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Comparative analysis of nonrelativistic and relativistic calculations of electric dipole
moments and polarizabilities of heteronuclear alkali-metal dimers
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We analyze the molecular electric dipole moments (PDMs) and static electric dipole polarizabilities of
heteronuclear alkali dimers in their ground states by employing coupled-cluster theory, both in the nonrelativistic
and four-component relativistic frameworks. The roles of electron correlations as well as relativistic effects are
demonstrated by studying them at different levels of theory, followed by a comprehensive treatment of error
estimates. We compare our obtained values with the previous nonrelativistic calculations, some of which include
lower-order relativistic corrections, as well as with the experimental values, wherever available. We find that
the PDMs are sensitive to relativistic effects as compared to polarizabilities. We show that consideration of
relativistic values of PDMs improves significantly the isotropic van der Waals C6 coefficients of the investigated
alkali dimers over the previously reported nonrelativistic calculations. The dependence of dipole polarizabilites
on molecular volume is also illustrated.
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I. INTRODUCTION

In recent years, there has been tremendous interest in
the field of ultracold molecules due to their wide array of
applications [1,2], including exciting possibilities such as
probing fundamental constants [3]. A notable molecular prop-
erty that plays a key role in several of these applications is
the permanent electric dipole moment (PDM) of a molecule.
Molecules with fairly large PDMs give rise to long-range and
anisotropic dipole-dipole interactions that can be controlled
by external electric fields [4]. A large PDM implies that a
sufficiently low external electric field can align species of a
molecule for realizing the dipole-dipole interactions [5]. In
fact, a knowledge of PDM would help in understanding the
dipole interaction strengths for a given density of trapped
molecules [6]. The electric dipole-dipole interactions find
their applications in the booming field of quantum phase
transitions [7]. These interactions could couple qubits, which
are described as molecular electric dipoles along or against an
external electric field, thus opening up avenues for quantum
computation with trapped polar molecules [8–10]. The PDM
plays an important role in chaining of polar molecules. It is
predicted in Ref. [11] that the interaction strengths for this
process for molecules in a one-dimensional optical lattice are
directly proportional to the square of the PDM. The static
dipole polarizability is also an important property in the field
of ultracold physics. The restoring force of a trapping laser
beam is proportional to the static dipole polarizability of the
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molecule. Hence, the higher the value of dipole polarizability,
the more the suitability of the molecule for trapping and laser
cooling. When molecules are trapped in a far-off resonance
optical trap, the static polarizability helps to predict the depth
of the trap depending on the intensity of the laser fields [6].
Moreover, polarizability plays a role in femtosecond spec-
troscopy, specifically in laser-induced impulsive alignment
of molecules [12]. Therefore, knowledge of both PDMs and
dipole polarizabilities are important for studying ultracold
molecules trapped in laser fields [13]. Accurate estimates of
both properties become very relevant for heavier molecules
for which not many previous works are available. Of late,
heteronuclear alkali dimers have been successfully produced
in large numbers in experiments (for example, see Ref. [14]
and references therein). Some of the more recent works that
realized these molecules either by Feshbach resonance or
photoassociation include Refs. [5,15–20]. The sheer number
of experiments make these molecules attractive for several ap-
plications, such as quantum information technology, quantum
simulations of condensed phase physics, studies of chemical
reactions, etc. [2]. For instance, in Ref. [21], the authors stud-
ied three-body interactions in polar molecules and undertook
LiCs for investigation due to its large PDM. In fact, one can
view the prospects of orienting and aligning alkali dimers in
terms of their PDMs and polarizabilities, respectively [22].
The importance of PDMs and polarizabilities, especially in
the context of alkali dimers, are further discussed in Ref. [23].

Only a handful of experimental values for PDMs of the
alkali dimers have been reported in literature [15,24–30].
Experimental data is more scarce for the dipole polarizabil-
ities of these molecules [24,26]. On the other hand, there
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are numerous calculations for the PDMs available by em-
ploying variants of many-body theories, from as early as the
1970s (e.g., see Ref. [31]) until very recently [22,32–35].
Polarizabilities have not been explored as much theoretically,
but a few studies have been carried out on this property
[22,34,36]. However, these calculations were performed by
using nonrelativistic methods, with some works including
lower-order relativistic corrections [22,32,34,35,37]. In heav-
ier alkali dimers, the orbitals get deformed more prominently
due to the relativistic effects. Hence, we expect significant
deviations from the nonrelativistic values for PDMs and static
dipole polarizabilities. Earlier, Lim et al. [38] investigated
static dipole polarizabilities of homonuclear alkali dimers and
found that relativistic effects become important for heavier
dimers. In their calculations, relativistic effects were mainly
included through scalar two-component Douglas-Kroll (DK)
Hamiltonian.

In our paper, we investigate the roles of relativistic effects
in PDMs and dipole polarizabilities of heteronuclear alkali
dimers, made of Li, Na, K, Rb, and Cs. For this purpose, we
perform calculations by employing a nonrelativsitic Hamil-
tonian and a four-component Dirac-Coulomb Hamiltonian
in the (relativistic) coupled-cluster [(R)CC] theory. We have
adopted the finite-field (FF) approach to estimate the first-
order and the second-order perturbed energies of the ground
states of the above heteronuclear alkali dimers by varying
an electric field. From these energies, we infer the values
of the PDMs and dipole polarizabilities. The results are first
obtained using the Hartree-Fock (HF) and Dirac-Fock (DF)
methods. Electron correlation effects are then systematically
included by employing (R)CC theory in the singles and dou-
bles approximation [(R)CCSD method], followed by (R)CC
theory in singles, doubles, and partial triples approximation
[(R)CCSD(T) method]. Our results are compared with the
previously reported nonrelativistic results as well as those
obtained from a two-component scalar relativistic DK Hamil-
tonian. We also compare our calculated values with the ex-
perimental results, wherever available. In doing so, we inves-
tigate the discrepancies seen earlier between the theoretical
and experimental results in the PDM of LiNa and attempt
to explain it. We verify the variation of the components of
polarizability with volume using our relativistic results for
polarizabilities. We present detailed estimates of possible
errors in our calculations. Finally, we discuss the extent to
which accurately evaluated PDMs using a relativistic theory
could affect the isotropic C6 coefficients of the intermolecular
van der Waals potential.

The paper is organized as follows: Section II discusses
the theory of PDMs and static dipole polarizabilities and,
after introducing the (R)CC method, we present the details
of obtaining the properties using the FF approach. Section III
presents our results and discusses them in detail. We then
delve into the trends that we observe for the above properties,
with emphasis on the differences between the relativistic and
the nonrelativistic calculations. We also list and compare our
obtained values with the available works in the literature.
We then briefly discuss the variation of the components of
polarizability with volume. This is followed by a detailed
discussion of the possible sources of error, and we quote their
estimated values. In the last subsection, we present improved

values of C6 coefficients of the alkali dimers. Finally, we
conclude in Sec. IV. Unless stated otherwise, atomic units
(a.u.) are used throughout the paper. Also, in comparing our
results with other works that do not report the results in a.u.,
we used conversion factors of 1 Debye = 0.3934 a.u. and
1 Å3 = 6.7483 a.u.3.

II. THEORY AND METHODOLOGY

In the presence of a weak, static, and homogeneous electric
field of strength E , the ground-state energy (E0) of a molecule
can be expressed as

E0 = E (0)
0 + EE (1)

0 + E2E (2)
0 + · · ·, (1)

where E (0)
0 , E (1)

0 , E (2)
0 , etc. are the zeroth-order, first-order,

second-order, etc. contributions to the total energy, respec-
tively. In traditional form, it can be written as

E0 = E (0)
0 − μiEi − 1

2αi jEiE j + · · ·, (2)

where the indices i and j run from 1 to 3, while μi and
αi j are the components of the vector PDM (μ) and rank-two
dipole polarizability tensor (α), respectively. Now, invoking
the Taylor series expansion, it yields

E0 = E (0)
0 + ∂E0

∂Ei

∣∣∣∣
Ei=0

Ei + 1

2!

∂2E0

∂Ei∂E j

∣∣∣∣
Ei=0,

E j =0

EiE j + · · · . (3)

Comparing Eqs. (2) and (3), we get

μi = −∂E0

∂Ei

∣∣∣∣
Ei=0

(4)

and

αi j = − ∂2E0

∂Ei∂E j

∣∣∣∣
Ei=0,

E j =0

. (5)

Using these components, the average dipole polarizability (ᾱ)
of a polar molecule is defined as

ᾱ = 1
3 (αxx + αyy + αzz ) = 1

3 (αzz + 2αxx ). (6)

Here, the quantization axis is assumed along the bond length
and is in the z direction. Therefore, it follows that αxx = αyy,
leading to the last part of the above equation. It is common
to denote αzz as α‖, and αxx and αyy as α⊥, for such diatomic
systems. Hence,

ᾱ = 1
3 (α‖ + 2α⊥). (7)

We will use this notation hereafter. Further, one defines
polarizability anisotropy as the difference between the parallel
and perpendicular components of the polarizability tensor, and
is given by

�α = α‖ − α⊥.

To evaluate the energy, we need to take recourse to a quan-
tum many-body theory. Among the various approximation
methods, a very efficient one is the (R)CC method, due to
its advantages over other existing ones [42,43]. The (R)CC
method takes into account the electron correlation effects in
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terms of virtual excitations. The (R)CC wave function, |�〉, is
given by

|�〉 = eT |�0〉, (8)

where |�0〉 is the HF or DF wave function in the nonrel-
ativistic or relativistic calculations respectively, while T is
known as the excitation operator, which takes electrons from
occupied orbitals to virtual ones in an N-electron system. It is
given in second quantized form as

T = T1 + T2 + T3 + · · · + TN . (9)

Here, Ti is the ith excitation operator. In the (R)CCSD approx-
imation, the single and double excitation operators are given
by

T1 =
∑
i,a

ta
i a†i (10)

and T2 = 1

4

∑
i, j,a,b

tab
i j a†b† ji, (11)

respectively. Here, a† and i are the creation and annihilation
operators corresponding to an electron from a virtual orbital
(particle) and an occupied orbital (hole), respectively, and t a

i
is the amplitude of a single excitation for a given i and a.
For a double excitation, the corresponding amplitude is given
by t ab

i j .
The amplitudes of the (R)CC excitation operators are

obtained by using the DIRAC16 program [44]. The one- and
two-body integrals are acquired by considering the electronic
part of the nonrelativistic molecular Hamiltonian, given by

H =
∑

i

[
p2

i

2
+ Vnuc(ri )

]
+ 1

2

∑
i, j

1

ri j
, (12)

and the four-component Dirac-Coulomb (DC) Hamiltonian,
given by

H =
∑

i

�+
i [cαi · pi + βic

2 + Vnuc(ri )]�
+
i

+ 1

2

∑
i, j

�+
i �+

j

1

ri j
�+

i �+
j (13)

for the relativistic calculations. In the above expressions, p
is the momentum operator. Vnuc(r) is the nuclear potential,
given by ZA

|�ri− �RA| for a point nucleus, with ZA denoting the

atomic number of the Ath nucleus and �ri and �RA the position
vectors of the ith electron and Ath nucleus with respect to the
origin, respectively. In our paper, we use a Gaussian charge
distribution for the nucleus [45]. The term 1

ri j
= 1

|�ri−�r j | is the
two-body Coulomb interaction operator between the electrons
located at ri and r j . Also, c is the speed of light, α and β are the
four-component Dirac operators, and �+ is the operator that
projects the relativistic Hamiltonian onto the positive energies
of the Dirac sea [46,47]. We chose the same bond lengths as
in Refs. [22,34] for the alkali dimers, and they are 5.4518 a.u.
for LiNa, 6.268 a.u. for LiK, 6.5 a.u. for LiRb, 6.93 a.u. for
LiCs, 6.61 a.u. for NaK, 6.88 a.u. for NaRb, 7.27 a.u. for
NaCs, 7.688 a.u. for KRb, 8.095 a.u. for KCs, and 8.366 a.u.
for RbCs. We used Dyall’s triple zeta (TZ) basis sets [48] for
heavier nuclei (K, Rb, and Cs) and for lighter elements (Li and

Na), we opted for augmented correlation-consistent polarized
core valance TZ (aug-cc-pCVTZ) basis functions [49].

After obtaining the (R)CC amplitudes, the energy (�E ) is
calculated by

�E = 〈�0|H
(
1 + T1 + T2 + 1

2 T 2
1

)|�0〉C, (14)

where the subscript C means that each term in the resulting
expansion is fully contracted [50]. We chose an external
electric field perturbation, E , with a strength of 0.0001 a.u.,
for all our FF calculations. For heavier molecules, we cut
off electron excitations to high-lying virtuals to reduce the
computational cost, as their contributions are negligible. For
NaCs, a cutoff of 2000 a.u. was imposed, while for the KRb,
KCs, and RbCs molecules, we cut off all the orbitals possess-
ing energies above 1000 a.u.. We used a three-point central
difference formula for our FF calculations of PDMs and static
dipole polarizabilities. We have also systematically tested our
numerical procedures by computing these properties using a
five-point central difference scheme.

III. RESULTS AND DISCUSSION

In this section, we examine our results for the PDMs and
then polarizabilities, followed by error analysis. We discuss
in detail the trends observed for the PDMs, based on Table I.
We then proceed to compare our results with previous works.
Figure 1 presents our accurately calculated relativistic μ val-
ues for LiNa, obtained at the complete basis set (CBS) limit,
and its excellent agreement with experiment. In Tables II and
III, we present our results for α‖ and α⊥. This is followed by
discussions on the average polarizabilities and anisotropies,
with the corresponding data presented in Tables IV and V, re-
spectively. Table VII, and the text accompanying it, illustrates
the importance of relativistic calculations for the isotropic van
der Waals C6 coefficients in molecule-molecule interactions,
while Fig. 2 shows the linear variation of the components of
polarizabilities with volume. We then present detailed error
estimates, one of which is shown explicitly in Table VI. We
add that the Supplemental Material [51] that accompanies this
paper presents the data discussed in Table I through Table V
as figures, so as to enable the reader to visualize the observed
trends more clearly.

Below, we discuss our results on PDMs and polarizabilities
of the considered molecules along with their trends that we
observe from our calculations. We then proceed to compare
our values with the available ones from literature, for each
property. While reporting the trends, we do so within a family
(for example, Li family refers to LiA; A = Na, K, Rb, and Cs)
and between them, rather than look for trends by arranging the
molecules in the increasing order of the number of electrons.
This is because two molecules that are next to each other
in the number of electrons could be very different, as one
may possess a combination of light-heavy nuclei and other
moderate-moderate nuclei. We will see in the subsequent
paragraphs that ordering molecules in this manner, i.e., by
family, provides better insights in trends. A useful quantity to
define for the following discussions is the percentage fraction
change, F , given by the magnitude of ( Rel−NR

Rel × 100) for a
property; with Rel and NR being the respective relativistic
and nonrelativistic values from a given approach. Basically,
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TABLE I. The PDM (μ) values (in a.u.) of the investigated alkali dimers. We compare these values from various calculations and available
experimental results. Our results from both the nonrelativistic and the relativistic methods are given separately. The errors are quoted within
the parentheses.

Method LiNa LiK LiRb LiCs NaK NaRb NaCs KRb KCs RbCs

PDM results

This paper

HF 0.26 1.65 2.09 2.92 1.41 1.88 2.75 0.50 1.46 0.98
CCSD 0.25 1.49 1.88 2.70 1.19 1.57 2.39 0.42 1.28 0.87
CCSD(T) 0.23 1.39 1.75 2.54 1.09 1.43 2.21 0.36 1.14 0.77

DF 0.25 1.62 1.96 2.61 1.39 1.75 2.42 0.37 1.10 0.73
RCCSD 0.24 1.45 1.72 2.33 1.16 1.43 2.02 0.28 0.90 0.61
RCCSD(T) 0.22 1.36 1.59 2.16 1.07 1.29 1.83 0.24 0.78 0.53
RCCSD(T): QZ 0.197
RCCSD(T): CBS 0.178

Previous calculations
CCSD(T) [36] 0.17 1.36 1.71 1.12 1.43 0.43
CI [39] 0.19
CI [32]: Basis A 0.22 1.40 1.64 2.17 1.09 1.30 1.82 0.24 0.75 0.49
CI [32]: Basis B 0.22 1.39 1.63 2.17 1.08 1.30 1.83 0.23 0.76 0.50
CI [32]: Basis C 2.15 1.80 0.72 0.47
CI [37] 0.23
CCSD(T) [34] 0.19 1.34 1.57 2.12 1.07 1.30 1.82 0.24 0.78 0.52
CCSDT [35] 0.21 1.34 1.60 2.11 1.05 1.29 1.78 0.26 0.75 0.48

Experiment
Ref. [27] 0.18(1)
Ref. [28] 0.1822(7) 1.36(4) 1.57(4) 1.09(4) 1.22(12) 1.87(8)
Ref. [24] 0.18
Ref. [30] 0.1777(2)
Ref. [25] 1.381(2)
Ref. [26]a 0.18 1.52 1.59 2.48 1.34 1.38 2.31 0.08 1.02 0.94
Ref. [15] 0.2227(8)
Ref. [29] 0.51(4)

aThe values given for a molecule XY that is made of atoms X and Y are actually obtained by employing an empirical rule, which requires a
combination of experimental values of polarizabilities of the homonuclear X2 and Y2 molecules, and the values of PDM from the then-recent
literature.

F quantifies the corrections due to the relativistic effects in a
molecule for that property.

A. Results for PDMs

Here, we analyze the trends in the PDM (whose results
are provided in Table I), starting with the Li family. In this
paragraph, we will first examine the effects of correlations
on the PDMs including the roles of partial triples, followed
by a detailed report on relativistic effects. We will adopt
this order of discussing results for the polarizabilities too.
By comparing the three methods that we have employed, we
observe that for a given molecule in a family, the inclusion
of correlation effects steadily decreases the value of μ, in
both the nonrelativistic and relativistic cases. We observe that
partial triples in the (R)CCSD(T) methods reduce the values
of PDM as compared to those from the (R)CCSD methods.
This effect could be as large as 17%, as in the case of KRb.
We now move on to the roles of relativistic effects. When we
inspect the data for the Li family and calculate F , we observe
that the gap between the nonrelativistic and relativistic results
widens as a molecule becomes heavier, but from LiK through

FIG. 1. Demonstration of the complete basis set extrapolation for
the PDM (in a.u.) of LiNa, calculated using the CCSD(T) and the
RCCSD(T) methods. The former is shown as a dashed red line with
the calculated double, triple, and quadruple zeta results represented
by circles, while the latter is a solid blue line, with the double, triple,
and quadruple zeta results marked by triangles. The green dotted line
is the experimental value.
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TABLE II. A comparative analysis of parallel component of the dipole polarizabilities, α‖ (in a.u.), between the nonrelativistic and
relativistic calculations. We also present results from the earlier studies.

Method LiNa LiK LiRb LiCs NaK NaRb NaCs KRb KCs RbCs

This paper
HF 301.98 425.92 470.95 525.74 502.15 553.93 625.42 816.33 955.87 1084.57
CCSD 341.02 470.47 512.88 563.86 522.24 574.12 653.41 792.99 929.26 1023.90
CCSD(T) 344.78 482.64 530.04 594.94 531.01 587.90 685.49 794.12 942.39 1025.35

DF 301.63 425.52 465.38 529.48 500.20 549.97 621.75 808.95 932.45 1034.89
RCCSD 340.55 470.06 507.80 577.23 519.73 567.46 648.24 783.30 900.21 971.17
RCCSD(T) 344.29 481.94 523.26 604.40 528.01 578.50 672.12 780.48 902.22 962.85

Previous works
CCSD(T)[36] 352.26 484.53 591.83 537.16 606 842.19
CASSCF/NC [40] 532.00
CASSCF/BKPT [40] 532.00
CASPT2/NC [40] 512.90
TDGI [41] 350.6
CCSD(T) [41] 352.3
CI [22] 347.6 489.7 524.3 597.0 529.2 572.0 670.7 748.7 822.3 904.0

LiCs. LiNa displays more percentage fraction change in its
PDM with the inclusion of relativistic effects than LiK, in
all three methods [in the HF, CCSD, and CCSD(T) methods
as well as in the DF, RCCSD and RCCSD(T) methods].
We also observe that relativity decreases the PDM of LiCs
at the RCCSD(T) level of correlation by about 18%, which
is clearly not negligible. The trends in the Na family are
qualitatively similar to those in the Li family. Again, with
the exception of LiNa, we observe a monotonic increase in
F , with relativistic effects accounting for as high as about
21% for NaCs. In the K family, we observe the first deviation
from monotonic behavior as the PDMs decrease from KLi to
KRb, and then increase from KRb to KCs. We observe similar
trends with the Rb family as well. In the Cs family, we report
a monotonic decrease in the values of PDM. Also, we see that
the relativistic effects play significant roles starting from the
K family, with F being about 50% for KRb, KCs, and RbCs.
In light of the significance of relativistic effects for these
systems, our RCCSD(T) calculations for the heteronuclear
alkali dimer molecules are the most accurate, to the best of our

knowledge. Lastly, we comment on the importance of triple
excitations, at the CCSD(T) and RCCSD(T) levels. We would
like to comment on some of the recent works on the PDMs of
alkali dimers and compare their results with ours below.

1. LiNa

There are a number of calculations on the PDM of LiNa;
for example, see Refs. [31,52–56]. Most of these earlier works
were carried out by employing nonrelativistic methods and
some of the results were at odds with the experimental values.
We focus on and compare here our results with experiments,
and the more recent theoretical studies.

Dagdigian et al. [27], in 1971, reported the PDM of LiNa
to be 0.18(1) a.u. In the experiment, the measured quantity
is actually μ2/B, where B is the rotational constant of the
molecule. Then, B was obtained by using Badger’s rule,
which required the knowledge of the then-existing literature
values for the spectroscopic constants of the molecule. In
a subsequent work [28], they improved their value for B,

TABLE III. The values of perpendicular components of dipole polarizability, α⊥ (in a.u.), both from the nonrelativistic and relativistic
methods. We have also added results that are obtained in previous works for comparing with our calculations.

Method LiNa LiK LiRb LiCs NaK NaRb NaCs KRb KCs RbCs

This paper
HF 203.04 282.32 306.98 347.67 321.88 352.61 402.27 516.23 605.67 681.61
CCSD 187.67 249.42 264.58 294.69 284.17 307.90 346.94 424.52 489.13 541.42
CCSD(T) 186.98 247.27 266.80 293.37 280.06 303.41 343.51 410.83 473.24 519.76

DF 202.67 280.92 301.20 335.69 319.57 344.86 385.81 501.11 571.87 628.52
RCCSD 187.33 248.31 262.50 287.97 282.08 300.90 333.43 412.41 463.20 505.76
RCCSD(T) 186.44 246.13 260.10 286.01 277.90 296.02 328.84 398.58 446.81 484.38

Previous works
CCSD(T)[36] 188.8 246.6 268.7 268.7 303.2 411.5
CCSD(T) [41] 187.7
TDGI [41] 183.1
CI [22] 181.8 236.2 246.5 262.5 262.3 280.3 304.2 382.9 425.62 492.3
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TABLE IV. The average values of dipole polarizability, ᾱ (in a.u.), of the alkali dimers from both our and previous calculations. We have
also given experimental values for the comparison.

Method LiNa LiK LiRb LiCs NaK NaRb NaCs KRb KCs RbCs

This paper
HF 236.02 330.19 361.64 407.03 381.97 419.72 476.65 616.26 722.40 815.93
CCSD 238.79 323.10 347.35 384.41 363.53 396.64 449.10 547.34 635.84 702.25
CCSD(T) 239.58 325.72 354.55 393.90 363.71 398.24 457.50 538.59 629.62 688.29

DF 235.64 329.12 355.93 400.29 379.78 413.23 464.46 603.72 692.06 763.98
RCCSD 238.40 322.23 344.27 384.39 361.30 389.75 438.37 536.04 608.87 660.90
RCCSD(T) 239.06 324.73 347.82 392.14 361.27 390.01 443.27 525.88 598.61 643.87

Previous works
Experiment
Ref. [24] 269.93(33.74)
Ref. [26] 344.16(26.99) 600.60(42.24)
Ref. [26]a 249.69 377.91 384.65 465.63 391.40 398.15 479.13 526.37 607.35 614.10
Theory
CCSD(T) [36] 243.23 326.00 365.20 365.57 404.23 555.13
CI [22] 237.0 320.7 339.1 374.0 351.3 377.5 426.4 504.8 571.1 602.8
CCSD(T) [34] 237.7 324.2 347.2 391.9 358.1 387.1 439.3 523.5 596.0 638.6

aThese values are not strictly experimental, as they are obtained by combining measured homonuclear polarizability with an empirical rule.
The rule may not always hold, as evident from the difference in their results that they arrived at by using this approach as compared to their
experimental value, for NaK.

and obtained a PDM of 0.1822(7) a.u., with much lesser
uncertainty. A third work from the same group [24] found
the quantity to be 0.1822(8) a.u., by performing a molecular
beam resonance experiment. A fourth experimental result was
obtained in 1982, as 0.1777(2) a.u. [30], using laser-induced
fluorescence spectra. They too obtained B, and hence the
PDM. A PDM of 0.18 a.u. was reported by Tarnowsky et
al. [26]. They estimated the property from the empirically
derived formula μXY = C(ᾱX2 − ᾱY2 ), where μXY corresponds
to the PDM of a molecule made of atoms X and Y , and αX2

corresponds to the average polarizability of a homonuclear
dimer of type X2, and likewise for αY2 . The PDM, μXY , was
computed by the authors with a fitting procedure, which in
turn required their measured homonuclear polarizabilities of

Li2 and Na2 as well as their PDMs taken from the then-recent
literature.

As a survey of literature described above shows that five
different measurements give almost the same value, the ex-
perimental result of about 0.18 a.u. itself is very reliable.
However, we note that there is a strong tension in results
between experiment and theory, as seen from Table I. In
fact, for a specified method employed by a work on alkali
dimers, the agreement between experiment and theory is
the least for LiNa among other reported alkali dimers. One
such example is Ref. [56], where the authors employ the
configuration interaction (CI) method to find this issue. We
proceed now with discussion of the results obtained from
more recent calculations. The work by Urban and Sadlej

TABLE V. The nonrelativistic and relativistic values of dipole polarizability anisotropy, �α (in a.u.), reported at different levels of (R)CC
theory and other methods. A list of previous works are added to the table for comparison with our results.

Method LiNa LiK LiRb LiCs NaK NaRb NaCs KRb KCs RbCs

This paper
HF 98.94 143.60 163.97 178.07 180.27 201.05 223.15 300.10 350.20 402.96
CCSD 153.35 221.05 248.30 269.17 238.07 266.22 306.47 368.48 440.13 482.48
CCSD(T) 157.80 235.37 263.24 301.57 250.95 284.49 341.98 383.29 469.15 505.59

DF 98.96 144.60 164.18 193.79 180.63 205.11 235.94 307.84 360.58 406.37
RCCSD 153.22 221.75 245.30 289.26 237.65 266.56 314.81 370.89 437.01 465.41
RCCSD(T) 157.85 235.81 263.16 318.39 250.11 282.48 343.28 381.90 455.41 478.47

Previous works
Experiment
Ref. [24] 161.96(13.5)
Theory
CCSD(T) [36] 163.3 238.2 289.5 2579 303.1 430.9
CCSD(T) [34] 156.3 234.5 262.0 317.8 247.2 279.2 339.4 367.6 436.1 462.1
CI [22] 165.8 253.5 277.8 334.5 266.9 291.7 366.5 365.8 436.7 491.7
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TABLE VI. Demonstration of changes in α‖, α⊥, ᾱ, �α, and
μ values of NaCs molecule at different virtual energy-level cutoffs
using the RCCSD(T) method. Calculations were performed using TZ
basis functions. All the quantities are specified in a.u.

Cutoff Method α‖ α⊥ ᾱ �α μ

1000 DF 621.78 385.80 464.46 235.98 2.42
1000 RCCSD 648.26 335.48 439.74 312.78 2.02
1000 RCCSD(T) 672.15 331.56 445.09 340.59 1.82

2000 DF 621.75 385.81 464.46 235.94 2.42
2000 RCCSD 648.24 333.43 438.37 314.81 2.02
2000 RCCSD(T) 672.12 328.84 443.27 343.28 1.82

5000 DF 621.78 385.81 464.47 235.97 2.42
5000 RCCSD 648.26 333.43 438.37 314.83 2.02
5000 RCCSD(T) 672.15 328.93 443.34 343.22 1.82

[36] considered the electron correlation contribution due to
the next-to-valence electrons of the two atoms forming a
dimer and reported a PDM of 0.17 a.u.. They employed the
CCSD(T) method, and added relativistic corrections due to
mass-velocity and Darwin (MVD) terms. A subsequent work
[39] employed CI in the singles and doubles approximation
considering correlations only among ten electrons to obtain
0.19 a.u.. Aymar and Dulieu [32] had employed a full valence
CI approach with pseudopotentials (PP). The PPs included
relativistic effects via MVD terms for the heavier Rb and
Cs atoms. They took core polarization into account via an l-
dependent effective core potential (ECP) due to the sensitivity
of the PDM to this effect. They considered three different
basis sets, which we denote in the Table I as Basis A, B, and
C. They obtained 0.221 a.u. and 0.218 a.u., by using basis sets
A and B, respectively. Mabrouk and Berriche [37] obtained
0.228 a.u. using their CI approach involving the perturbation
of a multi-configuration wave function selected iteratively, in
a PP approach. Core-polarization and core-valence interac-
tions were partially considered by using l-dependent core-
polarization potentials. Zuchowski et al. [34] computed the
PDM of LiNa to be 0.19 a.u., using the CCSD(T) method,
and employed a correlation-consistent polarized core valence

FIG. 2. The values of α‖ and α⊥ (commonly denoted by X, and
given in a.u.) are plotted against volume (in a.u.). In the legend, NR
refers to CCSD(T) results while ‘el denotes the RCCSD(T) values.

TABLE VII. Improved values of isotropic C6 coefficients (in a.u.)
by combining our estimated Cind

6 and Crot
r contributions with the Cdisp

6

contributions borrowed from Ref. [34]. We have also compared these
results with the previously reported two nonrelativistic calculations.
The differences between our results with other calculations demon-
strate the importance of relativistic calculations in the determination
of C6 coefficients.

Molecule Reference C6 value

LiNa Ref. [65] 3880
Ref. [66] 3583
Ref. [34] 3709

This paper 3807
LiK Ref. [65] 524 000

Ref. [66] 570 190
Ref. [34] 411 682

This paper 434 316
LiRb Ref. [65] 1 070 000

Ref. [66] 1 252 300
Ref. [34] 884 705

This paper 929 144
LiCs Ref. [65] 3 840 000

Ref. [66] 4 585 400
Ref. [34] 3 409 406

This paper 3 664 836
NaK Ref. [66] 561 070

Ref. [34] 516 606
This paper 518 370

NaRb Ref. [66] 1 524 900
Ref. [34] 1 507 089

This paper 1 457 076
NaCs Ref. [66] 7 323 100

Ref. [34] 6 946 696
This paper 7 086 877

KRb Ref. [66] 15 972
Ref. [34] 17 720

This paper 17 542
KCs Ref. [66] 345 740

Ref. [34] 469 120
This paper 469 769

RbCs Ref. [66] 147 260
Ref. [34] 180 982

This paper 190 442

5 zeta (cc-pCV5z) basis, augmented with diffuse functions.
They also used small-core type ECPs in their calculations. We
obtain μ = 0.22 a.u., using the RCCSD(T) approach, with
aug-cc-pCVTZ basis sets. Our result is in excellent agreement
with that reported in Federov et al. (0.21 a.u.) [35]. They
employ the the CCSDT method, include scalar relativistic
effects, and use the correlation-consistent polarized core va-
lence quadruple zeta (cc-pCVQZ) basis. Below, we try to
investigate possible reasons due to which results from both
our works match well. There are three major differences be-
tween these calculations: consideration of relativistic effects,
basis functions, and the approximations in the correlation
effects due to triple excitations. We observe from Table I
that our RCCSD(T) result is less than the nonrelativistic one
by about 4.5%. Since Federov et al. perform their calcula-
tions at the scalar-relativistic level while ours uses the DC
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Hamiltonian, we check the extent to which the difference in
relativistic effects affects the final value of PDM. We perform
four-component spin-free calculations [57] and show that
spin-dependent effects are negligible. For completeness, we
have also verified that including Gaunt interaction (which
adds the spin-other orbit interaction to the DC Hamiltonian)
in our relativistic calculations does not alter the PDM, both
at the TZ and quadruple-zeta (QZ) levels of basis functions.
Therefore, the difference in relativistic effects between the
two works leaves the PDM unaltered. The results from both
our work as well as from Ref. [35] indicate that as we go to a
higher quality basis, the value of PDM decreases. Therefore,
we anticipate our PDM obtained at the TZ level of basis to be
slightly higher based on this observation. In order to further
verify this aspect, we perform RCCSD(T) calculations with
aug-ccpCVQZ basis sets, and indeed found that our PDM re-
duces to 0.197 a.u.. At this point, we verify the importance of
diffuse functions in the basis, as the authors of Ref. [35] do not
include them. However, we find that diffuse functions hardly
change the final results, while core functions (which were
employed in both our work as well as Ref. [35]) significantly
modifies the PDM. This is in agreement with the findings in
Ref. [35]. Next, we observe from our results that as we go
from DF to RCCSD(T), correlation effects seem to reduce the
value of PDM. However, a careful look shows that the drop in
the value of PDM is sharper from the RCCSD to RCCSD(T)
method. Based on the comparison of the QZ results from our
work as well as from Ref. [35], and the fact that a scalar rela-
tivistic and a fully relativistic approach gives the same value of
PDM, and inclusion of diffuse functions does not change the
PDM, we conclude that the missing triples contributions in-
crease the PDM value of LiNa by around 4.5%. This analysis
also provides an indicator of the importance of choice of basis,
scalar relativistic effects, and the importance of higher-order
excitations.

We now improve our value for the PDM of LiNa further
by using the two-point scheme by Helgaker for CBS extrap-
olation, which is known to be simple and accurate [58,59].
Figure 1 shows our relativistic results (as a solid blue line,
with the double, triple, and the quadruple zeta results shown
as triangles), and we obtain a CBS value that is very close
to experiment, at 0.178 a.u.. Our result is also in very good
agreement with the CBS value from Ref. [35], which employs
the CCSD method for this purpose. This indicates that the
contributions that could have otherwise occurred from partial
triples to the PDM of LiNa is offset by basis extrapolation.
Also, we also observe from Fig. 1 that the nonrelativistic CBS
curve (as a dashed red line, with the corresponding double,
triple, and quadruple zeta values indicated by circles) yields
a PDM of 0.189 a.u., as compared to the relativistic value of
0.178 a.u., which is different by about 6%.

2. LiX; X = K, Rb, and Cs

Our results for LiK and LiRb are in excellent agreement
with experimental results from Dagdigian et al. [28] and are
well within the error bars. However, the other experimental
result presented in Ref. [25] that is available for LiK provides
a slightly higher value. Since Ref. [25] uses an improved value
for B as compared to that used in Ref. [27], we expect the

former to be more accurate. We anticipate that calculations
with an even higher quality basis than ours could account for
this gap of about 1.5% between our work and experiment.
For the heavier LiRb and LiCs molecules, even though our
calculations and the existing theoretical works agree closely,
we expect our all-electron calculations which go beyond
the scalar relativistic effects to be an improvement over the
existing theoretical works (we did not find any experimental
result for LiCs for comparison). The most recent calculation
by Federov et al. [35] employs a higher quality 5Z basis for
the lighter Li as compared to our TZ basis. However, they
correlate only nine occupied electrons (one valence electron
from the outermost s orbital and eight from the next inner sp
shell) of K, Rb, and Cs in their work. We do not make any
such approximations and we correlate all electrons besides not
cutting off any virtuals in our RCCSD(T) calculations with a
TZ basis for the LiX molecules. The importance of relativistic
effects is especially evident from the difference between our
nonrelativistic and relativistic results for LiCs.

3. The Na family

Tarnovsky et al. [26] reported a PDM of 1.34 a.u. for
NaK using an approach that combines measurement with an
empirical rule, as discussed under Sec. III A 1. The work in
Ref. [28] found the PDM to be 1.09(4) a.u., using their B
value, which in turn was obtained from an extrapolation of
Badger’s rule. Our result is within 2% of both the experimen-
tal value as well as the most recent theoretical work [35]. The
experimental values for NaRb and NaCs were obtained too
with their respective B values computed using an extrapola-
tion of Badger’s rule [28]. Our results agree well with both
experiment and recent calculations from other groups [34,35].

4. The K and Rb families

The last three molecules that we consider, viz. KRb, KCs,
and RbCs, are made solely of relatively heavier atoms. Exper-
imental values exist for KRb and RbCs, and our PDMs differ
from the experimental results by about 8% and 4%, respec-
tively. At this point, it is worth noting that the most recent
scalar relativistic calculation on the heavy KRb system using
relativistic ECP, done in Ref. [35], differs from experiment
by about 17%. We now examine if the difference of 0.02
a.u. between our results and those from Ref. [35] is due to
relativistic effects beyond those included in the latter. We find
that in the case of KRb, we had obtained 0.24 a.u. with our
RCCSD(T) calculations, while performing four-component
spin-independent calculations gave us 0.25 a.u., which is
closer to the 0.26 a.u. obtained by Ref. [35]. Therefore, the
differences in results between our RCCSD(T) calculations and
Ref. [34] are, in part, due to spin-dependent effects such as
spin-orbit coupling, while the rest could be due to level of
relativity, that is, the use of ECP in Ref. [35] as against an
all-electron four-component calculations in the current paper.
For the heaviest system, RbCs, there is no change in the
PDM when we ignore spin-dependent effects. Therefore, we
conclude that like KRb, the difference in our RbCs results as
compared to those obtained from Ref. [35] are possibly due to
our all-electron calculations.
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B. Results for polarizabilities

We now turn to discussing parallel component results of
polarizability. The α‖ values from our calculations, as well
as those from previous works and experiments, are shown in
Table II. It can be observed from this table that the effects of
electron correlations are increasing the α‖ values from their
HF and DF values, except in the cases of KRb, KCs, and
RbCs. This is opposite to the trend that we observed for the
PDM, where we found that inclusion of correlation effects
lowered their magnitudes. We see that for KRb, KCs, and
RbCs, the inclusion of partial triples increases α‖ in the non-
relativistic calculations, while in the relativistic calculations,
we observe a nonuniform trend where it increases α‖ values
for KCs, and reduces it for KRb and RbCs. However, unlike
in the case of PDM, the contribution from partial triples to
α‖ is quite small, with NaCs differing the most between the
(R)CCSD and (R)CCSD(T) results, at about 4%. Relativistic
effects themselves do not become important for the molecules
up to KRb, with F being less than 2% throughout [at the
CCSD(T) level of theory]. However, the relativistic correc-
tions result in a slightly higher F of about 4.5% and 6.5% for
KCs and RbCs, respectively.

We now briefly discuss the previous works on the α‖ values
of alkali dimers. There are no measurements of individual α‖
and α⊥ components; experiments obtain average polarizabil-
ity and polarizability anisotropy. We could only find limited
works in literature that report calculation of α‖, and with the
exception of Ref. [34], the other works discuss the polarizabil-
ities of only one or a few alkali dimers. In Ref. [36], Urban
and Sadlej reported α‖ for LiNa, LiK, LiRb, NaK, NaRb, and
KRb, using the CCSD(T) method (along with MVD correc-
tions), with the electron correlations accounted from the va-
lence and next-to-valence shells only. The authors in Ref. [40],
on the other hand, employed a Numerov-Cooley (NC) scheme
in their seminumerical approach. They reported their results
for α‖ of LiK in this approach by using complete active space
self-consistent field (CASSCF) approach and second-order
complete active space perturbation theory (CASPT2). They
also perform CASSCF in combination with Bishop-Kirtman
perturbation theory (BKPT), besides calculating vibrational
corrections to α‖. Merawa et al. [41] calculated α‖ of LiNa
to be 350.6 a.u., by using the CCSD(T) method, and exciting
all the electrons in their calculations. They also found this
property to be 352.3 a.u., using a time-dependent gauge
invariant (TDGI) method. The most recent work by Deiglmayr
et al. [22] employed the CI approach by perturbing the multi-
configuration wave function, and had performed calculations
on all the alkali dimers. We find that our RCCSD(T) results
are in excellent agreement with their results up to NaCs (the
differences are less than 2%), after which we observe a sharp
deviation of up to 10% for KCs. We expect that the differences
are not only because of relativity but also due to correlation
effects, recalling our observation that the electron correlations
reduce this quantity from the HF or DF to the (R)CCSD(T)
methods only for these last three heavier molecules. To ver-
ify this hunch further, we performed four-component spin-
independent calculations [57] for the heavier KRb, NaCs,
KCs, and RbCs. We found that spin-dependent effects such
as spin-orbit coupling (SOC) add to only about 0.1% to both

parallel as well as perpendicular components of polarizability.
A full valence CI treatment in Ref. [22] could be superior
to our single reference treatment, but there could also have
been a difference due to their ECP versus our all-electron
calculations and their CISD against our RCCSD(T) level of
excitations. A reasonable check without expending compu-
tational resources is to compare the calculated average po-
larizabilities from both the works, which is constructed from
the parallel and perpendicular components, with experiment.
The only available experimental result is from Ref. [26] for
KCs, and we find that our result is in better agreement with
experiment (within 1%) than the result from Ref. [22] (about
5%). We do note that these differences are well within our
quoted error bars of 10%, but based on our observations
above, it is very likely that our calculations are more accurate.

Proceeding with the discussions on the results for α⊥, we
find that these values consistently decrease with the inclusion
of electron correlation effects in both the nonrelativistic and
relativistic calculations, as shown in Table III, contrary to α‖,
and similar to PDM. Relativistic effects are also found to de-
crease α⊥. Examining F values reflect that relativistic effects
become more important as a molecule in a family gets heavier,
with the exception of LiRb. Also, similar to α‖, F is the largest
for RbCs, and is about 7%. The effect of partial triples is
slightly higher for α⊥, and is about 4.5% for RbCs. In the
previous paragraph, we compared our calculated values for α‖
with those from earlier literature. All of those references also
computed α⊥ (with the exception of Ref. [40]), and therefore,
we will not discuss their methods again in this paragraph.

We see from Table IV that for the nonrelativistic as well
as the relativistic cases, the average polarizability value
decreases from mean-field to (R)CCSD(T) methods, with
the exception of LiNa. This can be understood from the fact
that for LiNa, the parallel component increases more due to
correlation than the decrease in the perpendicular component.
This is not the case for all the other molecules. In fact, the
change in perpendicular components even dominates over that
of parallel components for the heavier molecules. Relativity,
as seen by comparing the CCSD(T) and RCCSD(T) results,
further reduces ᾱ results. Again, relativistic effects do not
alter the average values of polarizabilities significantly, as
they do not do so for the individual components. Examining
the trends in ᾱ at the (R)CCSD(T) level by family, we
observe that the relativistic effects within each family become
increasingly important as the nonfamily atom (for example,
in the Li family, it could be Na, K, Rb, or Cs) becomes
heavier, with the exception of LiCs. The effect of partial
triples is seen to be unimportant for ᾱ from Table IV. Our
results also agree very well with the available experimental
values and are within the error bars of the measured values
for NaK and KCs that are reported by Tarnovsky et al. [26].
These experimental results for NaK and KCs are obtained by
combining measurements of average effective polarizabilities
with the then-available PDM values taken from Igel-Mann
et al. [56], at an average temperature of 612 K and 494 K
for NaK and KCs, respectively. When we replaced the
PDMs from Igel-Mann et al. [56] with ours, we observed
a negligible difference in ᾱ that Tarnovsky et al. obtained.
However, to estimate ᾱ for the other alkali dimers, the work
by Tarnovsky et al. combines their measured homonuclear
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dimer polarizabilities with an empirical formula, thereby
possibly introducing fairly large errors in some of their
results. Regarding temperature dependency, we do not
expect that our T = 0 K results would differ significantly
from the measurements carried out at the aforementioned
temperatures, based on the earlier mentioned work by Muller
and Meyer on homonuclear alkali dimers [60]. In these rigor-
ous studies, Muller and Meyer had shown that the dependency
of average polarizability on a wide range of temperatures
(between 0 and 1000 K) are not going to change the results
significantly, and the maximum variation is anticipated to be
about 10% from the values obtained at zero temperature.

For completeness, we also discuss the experimental results
briefly for ᾱ of LiNa from Ref. [28], where the authors have
first measured polarizability anisotropy, �α, by determining
Stark frequencies at some value of external electric field.
They have combined this information with their knowledge
of PDM (which is in turn obtained by measuring the ro-
tational constant, as discussed in the previous paragraphs),
to get ᾱ, as prescribed in Ref. [27]. At this point, it is
worthwhile to mention that all of the current theoretical values
underestimate the average polarizability when compared with
the experimental results for LiNa (we add that all of these
theoretical values are within or very close to the error bars
from experiment). This observation holds in spite of the the-
oretical results agreeing very well with their measurement for
the anisotropy. However, since only one known experimental
work exists (both for average polarizability and polarizbility
anisotropy of LiNa), more detailed calculations and further
experiments are possibly required before arriving at further
conclusions.

The trends in �α stem from those in parallel and perpen-
dicular components of polarizability, as �α is the difference
between α‖ and α⊥. For example, since relativistic effects
increase α‖ while they decrease α⊥ for LiCs, we observe that
relativity matters the most for the molecule (about 5%). Also,
partial triples in �α become more important than in ᾱ, with
NaCs and LiCs accounting for 8% and 9%, respectively. We
are not discussing here the �α results of Ref. [28] as it has
already been done in the previous paragraph.

C. Volume effects

Next, we address the dependence of the components of
polarizability on volume. This aspect has been addressed by
using models in the past, for example, see Refs. [61,62]. It
has also been discussed in Ref. [22], where the volume, V ,
is defined as 4

3πr3
e , with re denoting the equilibrium bond

length. We plot the components of polarizabilities, both from
nonrelativistic and relativistic calculations, against volume in
Fig. 2. From the figure, we see that a linear fit to our relativistic
calculations gives 0.36V + 104.26 for α‖, and 0.17V + 66.7
for α⊥. We find that the ratio of the slopes of α‖ versus V
to α⊥ versus V from our relativistic calculations agree well
with the nonrelativistic ones, and we obtain a value of about
2 for the ratio. This is in agreement with the slope obtained
by Deiglmayr et al. [22] from their calculations. The linear
polarizability-volume relationship could be viewed as an ef-
fective elliptic charge distribution for a dimer at a specified
re [22]. Although relativistic and nonrelativistic results for the

lighter systems are very close to each other, we observe that
the linear fits between the two cases deviate further as we go to
the heavier molecules, while continuing to preserve the ratio
of the slopes.

D. Error analysis

We now discuss the possible sources of uncertainties in our
calculations of PDMs and polarizabilities of the considered
alkali dimers. We assume our RCCSD(T) values are the most
accurate among other methods in literature and therefore
the uncertainties are estimated for these results. Since we
have adopted the FF approach, it is essential to choose the
perturbation parameter, E , carefully to obtain reliable results.
Our choice of E = 10−4 a.u. is consistent with those from the
previous works that had determined PDMs and polarizabilities
using the FF procedure. However, we had also verified con-
sistencies in the results by performing calculations of PDMs
as well as polarizabilities by using the following values of
E , namely, 10−3, 5 × 10−4, and 10−4 a.u. For this purpose,
and in view of minimizing the computational cost, we chose
only the Li family as a representative case, and repeated the
nonrelativistic calculations with a double-zeta (DZ) basis. We
did not find any significant differences in these calculations
due to the choice of E . We also anticipate similar trends with
the relativistic calculations and in other heavier alkali dimers.
We found that the PDM values hardly change, while the paral-
lel and perpendicular components of polarizability smoothly
change in the first decimal place for LiNa and LiK, and within
3 a.u. for LiRb and LiCs. Also, the truncation errors that could
result from numerical differentiation schemes have been taken
care of by comparing our results using three-point as well as
five-point formulas and we found that the results in both those
approaches are identical.

It is also imperative to ensure that there is negligible
uncertainty involved due to cutoff of virtual orbitals in our rel-
ativistic RCCSD(T) calculations for the heavier alkali dimers.
Therefore, we chose NaCs, a moderately heavy molecule
where relativistic effects are sufficiently important and yet
practical for multiple computations, for this purpose. The
results with different set of virtual orbitals are tabulated in
Table VI. It shows that the PDM values remain identical,
while the components of polarizability change in the second
decimal place, which are much smaller than the level of
accuracy intended to achieve in the present paper.

We also check the error due to performing calculations on
a single geometry instead of vibrational averaging. We have
estimated these uncertainties for PDMs as well as parallel
and perpendicular components of polarizabilities for the Li
family, using the CFOUR program [63,64]. We employed
the CCSD(T) method, and the same basis sets as in our
single point calculations. We find that the values of PDM
and α⊥ change by less than 1% for the Li dimers, while the
parallel components change by about 1%. We do not expect
the error due to neglecting vibrational averaging to exceed a
conservative estimate of 2% for all three properties in alkali
dimers.

We now move on to discussions on the most traditional
uncertainties due to neglected effects in our calculations. It is
beyond the scope of this paper to estimate contributions due
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to the full Breit and quantum electrodynamics interactions.
However, it is expected that these higher-order relativistic cor-
rections will not exceed 0.5% in all considered molecules. Un-
certainties could also arise because of neglecting contributions
from higher level excitations in the (R)CC theory and use of
incomplete basis functions. The percentage fraction difference
in our relativistic results from RCCSD to RCCSD(T) methods
indicate that higher-level excitations should not contribute
beyond 5% to the PDMs. A similar analysis provides us
with an error estimate of about 3% for α‖ and α⊥. We now
analyze the error due to incompleteness in basis. We had
employed a TZ basis for our relativistic calculations and
included diffuse functions, wherever available. We could not,
however, perform relativistic calculations using a QZ basis, as
they are forbiddingly expensive, even for moderately heavy
systems like KRb. Therefore, we resort to an approximation,
where we first perform extensive CBS calculations for the
alkali dimers using the CCSD(T) method. We employed the
two-point scheme by Helgaker [58,59] for CBS, which was
mentioned earlier. We then approximate the relativistic CBS
value of μ and α (commonly denoted here as O for ease in
notation) by ORel

CBS ≈ (ONR
CBS/ONR

TZ )ORel
TZ , where the subscripts

refer to the basis and the superscripts indicate whether the
property has been obtained using an nonrelativistic calculation
or a relativistic one. With this approximation, we obtain a
percentage fraction difference of less than 2% for the PDMs
of the alkali dimers, with the exceptions of NaK and NaRb,
as the PDMs for these systems do not converge from DZ
through QZ basis, hence making a CBS extrapolation not
possible. However, we do not expect the errors to be beyond
2% in these cases too. A similar exercise was also carried
out for α‖, and we found that the fraction difference was
less than 4% for all the alkali dimers, except for LiRb. We
also verified our approximate formula for ORel

CBS by explicitly
performing RCCSD(T) calculations for the PDM and α‖ of
NaCs (with aug-cc-pCVTZ for Na and Dyall’s 4Z basis for
Cs), and obtained exactly the same PDM as that from ORel

CBS,
while α‖ differed from the ORel

CBS estimate by just 0.6%. We
would expect an error percentage that is similar to that in
α‖ for the perpendicular components of polarizabilities too,
which is at most 4%. Finally, we linearly add the errors and
estimate that the uncertainties in our relativistic calculations
are about 10% for the PDMs, as well as for the parallel and
perpendicular components of polarizabilities.

E. Implications on determining C6 coefficients

We intend to discuss here an important application of our
results apart from their general demand to carry out relativistic
calculations. As known, when two heteronuclear alkali dimer
molecules interact via a long-range van der Waals interaction,
its dominant potential is given by −C6/r6 [23,34,65]. Here,
r is the intermolecular separation and C6 is known as van
der Waals coefficient. For molecules, C6 can be expressed as
[23,34,65]

C6 = Cdisp
6 + Cind

6 + Crot
6 , (15)

where the three terms on the right-hand side are known as
the dispersion (denoted by superscript disp), the induction
(denoted by superscript ind), and the rotational (denoted by

superscript rot) contributions, respectively. We estimate the
induced contribution, using the expression [34]

Cind
6 = 2μ2ᾱ (16)

by substituting our calculated PDM and ᾱ values. Similarly,
we determine the rotational contributions using the expression
given by [23,34,65]

Crot
6 = μ4

6B
. (17)

Due to the fourth-power dependence on PDM, the rotational
term dominates over the sum of the other two terms by at
least an order of magnitude in the evaluation of C6 values for
molecules with large PDMs [23]. This is indeed the case for
eight of the ten alkali dimers with the exceptions LiNa and
KRb, owing to their small PDMs and larger B value of LiNa.
This dependence on accurate calculations of C6 coefficients
become more relevant for molecules such as LiCs and KCs,
for which experimental values of PDM do not exist. For
estimating B values, we consider the 7Li, 23Na, 41K, 87Rb,
and 133Cs bosonic isotopes.

We, however, have borrowed the most accurately calcu-
lated results for the dispersion terms from Ref. [34]. This is
done keeping in mind that the dispersion contributions are
at least one order lesser than the rotational ones for most
of the alkali dimers. We tabulate all these contributions and
the final results of C6 for various heteronuclear dimers in
Table VII. It can be clearly seen from this table that use of
revised Cind

6 and Crot
6 contributions change the final results

of C6 significantly than the values reported in Ref. [34]. In
fact, the results become substantially different compared to
pure nonrelativistic calculations of Ref. [65], which are also
quoted in the above table for the comparison. We see from
the table that the isotropic C6 coefficient can vary as much as
7% for LiCs, when compared to that from Ref. [34], while it
can be about 20% for LiK and 15% for LiRb with respect to
Ref. [65], when relativistic effects are included in obtaining
the PDM and polarizabilities. We also observe that there are
significant differences between our results and those obtained
from the recent calculations in Ref. [66], and are over 25% for
LiK, LiRb, LiCs, and KCs. At this point, we would also like
to draw attention to the fact that although PDM values from
Ref. [34] are in close agreement with ours, the differences in
our results are still sufficiently large to lead to a non-negligible
change in C6 values owing to the μ4 dependence. This clearly
highlights the crucial roles that accurate calculation of the
PDM plays in determining the C6 coefficients of alkali dimers.

IV. CONCLUSION

In summary, we have performed four-component relativis-
tic FF calculations of both the PDMs as well as static dipole
polarizabilities of heteronuclear alkali dimers in their ground
states using the coupled-cluster theory and compared these
results with the nonrelativistic calculations at the same level
of approximations. We observe that the relativistic effects
become very important for the determination of PDM values,
especially in the heavier molecules. We attempt to explain the
PDM of LiNa with an in-depth analysis of our results. We
also present improved relativistic calculation of the PDM of

012511-11



R. MITRA, V. S. PRASANNAA, AND B. K. SAHOO PHYSICAL REVIEW A 101, 012511 (2020)

LiNa using CBS extrapolation, which agrees very well with
the most precise experimental value. We discuss the impor-
tance of analyzing the trends in electron correlation effects
based on different groups of molecules that we categorize in
terms of family. We compare our results with the previous
experimental and theoretical works. We discuss the variation
of the components of dipole polarizability with volume. We
present possible sources of uncertainties in our calculations of
the above quantities. Further, we demonstrate the importance
of considering relativistic effects in the determination of the
PDMs and static dipole polarizabilities by using them in

evaluating the van der Waals C6 coefficients for the alkali
dimers.
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