735 Lr [Rn]5 f 147s26d1 −33540.454380

Cr [Ar]3d44s2 −1040.034946 Gd [Xe]4 f 86s2 −10810.552897 Rf [Rn]5 f 146d27s2 −34318.854809

Mn [Ar]4s13d6 −1146.366756 Tb [Xe]4 f 96s2 −11216.453617 Db [Rn]5 f 146d47s1 −35107.525943

Fe [Ar]4s13d7 −1258.917212 Dy [Xe]4 f 106s2 −11631.252911 Sg [Rn]5 f 146d6 −35906.506548

Co [Ar]4s13d8 −1377.819755 Ho [Xe]4 f 116s2 −12055.024619 Bh [Rn]5 f 146d7 −36715.824635

Ni [Ar]3d94s1 −1503.210775 Er [Xe]4 f 126s2 −12487.842443 Hs [Rn]5 f 146d8 −37535.505151

Cu [Ar]3d104s1 −1635.226377 Tm [Xe]4 f 136s2 −12929.779972 Mt [Rn]5 f 146d9 −38365.584348

Zn [Ar]3d104s2 −1773.909886 Yb [Xe]4 f 146s2 −13380.910702 Ds [Rn]5 f 146d10 −39206.098757

Ga [Ar]3d104s24p1 −1919.085911 Lu [Xe]4 f 146s25d1 −13840.976253 Rg [Rn]5 f 146d107s1 −40056.951158

Ge [Ar]3d104s24p2 −2070.946515 Hf [Xe]4 f 146s25d2 −14310.121254 Cn [Rn]5 f 146d107s2 −40918.195130

As [Ar]3d104s24p3 −2229.571620 Ta [Xe]4 f 146s25d3 −14788.392156 Nh [Rn]5 f 146d107s27p1 −41789.700671

Se [Ar]3d104s24p4 −2395.043625 W [Xe]4 f 146s15d5 −15275.846800 Fl [Rn]5 f 146d107s27p2 −42671.589032

Br [Ar]3d104s24p5 −2567.446685 Re [Xe]4 f 145d66s1 −15772.541265 Mc [Rn]5 f 146d107s27p3 −43563.886976

Kr [Ar]3d104s24p6 −2746.866101 Os [Xe]4 f 145d8 −16278.531177 Lv [Rn]5 f 146d107s27p4 −44466.621119

Rb [Kr]5s1 −2932.972209 Ir [Xe]4 f 145d9 −16793.845129 Ts [Rn]5 f 146d107s27p5 −45379.818244

Sr [Kr]5s2 −3125.998090 Pt [Xe]4 f 145d10 −17318.533845 Og [Rn]5 f 146d107s27p6 −46303.505356

Y [Kr]5s24d1 −3325.964742 Au [Xe]4 f 145d106s1 −17852.550237

Zr [Kr]5s24d2 −3533.076869 Hg [Xe]4 f 145d106s2 −18395.920112

The present approach is useful for implementations of the
SAP guess [79]. For instance, the implementation of SAP
now available in the development version of the PSI4 pro-
gram [138] is based on HFS potentials tabulated during
the present work. Instead of the 4000 point tabulation used
in [79] with unknown error, the ten-element calculations
of the present work yield 751-point tabulations that repro-

duce the sub-micro-Hartree-level accuracy of the original
calculation.

The atomic orbitals obtained from the present approach
may also be useful for initializing fully numerical molecular
electronic structure calculations via either a superposition of
atomic densities or in combination to the extended Hückel rule
developed in [79].
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