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QED calculations of the nuclear recoil effect on the bound-electron g factor
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A fully relativistic approach is applied to the evaluation of the nuclear recoil effect on the bound-electron g
factor in hydrogenlike ions to first order in the electron-to-nucleus mass ratio m/M and to all orders in αZ . The
calculations are performed in the range 1 � Z � 20 for g factors of the 1s, 2s, 2p1/2, and 2p3/2 states. The αZ
dependence of the nontrivial QED recoil contribution as a function of Z is studied.
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I. INTRODUCTION

In recent decades, considerable progress in theoretical and
experimental investigations of the bound-electron g factor
in few-electron ions has been achieved (for a review, see,
e.g., Refs. [1,2] and references therein). For instance, high-
precision measurements of the g factor in hydrogenlike ions
accompanied by elaborate quantum electrodynamics (QED)
calculations lead to the most accurate determination of the
electron mass [3–8]. On the other hand, a comparison of
experimental data and theoretical predictions provides a strin-
gent test of the magnetic sector of bound-state QED. The
g-factor investigations in lithiumlike [9–13] and boronlike
[14] ions create possibilities to study the many-electron QED
effects on the Zeeman splitting. There are also proposals on
how to employ these studies for an independent determination
of the fine-structure constant [15–17]. Moreover, the measure-
ments of the g factor of ions with nonzero nuclear spin will
make possible the precise determination of nuclear magnetic
moments [18–21].

The measurement of the isotope shift of the ground-state
g factor in Li-like calcium [11] has triggered special interest
in the relativistic calculations of the g-factor contribution due
to the nuclear recoil effect. The fully relativistic description
of this effect on the atomic g factor requires the development
of QED approaches which are beyond the usual Furry picture
formalism [22], i.e., beyond the external-field approximation
which treats the nucleus merely as a source of the classical
electromagnetic field. A fully relativistic evaluation of the
recoil contribution to the g factor of the 1s state was performed
in Ref. [23] using the QED formalism developed in Ref. [24].
In Ref. [25] the effective four-component operators to treat the
nuclear recoil effect on the atomic g factor within the lowest-
order relativistic (Breit) approximation were derived. With
the help of these operators, precise theoretical predictions for
the nuclear recoil contribution to the bound-electron g factor
in lithiumlike ions were obtained [25,26]. The possibility of
probing the fully relativistic QED recoil contribution on a
few-percent level in a specific difference of the g factors of
heavy H- and Li-like ions was discussed in Ref. [27]. Finally,
the nuclear recoil contribution to the bound-electron g factor
in B-like ions was considered in Refs. [28–32].

The present study is devoted to the high-precision QED
evaluation of the nuclear recoil effect on the bound-electron

g factor of the 1s, 2s, 2p1/2, and 2p3/2 states in H-like ions
in the range Z = 1–20. For the s states, previous calculations
of the QED recoil contribution to the g factor were extended
in order to cover all the ions within the range specified. For
particular ions which were considered previously [23,25], the
accuracy of the theoretical predictions has improved. For the
2p1/2 state, to date, this term has been evaluated for Z �
20 only [30]. The QED recoil contribution to the g factor
of the 2p3/2 state has not been considered previously. The
αZ dependence of all the obtained values is studied and
the leading orders in αZ are extracted. Such investigations
may be useful for a comparison of the numerical all-order
and analytical αZ-expansion approaches to the nuclear recoil
effect on the g factor (see, e.g., the corresponding analysis
for binding energies [33,34]). The nuclear recoil effect on
the g factor of few-electron ions comprises the one-electron
contribution evaluated in the present work and the many-
electron contributions which can be calculated within the
Breit approximation employing the corresponding effective
operators [25]. These calculations are in demand in view
of the presently implemented ARTEMIS experiment [35,36]
at GSI in Darmstadt and ALPHATRAP experiment at the
Max-Planck-Institut für Kernphysik (MPIK) in Heidelberg
[14,37]. These experiments are expected to attain an accuracy
of 10−9–10−10 and better for the g factors of low- and high-Z
few-electron ions [2]. Therefore, the proper treatment of the
nuclear recoil effect, which contributes to the bound-electron
g factor on the level of 10−8–10−5, is an urgent task.

Relativistic units (h̄ = 1 and c = 1) and Heaviside charge
units (e2 = 4πα, where e < 0) are employed throughout the
paper.

II. THEORETICAL METHODS

The fully relativistic theory of the nuclear recoil effect on
the bound-electron g factor to first order in the electron-to-
nucleus mass ratio m/M and to all orders in αZ (α is the
fine-structure constant and Z is the nuclear charge number)
was formulated in Ref. [24]. Let us briefly review the basic
results obtained therein for a hydrogenlike ion. The ion with a
spinless nucleus is assumed to be placed in the homogeneous
magnetic field H described by the classical vector potential
of the form Acl(r) = [H × r]/2. Within the zeroth-order
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approximation, the electron obeys the Dirac equation with
the spherically symmetric binding potential of the pointlike
nucleus V (r) = −αZ/r,

hD|n〉 ≡ (α · p + βm + V )|n〉 = εn|n〉, (1)

where α and β are the Dirac matrices and p is the momen-
tum operator. For simplicity, we direct the z axis along the

magnetic field H = Hez. Then the contribution to the Dirac
Hamiltonian due to the coupling with H reads −eα · Acl(r) =
μ0Hm[r × α]z, where μ0 = |e|/2m is the Bohr magneton.
According to Ref. [24], the nuclear recoil contribution to the g
factor of the state |a〉 with the Dirac energy εa and the angular
momentum projection ma is conveniently represented by the
sum of two terms �g = �gL + �gH, where

�gL = 1

ma

m

M
(〈δa|[p2 − 2p · D(0)]|a〉 − 〈a|{[r × p]z − [r × D(0)]z}|a〉), (2)

�gH = 1

ma

m

M

i

2π

∫ ∞

−∞
dω{〈δa|Bk

−(ω)G(ω + εa)Bk
+(ω)|a〉 + 〈a|Bk

−(ω)G(ω + εa)Bk
+(ω)|δa〉

+ 〈a|Bk
−(ω)G(ω + εa)([r × α]z − 〈a|[r × α]z|a〉)G(ω + εa)Bk

+(ω)|a〉}. (3)

Here |δa〉 = ∑εn �=εa
n |n〉〈n|[r × α]z|a〉(εa − εn)−1 is the wave-function correction due to the external magnetic field, G(ω) =∑

n |n〉〈n|[ω − εn(1 − i0)]−1 is the Dirac-Coulomb Green’s function, Bk
±(ω) = Dk (ω) ± [pk,V ]/(ω + i0), [A, B] = AB − BA,

Dk (ω) = −4παZαl Dlk (ω), and

Dlk (ω, r) = − 1

4π

[
exp(i

√
ω2 + i0r)

r
δlk + ∇ l∇k exp(i

√
ω2 + i0r) − 1

ω2r

]
(4)

is the transverse part of the photon propagator in the Coulomb
gauge with the branch of the square root fixed by the condition
Im(

√
ω2 + i0) > 0. The summation over the repeated indices

is implied. The zero-energy-transfer limit ω → 0 of the vector
Dk (ω) appearing in Eq. (2) has the form

D(0) = αZ

2r

[
α + (α · r)

r2
r
]
. (5)

Therefore, the vector product [r × D(0)]z in Eq. (2) can be
also written as αZ[r × α]z/2r.

The low-order contribution �gL can be derived from the
relativistic Breit equation. The operators p2 and [r × p]z ≡ lz
(lz is the orbital angular momentum) in Eq. (2) correspond
to the nonrelativistic limit whereas the terms with the vec-
tor D(0) provide the lowest-order relativistic correction. In
the meantime, the derivation of the higher-order part �gH

requires application of bound-state QED beyond the Breit
approximation. For this reason, in the following we will
refer to this part as the QED one. We should note that the
formalism developed in Ref. [24] can be easily adopted to
treat the nuclear recoil effect on the bound-electron g factors
of ions with one electron over the closed shells. To this end,
the representation in which the closed shells are regarded
as belonging to the vacuum is to be employed (see, e.g.,
Refs. [25,38]).

In the case of the pointlike nucleus which is considered
in the present study, the calculations of the low-order part
�gL can be performed analytically for an arbitrary state of
the hydrogenlike ion. The operators p2 and p · D(0) in Eq. (2)
are invariant under rotation. Therefore, only the component
of |δa〉 possessing the same angular quantum numbers as the

unperturbed wave function |a〉 contributes. This component
can be obtained by employing the generalized virial relations
for the Dirac equation [39], which result in

|δa〉κma =
(

X (r)
κma (r̂)

iY (r)
−κma (r̂)

)
, (6)

where

X (r) = κma

j( j + 1)

{[
2κ (m + εa) − m

2m2
r + καZ

m2

]
f (r)

+ κ − 2κ2

2m2
g(r)

}
, (7)

Y (r) = κma

j( j + 1)

{[
2κ (m − εa) + m

2m2
r − καZ

m2

]
g(r)

+ κ + 2κ2

2m2
f (r)

}
. (8)

Here κ is the Dirac angular quantum number of the state |a〉,
j = |κ| − 1/2 is the total angular momentum, and g and f
are the large and small radial components of the unperturbed
wave function

|a〉 =
(

g(r)
κma (r̂)

i f (r)
−κma (r̂)

)
. (9)

Applying the formulas presented in Ref. [39], one can obtain
the expression for the low-order part of the nuclear recoil
contribution to the bound-electron g factor [24] in the point-
nucleus case,

�gL = − m

M

2κ2ε2
a + κmεa − m2

2m2 j( j + 1)
. (10)
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For the n = 1 and n = 2 states, Eq. (10) leads to

�g1s
L = m

M

2

3
(1 − γ1)(1 + 2γ1), (11)

�g2s
L = m

M

1

3
[2 −

√
2(1 + γ1)][1 +

√
2(1 + γ1)], (12)

�g
2p1/2

L = m

M

1

3
[2 +

√
2(1 + γ1)][1 −

√
2(1 + γ1)], (13)

�g
2p3/2

L = m

M

2

15
(1 − γ2)(1 + 2γ2), (14)

where γ1 =
√

1 − (αZ )2 and γ2 =
√

4 − (αZ )2. The leading
orders in αZ read

�g1s
L = m

M

[
(αZ )2 − 1

12
(αZ )4 + · · ·

]
, (15)

�g2s
L = m

M

[
1

4
(αZ )2 + 11

192
(αZ )4 + · · ·

]
, (16)

�g
2p1/2

L = m

M

[
−4

3
+ 5

12
(αZ )2 + · · ·

]
, (17)

�g
2p3/2

L = m

M

[
−2

3
+ 7

30
(αZ )2 + · · ·

]
. (18)

It can be seen that for the s states (κ = −1) the nonrelativistic
contribution to �gL vanishes and the αZ expansion starts with
the term of pure relativistic [∼(αZ )2] origin. For the p states
(κ = 1 or κ = −2), there is a nonzero nonrelativistic limit of
the nuclear recoil effect on the bound-electron g factor.

The higher-order part �gH is evaluated numerically. It is
naturally divided into three contributions depending on the
number of D vectors. The term without D is referred to
as the Coulomb contribution, while the terms including one
and two D vectors are termed the one-transverse-photon (tr1)
and two-transverse-photon (tr2) contributions, respectively.
The ω integration for the simplest Coulomb contribution can
be carried out analytically by employing Cauchy’s residue
theorem

�gCoul
H = 1

ma

m

M

{∑
n<0

〈δa|[pk,V ]|n〉〈n|[pk,V ]|a〉 + 〈a|[pk,V ]|n〉〈n|[pk,V ]|δa〉
(εa − εn)2

+ 2
∑
n<0

〈a|[pk,V ]|n〉〈n|([r × α]z − 〈a|[r × α]z|a〉)|n〉〈n|[pk,V ]|a〉
(εa − εn)3

+
∑
n1<0

εn2 �=εn1∑
n2

〈a|[pk,V ]|n1〉〈n1|[r × α]z|n2〉〈n2|[pk,V ]|a〉
(εa−εn1 )2(εn1−εn2 )

+
∑
n2<0

εn1 �=εn2∑
n1

〈a|[pk,V ]|n1〉〈n1|[r × α]z|n2〉〈n2|[pk,V ]|a〉
(εa−εn2 )2(εn2−εn1 )

⎫⎬
⎭,

(19)

where the notation n < 0 implies that the corresponding sum-
mation runs over the negative-energy part of the spectrum
only, εn � −mc2. The ω integration for the �gtr1

H and �gtr2
H

terms is performed numerically using Wick’s rotation. An
example of the integration contour employed in the present
calculations is shown in Fig. 1. The branch cuts of the photon
propagator (4), the poles of the Green’s function G(ω + εa),
and the pole 1/(ω + i0) of the vector Bk (ω) are depicted as
well. The contour is chosen to avoid the singularities near
ω = 0 and go around the poles of the bound states with

C

FIG. 1. Poles and branch cuts of the integrand for the part with
|δa〉 of the one-transverse-photon contribution and the integration
contour C used for the evaluation of this correction.

εn < εa. This is done since particular care is required at low
values of the integration variable ω. As it is for the low-order
part �gL, the expression sandwiched between |a〉 and |δa〉
in Eq. (3) conserves the angular quantum numbers. For this
reason, Eqs. (6)–(8) can also be employed to calculate the
corresponding contribution to the higher-order part. Finally,
the summation over the intermediate electron states is carried
out using the finite basis sets constructed from B splines
[40,41].

Concluding this section, we note that the finite nuclear
size correction to the g factor can be taken into account by
replacing V = −αZ/r in Eq. (1) with the potential of the
extended nucleus. In the case of the nuclear recoil effect,
this replacement allows one to take into account the nuclear
size correction only partially. The similar situation takes place
in the case of the nuclear recoil effect on binding energies
[42]. The uncertainty due to this approximate treatment of the
nuclear size correction to the recoil effect was discussed, e.g.,
in Refs. [26,43].

III. RESULTS AND DISCUSSION

In this section we present our results for the nontrivial QED
part of the nuclear recoil effect on the bound-electron g factor
of the 1s, 2s, 2p1/2, and 2p3/2 states in hydrogenlike ions with
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TABLE I. Higher-order (QED) nuclear recoil contribution to the
g factor of the 1s state. The results are expressed in terms of the
function P(5|1)(αZ ) defined by Eq. (20). The individual terms of
P(5|1)(αZ ) = P(5|1)

Coul (αZ ) + P(5|1)
tr1 (αZ ) + P(5|1)

tr2 (αZ ) are shown.

Z P(5|1)
Coul (αZ ) P(5|1)

tr1 (αZ ) P(5|1)
tr2 (αZ ) P(5|1)(αZ )

1 −1.114 14 100.701 20 −80.820 02 18.767 04

2 −1.097 54 53.527 79 −36.986 89 15.443 37

3 −1.081 83 37.449 50 −22.808 37 13.559 30

4 −1.066 93 29.245 93 −15.919 60 12.259 40

5 −1.052 77 24.230 28 −11.900 49 11.277 02

6 −1.039 31 20.827 13 −9.293 87 10.493 96

7 −1.026 49 18.355 87 −7.481 93 9.847 44

8 −1.014 29 16.473 49 −6.159 02 9.300 18

9 −1.002 67 14.988 00 −5.157 11 8.828 21

10 −0.991 61 13.783 31 −4.376 46 8.415 24

11 −0.981 06 12.785 01 −3.754 25 8.049 70

12 −0.971 02 11.943 11 −3.249 02 7.723 07

13 −0.961 45 11.222 77 −2.832 40 7.428 92

14 −0.952 35 10.598 92 −2.484 31 7.162 26

15 −0.943 68 10.053 04 −2.190 20 6.919 16

16 −0.935 44 9.571 16 −1.939 26 6.696 45

17 −0.927 62 9.142 49 −1.723 32 6.491 56

18 −0.920 19 8.758 63 −1.536 08 6.302 36

19 −0.913 14 8.412 86 −1.372 63 6.127 09

20 −0.906 47 8.099 79 −1.229 07 5.964 25

Z = 1–20 evaluated for pointlike nuclei. For further consid-
eration, it is useful to introduce the dimensionless functions
P(k|n)(αZ ) defined as

�gH = m

M

(αZ )k

n3
P(k|n)(αZ ), (20)

where n is the principal quantum number and arbitrary integer
k can be chosen for the convenient representation of the
results.

The higher-order nuclear recoil contributions to the g fac-
tors of the 1s and 2s states are presented in Tables I and II,
respectively. The results are shown in terms of the function
P(5|1)(αZ ) for the 1s state and P(5|2)(αZ ) for the 2s state.
For particular ions, this contribution was considered earlier
in Refs. [11,23,25]. Our present results are in agreement with
the previous ones but are calculated to a higher accuracy. The
uncertainties are estimated by studying the convergence of the
ω integration in Eq. (3) as well as by increasing the size of
the basis employed. When the uncertainty is not specified, all
the digits presented are assumed to be correct.

In Ref. [23], the behavior of the higher-order contribution
�gH for the 1s state as a function of αZ when Z tends to
zero was studied. It was found that the total result exhibits the
(αZ )5 behavior, whereas the one-transverse-photon and two-
transverse-photon terms taken separately behave as (αZ )4.
Moreover, the individual contributions to �gtr1

H , namely, the
parts with and without |δa〉, include even the lower power of
αZ and manifest the (αZ )3 behavior. In the present work we

TABLE II. Higher-order (QED) nuclear recoil contribution to
the g factor of the 2s state. The results are expressed in terms of
the function P(5|2)(αZ ) defined by Eq. (20). The individual terms of
P(5|2)(αZ ) = P(5|2)

Coul (αZ ) + P(5|2)
tr1 (αZ ) + P(5|2)

tr2 (αZ ) are shown.

Z P(5|2)
Coul (αZ ) P(5|2)

tr1 (αZ ) P(5|2)
tr2 (αZ ) P(5|2)(αZ )

1 −1.114 17 100.968 78(1) −80.657 09 19.197 53(1)

2 −1.097 64 53.796 72 −36.823 55 15.875 53

3 −1.082 07 37.720 11 −22.644 33 13.993 71

4 −1.067 36 29.518 50 −15.754 62 12.696 53

5 −1.053 44 24.505 08 −11.734 36 11.717 28

6 −1.040 28 21.104 40 −9.126 41 10.937 72

7 −1.027 81 18.635 83 −7.312 96 10.295 05

8 −1.016 02 16.756 36 −5.988 40 9.751 95

9 −1.004 85 15.273 98 −4.984 70 9.284 43

10 −0.994 28 14.072 59 −4.202 12 8.876 19

11 −0.984 29 13.077 78 −3.577 84 8.515 65

12 −0.974 85 12.239 56 −3.070 44 8.194 27

13 −0.965 94 11.523 08 −2.651 52 7.905 62

14 −0.957 54 10.903 28 −2.301 03 7.644 71

15 −0.949 63 10.361 62 −2.004 41 7.407 58

16 −0.942 19 9.884 13 −1.750 86 7.191 09

17 −0.935 22 9.460 05 −1.532 20 6.992 64

18 −0.928 69 9.080 95 −1.342 14 6.810 12

19 −0.922 60 8.740 12 −1.175 77 6.641 74

20 −0.916 93 8.432 17 −1.029 21 6.486 03

study the QED recoil contribution to the g factors of the 1s
and 2s states for small Z . It turns out that the higher-order
part of the nuclear recoil effect �gH is rather similar for the
g factors of both s states. This fact is clearly demonstrated in
Figs. 2 and 3, where the Coulomb, one-transverse-photon, and
two-transverse-photon contributions as well as the total values
of the �gH correction are plotted for the 1s and 2s states in
terms of the functions P(4|1)(αZ ) and P(4|2)(αZ ), respectively.
One can see that for both states these functions for the �gtr1

H
and �gtr2

H terms possess nonzero limits at αZ → 0 which
cancel each other in the sum. The appearance of the curves
is almost the same. We have performed the calculations of
the higher-order contribution �gH for a series of Z including
fractional values and, using the least-squares analysis, we
fitted the results obtained to the form

P(5|1)
1s (αZ ) = A51

1s ln(αZ ) + A50
1s + αZ (· · · ), (21)

P(5|2)
2s (αZ ) = A51

2s ln(αZ ) + A50
2s + αZ (· · · ), (22)

where the function P is defined by Eq. (20). By analyzing
the dependence of the results on the number of varying
parameters in the fit and the number of fitting points, we have
found that for the 1s state A51

1s = −5.1(2) and A50
1s = −6.6(5)

and for the 2s state A51
2s = −5.1(2) and A50

2s = −6.2(5). The
coefficients obtained for the 1s state are in agreement with
those of Ref. [23] but have higher accuracy.

Since the coefficients of the logarithmic terms for the 1s
and 2s states in Eqs. (21) and (22) are the same, at least
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FIG. 2. Coulomb, one-transverse-photon, and two-transverse-
photon contributions to the higher-order nuclear recoil effect on
the g factor of the 1s state. The results are presented in terms of
the function P(4|1)(αZ ) defined by Eq. (20). Note that P(4|1)(x) =
xP(5|1)(x).

within the numerical uncertainty of the present fit, it is also
useful to consider the weighted difference η ≡ 8�g2s

H − �g1s
H

[we recall that, compared to the 1s state, for the 2s state
the additional factor 1/8 is separated in the definition of the
function P(αZ )]. In Fig. 4 the difference η is plotted together
with the individual contributions to it in terms of the function
Q(5)(αZ ) defined according to

η = m

M
(αZ )5Q(5)(αZ ), (23)

Q(5)(αZ ) = P(5|2)
2s (αZ ) − P(5|1)

1s (αZ ). (24)

The plots in Fig. 4 clearly show that the logarithmic terms
indeed cancel each other in this difference. Moreover, the
terms of order (αZ )4 vanish in the one-transverse-photon
and two-transverse-photon contributions to the difference η.
Finally, the leading terms of order (αZ )5 in the Coulomb
parts of �g1s

H and �g2s
H also cancel each other. Therefore, the

limit of Q(5)(αZ ) at αZ → 0 is finite and it is related to the
coefficients A50

1s and A50
2s in Eqs. (21) and (22) as

Q(5)(0) = A50
2s − A50

1s . (25)

The limit of the function Q(5)(αZ ) at αZ → 0 can be deter-
mined by a least-squares fitting. We obtain Q(5)(0) = 0.43 for
the total value of the weighted difference η and Q(5)

Coul(0) ≡ 0,
Q(5)

tr1 (0) = 0.27, and Q(5)
tr2 (0) = 0.16 for the Coulomb, one-

transverse-photon, and two-transverse-photon contributions,
respectively.

The QED recoil contributions to the g factors of the 2p1/2

and 2p3/2 states are given in Tables III and IV, respectively.
For illustrative purposes, the results obtained are also plotted
in Figs. 5 and 6. We note that for the p states the �gH contri-
bution possesses the (αZ )3 behavior in contrast to the (αZ )5

behavior found for the s states. This fact is apparently related

FIG. 3. Coulomb, one-transverse-photon, and two-transverse-
photon contributions to the higher-order nuclear recoil effect on
the g factor of the 2s state. The results are presented in terms of
the function P(4|2)(αZ ) defined by Eq. (20). Note that P(4|2)(x) =
xP(5|2)(x).

to the existence of the nonzero nonrelativistic limit for �g
2p j

L
in Eqs. (17) and (18) whereas the low-order contributions
�g1s

L and �g2s
L in Eqs. (15) and (16) are of a pure relativistic

origin. For these reasons, the results in Tables III and IV
and in Figs. 5 and 6 are expressed in terms of the function
P(3|2)(αZ ). From these data, one can conclude that for small Z
the higher-order part of the nuclear recoil effect for the 2p1/2

FIG. 4. Coulomb, one-transverse-photon, and two-transverse-
photon terms of the weighted difference of the higher-order nuclear
recoil contributions to the g factors of the 2s and 1s states, 8�g2s

H −
�g1s

H . The results are presented in terms of the function Q(5)(αZ )
defined by Eq. (23).
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TABLE III. Higher-order (QED) nuclear recoil contribution to
the g factor of the 2p1/2 state. The results are presented in terms of
the function P(3|2)(αZ ) defined by Eq. (20). The individual terms of
P(3|2)(αZ ) = P(3|2)

Coul (αZ ) + P(3|2)
tr1 (αZ ) + P(3|2)

tr2 (αZ ) are shown.

Z P(3|2)
Coul (αZ ) P(3|2)

tr1 (αZ ) P(3|2)
tr2 (αZ ) P(3|2)(αZ )

1 −1.78 × 10−9 0.421 036 0.003 339 0.424 375

2 −2.76 × 10−8 0.424 393 0.006 814 0.431 206

3 −1.36 × 10−7 0.427 798 0.010 393 0.438 191

4 −4.20 × 10−7 0.431 243 0.014 061 0.445 303

5 −1.00 × 10−6 0.434 721 0.017 806 0.452 526

6 −2.04 × 10−6 0.438 227 0.021 619 0.459 844

7 −3.70 × 10−6 0.441 759 0.025 493 0.467 249

8 −6.20 × 10−6 0.445 314 0.029 422 0.474 730

9 −9.76 × 10−6 0.448 889 0.033 401 0.482 280

10 −1.46 × 10−5 0.452 483 0.037 425 0.489 894

11 −2.11 × 10−5 0.456 094 0.041 491 0.497 564

12 −2.95 × 10−5 0.459 722 0.045 595 0.505 287

13 −4.00 × 10−5 0.463 364 0.049 734 0.513 057

14 −5.31 × 10−5 0.467 021 0.053 904 0.520 872

15 −6.91 × 10−5 0.470 692 0.058 104 0.528 727

16 −8.84 × 10−5 0.474 376 0.062 331 0.536 619

17 −0.000 111 0.478 074 0.066 583 0.544 546

18 −0.000 139 0.481 786 0.070 857 0.552 505

19 −0.000 170 0.485 511 0.075 153 0.560 494

20 −0.000 207 0.489 251 0.079 468 0.568 511

and 2p3/2 states is determined mainly by the one-transverse-
photon contribution. The two-transverse-photon contribution
is of the next order in αZ , while the Coulomb contribution is
almost negligible.

Evaluating the limits of the QED recoil contributions to the
g factors of the 2p1/2 and 2p3/2 states at αZ → 0, we obtain

P(3|2)
2p1/2

(0) = 0.417 74(5), P(3|2)
2p3/2

(0) = 0.208 87(3). (26)

Based on Eqs. (17), (18), and (26), we note that the ratio of
the QED recoil contributions to the g factor of the p states
coincides with the analogous ratio for the low-order parts in
the αZ → 0 limit,

lim
αZ→0

�g
2p1/2

L

�g
2p3/2

L

= lim
αZ→0

�g
2p1/2

H

�g
2p3/2

H

= 2. (27)

In the recent experiment [14], the ground-state g fac-
tor of 40Ar13+ was measured to an accuracy of 10−9. The
higher-order QED term evaluated in this paper amounts to
�gH[ 40Ar13+] = 2.1 × 10−9. This contribution, which is two
times larger than the to-date experimental uncertainty, has to
be taken into account, provided the many-electron QED and
recoil corrections are evaluated to the required accuracy [14].

In addition, the theoretical value of the isotope shift in the
atomic g factor is determined mainly by the nuclear recoil
and nuclear size effects. The measurement of the isotope dif-
ference of the bound-electron g factor in lithiumlike calcium
[11] and the corresponding theoretical calculation [25] being
in good agreement with each other pave the way for QED tests

TABLE IV. Higher-order (QED) nuclear recoil contribution to
the g factor of the 2p3/2 state. The results are presented in terms of
the function P(3|2)(αZ ) defined by Eq. (20). The individual terms of
P(3|2)(αZ ) = P(3|2)

Coul (αZ ) + P(3|2)
tr1 (αZ ) + P(3|2)

tr2 (αZ ) are shown.

Z P(3|2)
Coul (αZ ) P(3|2)

tr1 (αZ ) P(3|2)
tr2 (αZ ) P(3|2)(αZ )

1 −1.70 × 10−10 0.211 964 0.000 179 0.212 143

2 −2.57 × 10−9 0.215 070 0.000 379 0.215 449

3 −1.24 × 10−8 0.218 186 0.000 594 0.218 781

4 −3.75 × 10−8 0.221 312 0.000 820 0.222 132

5 −8.78 × 10−8 0.224 446 0.001 053 0.225 499

6 −1.75 × 10−7 0.227 588 0.001 291 0.228 879

7 −3.13 × 10−7 0.230 737 0.001 532 0.232 268

8 −5.15 × 10−7 0.233 892 0.001 773 0.235 665

9 −7.97 × 10−7 0.237 054 0.002 014 0.239 067

10 −1.18 × 10−6 0.240 223 0.002 251 0.242 472

11 −1.67 × 10−6 0.243 398 0.002 483 0.245 879

12 −2.29 × 10−6 0.246 579 0.002 710 0.249 286

13 −3.07 × 10−6 0.249 767 0.002 928 0.252 692

14 −4.01 × 10−6 0.252 962 0.003 137 0.256 094

15 −5.14 × 10−6 0.256 163 0.003 335 0.259 493

16 −6.47 × 10−6 0.259 371 0.003 521 0.262 885

17 −8.03 × 10−6 0.262 587 0.003 692 0.266 271

18 −9.84 × 10−6 0.265 809 0.003 849 0.269 649

19 −1.19 × 10−5 0.269 039 0.003 990 0.273 017

20 −1.43 × 10−5 0.272 277 0.004 112 0.276 375

beyond the Furry picture in the strong-coupling regime. In this
regard, high-precision measurements of the isotope shift of
the bound-electron g factor in boronlike ions are highly antic-
ipated since the isotope dependence of the Zeeman effect can
be evaluated to a very high accuracy, exceeding significantly
the accuracy of the g-factor calculations.

IV. CONCLUSION

To summarize, in this paper we have evaluated the nuclear
recoil effect of first order in m/M on the bound-electron g
factor of the n = 1 and n = 2 states in H-like ions in the
range Z = 1–20. The calculations are performed to all orders
in αZ within the fully relativistic approach. A numerical
analysis of the behavior of the nuclear recoil contributions
as functions of Z was conducted. As the result, accurate
theoretical predictions of the first-order (in m/M) nuclear
recoil effect on the bound-electron g factor in hydrogenlike
ions were obtained. The calculated values can be also used for
the g factor of few-electron ions. However, in the latter case
the total nuclear recoil contribution comprises additionally the
many-electron part which can be evaluated within the Breit
approximation employing the effective relativistic operators
derived in Ref. [25]. The study of the nuclear recoil effect
performed in the present work is in demand in connection
with the forthcoming experiments at the HITRAP/FAIR in
Darmstadt and at the MPIK in Heidelberg.
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FIG. 5. Coulomb, one-transverse-photon, and two-transverse-
photon contributions to the higher-order nuclear recoil effect on the
2p1/2 g factor. The results are presented in terms of the function
P(3|2)(αZ ) defined by Eq. (20).

FIG. 6. Coulomb, one-transverse-photon, and two-transverse-
photon contributions to the higher-order nuclear recoil effect on the
2p3/2 g factor. The results are presented in terms of the function
P(3|2)(αZ ) defined by Eq. (20).
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