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Quantum thermodynamics of overdamped modes in local and spatially dispersive materials
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The quantum thermodynamical properties of (quasinormal) overdamped electromagnetic modes (eddy cur-
rents) are investigated in the context of the magnetic Casimir-Polder interaction. The role of the material
response in terms of spatially local and nonlocal material models is discussed. In particular, the focus is set
on the system’s entropy in the limit of low temperatures. In specific circumstances the spatially local (Drude)
model reveals an “entropy defect”, while spatial dispersion leads to a more regular behavior. We present a
detailed description of this phenomenon and of the different mechanisms at work in the system with regard
to the eddy modes’ properties. Extensively discussing classical and quantum features, we relate our results to
the wide range of literature and draw intriguing connections to seemingly distant fields as, e.g., the theory of
magnetohydrodynamics and superconductivity.

DOI: 10.1103/PhysRevA.101.012506

I. INTRODUCTION

The interaction of a single microscopic object with the
surrounding electromagnetic field is one of the oldest and still
one of the most frequently considered problems in physics. In
recent years there has been remarkable experimental progress
concerning the trapping and manipulation of atoms and small
objects, thus opening the way to a variety of novel applica-
tions for both engineering and foundational research. These
applications range from the investigation of dark matter [1],
the technology of atom chips and their interest for quantum
sensing and computation [2], all the way down to the novel
frontier of so-called atomtronics [3], where Bose-Einstein
condensates are shaped to circuits consisting of coherent
matter waves [4,5]. In all these cases the attention of theoreti-
cal investigations is drawn to the interaction between atoms
and the (quantized) electromagnetic field, especially in the
presence of nano- or microstructured photonic environments.

Among the most relevant phenomena characterizing such
systems we find the Purcell [6] and the Casimir-Polder effect
[7,8]. Qualitatively, these phenomena can be understood as
a (complex) shift in the atomic transition frequencies due to
a boundary-condition-induced change in the electromagnetic
local density of states. While the Purcell effect originates from
the imaginary part of this shift, the Casimir-Polder effect is
associated with the corresponding real part. In thermal equi-
librium the two effects are related to one another: Passivity
implies that real and imaginary parts of the frequency shift are
connected through the Kramers-Kronig relations. Recently,
the Purcell effect, which is a narrow-band phenomenon cen-
tered around the atomic transition energy, has been analyzed
in terms of a spectral decomposition with the aim to establish
a connection with the system’s natural resonances (also ad-
dressed as quasinormal modes—see for example Refs. [9,10]
for recent reviews). The Casimir-Polder interaction, instead,
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is a broad-band effect. Therefore, it is usually less sensitive to
a modification of the system’s resonances and rather depends
on the full spectrum of excitable modes.

In this paper we show, however, that an analysis in terms
of resonances is also very useful for investigating the Casimir-
Polder effect and can help to understand certain quantum ther-
modynamical characteristics occurring in dissipative systems.
Indeed, theoretical investigations have shown that in specific
cases the entropy linked to the Casimir interaction between
two metallic surfaces [8,11] is nonzero and depends on the
system’s parameters in the limit T → 0, contrary to what is
usually expected from the third law of thermodynamics, also
known as the Nernst theorem [12–16]. For a spatially local
description of the metal, this behavior was connected with the
(quantum) thermodynamic properties of overdamped electro-
magnetic resonances [17–20], which in classical physics are
known under the name of eddy (or Foucault) currents [21,22].
The same anomaly was reported for the magnetic Casimir-
Polder interaction between an atom and a metallic surface
[23]. Other results showed, however, that a more accurate
description of the metal, which includes spatial dispersion
and additional dissipation channels such as Landau damping
[24], “regularizes” the behavior of the entropy in the two plate
configuration [25].

In the present paper we complete the picture sketched
above and show that spatial dispersion has the same effect
on the Casimir-Polder interaction. Moreover, we investigate
the interplay between Landau damping and eddy currents,
which enables us to provide a detailed understanding of the
energy, frequency, and length scales at work in the system. We
study the impact of the statistical assumptions used to model
the electronic distribution in the (metallic) body and draw a
connection to the system’s ground state.

The paper is structured as follows. In Sec. II we describe
the physical setup and give a brief introduction to features
of the magnetic Casimir-Polder interaction. Section III is de-
voted to the material model we use in order to include spatial
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dispersion in the system. We further illustrate how this phe-
nomenon impacts the Casimir-Polder free energy as a function
of the atom-surface separation. In Sec. IV we review the ba-
sics of the Casimir entropy, highlighting the properties which
are independent of the configuration under examination, and,
as a concrete example, we consider in detail the magnetic
Casimir-Polder interaction. We report from a phenomeno-
logical point of view on the different outcomes of the zero-
temperature entropy calculations using, respectively, spatially
local and nonlocal material models. Furthermore, we discuss
the broader connection of our calculations to related theoret-
ical and experimental literature and the Nernst theorem. The
main results of this paper are described in Secs. V, VI, VII,
and VIII. Based on an analysis of the system’s mode structure
in the complex frequency plane, we consider the thermo-
dynamic properties of dispersive (quasinormal) eddy modes
and study their role in the low-temperature characteristics of
the atom-surface interaction. We highlight the role that eddy
currents play in the determination of the system’s entropy and
provide a physical picture by investigating the thermodynam-
ics of a single overdamped mode. In Sec. IX we establish a
connection between our results and magnetohydrodynamics
as well as London’s theory of superconductivity. We conclude
our presentation with a summary and discussion in Sec. X.

II. MAGNETIC CASIMIR-POLDER INTERACTION

Perhaps better known for its nonretarded limit, the van
der Waals force, the Casimir-Polder effect is a quantum-
mechanical force acting on the atom along the direction per-
pendicular to the surface. It can be understood as the interac-
tion between the fluctuating atomic dipole and its image below
the surface, in the bulk material. Therefore it is not surprising
that, in addition to the commonly studied electric dipole
interaction, there always exists a magnetic contribution to
the force. The magnetic interaction generates a repulsive and
much smaller force (typically weaker by a factor α2

fs, where
αfs ∼ 1/137 is the fine-structure constant) than the attractive
electric dipole interaction [26]. This magnetic contribution
is usually neglected in the investigation of the atom-surface
interaction. Nevertheless, the magnetic part reveals intriguing
thermodynamical features especially in the low-temperature
regime and will be the starting point of our considerations.

Theoretically, the magnetic Casimir-Polder free energy can
be described in analogy to its electric counterpart [27]. For an
atom in vacuum at distance za > 0 from a surface placed at
z = 0 (see Fig. 1), the free energy reads

F = −h̄
∫ ∞

0

dω

2π
coth

[
h̄ω

2kBT

]
ImTr

[
βT (ω) · hT (za, ω)

]
,

(1)

where we assume the entire system to be in equilibrium at
temperature T . In addition, h̄ is the reduced Planck constant,
kB is the Boltzmann constant, Im[·] gives the imaginary part
of an expression, and Tr[·] evaluates the trace with respect to
spatial coordinates. The quantity βT (ω) represents the atom’s
magnetic polarizability tensor in thermal equilibrium and the
geometry and material properties of the surface are encoded
in the scattered part of the magnetic Green tensor hT (za, ω).
The superscript in these two last quantities indicates that,

FIG. 1. Schematic visualization of the setup we study: A con-
ducting bulk material fills the lower half-space (surface coincides
with x-y plane) and features intrinsic noise due to quantum and
thermal fluctuations. In the upper half-plane an atom is located at
fixed altitude za above the surface. Both subsystems, the atom and
the bulk material, interact via the quantized electromagnetic field.
The electromagnetic response of the metal is described using either
a spatially local or a nonlocal material: Nonlocality is pronounced at
wavelengths or separations shorter than the bulk electron’s mean-free
path.

in general, they can vary with the temperature T . In the
limit T → 0, the magnetic polarizability βT (ω) reduces to
the ground state polarizability β0(ω). Although the atom
possesses a discrete set of (many) eigenstates, in our examples
we limit the description to a two-level system for which

βT (ω) = tanh

[
Ta

T

]
β0(ω), (2a)

β0
i j (ω) = 2

h̄
μiμ j

ωa

ω2
a − (ω + i0+)2

. (2b)

Here ωa characterizes the transition from the ground state
to the excited state (usually of the order of a few hundred
MHz or a few GHz) and Ta = h̄ωa/(2kB) is the corresponding
characteristic atomic temperature (Ta ∼ 10−2 K). The con-
stants μi, j are the matrix elements between the ground and
the excited state of the magnetic dipole vector operator. The
analytical form of the Green tensor for the given configuration
has been found by several authors before [28–30]. Upon
employing the system’s rotational invariance with respect to
the z axis, we have at the position of the atom that [26,31]

hT (za, ω) = μ0

8π

∫ ∞

0
d p pκe−2κza

[
2

p2

κ2
rTE(ω, p)zz

+
(

rTE(ω, p) + ω2

c2κ2
rTM(ω, p)

)
(xx + yy)

]
,

(3)

where μ0 is the vacuum permeability, κ =
√

p2 − ω2/c2

(Re[κ] > 0 and Im[κ] < 0), and p = |p| =
√

p2
x + p2

y is the
parallel component of the incident wave vector k = pxx +
pyy + qz with x, y, z being the unit vectors in the direc-
tion of the coordinate system. For the considered planar
geometry, the response of the material is encoded in the
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transverse electric and magnetic reflection coefficients rTE

and rTM, respectively. These can be expressed in terms of the
transverse electric and magnetic surface impedances ZTE and
ZTM [22,32], and read

rTE = ZTE/ZTE
0 − 1

ZTE/ZTE
0 + 1

, rTM = 1 − ZTM/ZTM
0

1 + ZTM/ZTM
0

, (4)

where ZTE/TM
0 denote the corresponding vacuum impedances.

Theoretically, a careful derivation of the surface impedances
from first principles is problematic. Different models have
been developed with the purpose of reconnecting the interface
properties to the dynamics of the charge carriers inside the
material. One of the most successful approaches, the semi-
classical infinite barrier model (SCIB), takes into account
additional boundary conditions on the symmetry properties
of the electromagnetic field and the behavior of the elec-
trons at the vacuum-material interface, i.e., specular reflec-
tion [32–35]. Assuming specular reflection of electrons at
the metal/vacuum interface is one of the simplest boundary
conditions one can impose on the electrons’ dynamics in
order to solve the electromagnetic problem of the spatially
nonlocal conducting half-space. For polycrystalline metals
and/or if the root-mean-square roughness of the surface
becomes comparable to the bulk electron’s mean-free path,
the assumption of specular reflection might break down and
diffusive scattering processes or other approaches should be
considered [36–38]. Upon employing the SCIB model, the
surface impedances can be written as

ZTM(ω, p) = 2ic

πω

∫ ∞

0

dq

k2

[
q2

εt (ω, k) − c2k2

ω2

+ p2

εl (ω, k)

]
, (5a)

ZTE(ω, p) = 2ic

πω

∫ ∞

0
dq

1

εt (ω, k) − c2k2

ω2

, (5b)

where c is the speed of light and k = |k|. These surface
impedances have been used to describe phenomena occurring
at the interface with a metal when the electron’s mean-free
path cannot be neglected with respect to the spatial variation
of the electromagnetic field (e.g., the anomalous skin effect
[39–42]). The functions εl (ω, k) and εt (ω, k) appearing in
the previous expressions are the longitudinal and transverse
bulk permittivities of the material and quite generally they
depend on the frequency and the wave vector of the incoming
radiation. The appearance of these quantities in the expres-
sions for the surface’s optical response can be understood
within the broader context of the linear response and trans-
port theories, where susceptibilities (and by extension the
permittivity) are often recurring central quantities [43]. In the
local approximation the k dependence is disregarded and if
εl (ω, k) = εt (ω, k) ≡ ε(ω), we have

ZTM(ω, p)

ZTM
0 (ω, p)

=
√

ω2

c2 ε(ω) − p2

ε(ω)
√

ω2

c2 − p2
, (6a)

ZTE(ω, p)

ZTE
0 (ω, p)

=
√

ω2

c2 − p2√
ε(ω)ω2

c2 − p2
(6b)

from which we recover the usual Fresnel expressions for the
reflection coefficients [22]. Finally, it is important to mention
the limitations of the previous approach. Treating the material-
vacuum interface as a sharp boundary, both in the local and
nonlocal case, assumes that the electrons’ dynamics stays the
same from inside the bulk up to a position infinitesimally close
to the surface. This approximation as well as the continuous
medium description adds some constraints to the validity of
our description, in particular for distances very close to the
surface [44,45]. These might impact the reflection coefficients
and therefore affect the prediction on the Casimir(-Polder)
force (see also Sec. IV C). Nevertheless, as we highlight
below, not only the surface’s but also the bulk’s properties
can play a significant role in determining the behavior of the
Casimir-Polder interaction.

III. SPATIAL LOCALITY AND NONLOCALITY
IN THE MATERIAL DESCRIPTION

The previous treatment in terms of surface impedances
allows us to go beyond the local approximation and for the
inclusion of spatial dispersion in the description of our system.
It is indeed sufficient to provide expressions for the functions
εl,t (ω, k) in order to fully characterize the electromagnetic
scattering at the vacuum-material interface. Such expressions
are derived from the microscopic (quantum) properties of the
material. Depending on the chosen approach, εl,t (ω, k) can
either be quite involved or relatively simple. Typically, sim-
plicity comes at the cost of an incomplete description of the
physical processes occurring in the system. Then, however,
the question arises whether these processes are important for
the effect under study or not. The approach we follow tries to
accomplish a trade-off between these two aspects.

In metals, nonlocality has been analyzed from several
viewpoints and, depending on the accuracy of the description,
several models have been developed (see for example [34]).
From now on, we describe the material in terms of a plasma
of electrons with a statistical distribution f in the phase space,
whose dynamics is prescribed by the Boltzmann equation

∂t f + v · ∇r f + ∂t� · ∇� f = −	( f − f0). (7)

We implicitly assume that, to a good approximation, the
momentum � of the electrons can be written in terms of their
velocity v, i.e., � = mev, where me denotes the electron mass.
This approach shows several similarities with the description
of a nonrelativistic plasma [46]. On the right-hand side (r.h.s.)
of Eq. (7) we have written the collision term in the relax-
ation time approximation by introducing the phenomenolog-
ical parameter 	 [47]. We consider small deviations of the
actual distribution function f (r,�, t ) from the equilibrium
distribution f0(r,�) ≡ f0(v), which we assume to depend
on the modulus of the velocity v = |v| only. In equilibrium
the motion of electrons is isotropic. Additionally, we consider
that we are dealing with a degenerate plasma of fermions
at temperature T much smaller than the Fermi temperature
T � TF (for a metal TF ∼ 105 K). Notice that this is consistent
with most of the discussions presented in the present paper,
since we are mostly concerned with the limit T → 0. Hence,
we can express f0(v) in terms of the zero-temperature Fermi-
Dirac distribution f0(v) = n0/( 4π

3 v3
F)θ (vF − v), where vF is
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the Fermi velocity of the electrons in the metal, n0 is the
equilibrium density of electrons [46], and θ (x) denotes the
Heaviside step function. Consequently, we recover the expres-
sions used in the so-called Boltzmann-Mermin model [32,33]

εl (ω, k) = 1 + ω2
p

ω + i	

3u2gl (u)

ω + i	gl (u)
, (8a)

εt (ω, k) = 1 − ω2
p

ω(ω + i	)
gt (u), (8b)

where ωp is the plasma frequency of the metal and

gl (u) = 1 − u arccoth(u), (9a)

gt (u) = 3
2 [u2 − (u2 − 1)u arccoth(u)] (9b)

are dimensionless functions of u = (ω + i	)/(vFk). It is
important to underline that, despite the equation of motion
in Eq. (7) has a classical origin, we are including some
“quantumness” in the system through the Pauli exclusion
principle by considering the zero temperature Fermi-Dirac
distribution as equilibrium distribution. The dynamics of
the plasma is effectively modified through the addition
of a pressure term behaving at low frequency as the
Thomas-Fermi pressure. Furthermore, Eqs. (8) coincide
with the semiclassical limit of the Lindhard-Mermin
dielectric functions [32,48–52], which incorporates quantum
corrections as soon as the relevant wave vectors become
comparable to or larger than the Fermi wave vector
kF = mevF/h̄. In other words, as long as the wavelength
of the radiation is much larger than the de Broglie wavelength
of the electron at the Fermi surface, our semiclassical
descriptions holds. In terms of the parameters of our system
this is equivalent to saying that the quantum correction would
become relevant for atom-surface separations za � 1/kF ≈
0.5 Å, which lies beyond the applicability of our theory.

The previous description introduces several scales into our
system which are useful for characterizing its behavior (some
of them are also featured by a spatially local description, such
as the Drude model, see below). We have the reduced plasma
wavelength λ̄p = c/ωp and the diffusion constant D = 	λ̄2

p
related, respectively, with the plasma vibrations and the dif-
fusion of the electromagnetic field in the metal. The latter can
also be connected to the penetration of the electromagnetic
radiation in the metal which is described by the skin-depth
length δa = √

2D/ωa, evaluated at the atomic transition fre-
quency [22]. Additionally, our spatially nonlocal description
is characterized by the electron’s mean-free path 
 = vF/	

and the Thomas-Fermi wavelength λTF = vF/(ωp

√
3), which

describe the ballistic behavior of the electrons between two
collisions and screening effects in the plasma, respectively
[46].

While we can safely assume that the distribution describing
the electronic fluid obeys the zero-temperature Fermi-Dirac
distribution for a wide range of temperatures (0 � T � TF),
the expression for 	 can feature a rather different behavior
depending on both the temperature and the nature of the
collisions. For instance, if we consider an (infinite) bulk made
of ideal metal, where all the lattice atoms are perfectly peri-
odically aligned and no defects are present (perfect crystal),
dissipation predominantly arises from scattering processes
between the elementary particles in the system. In this case,

within a quantum description, the Bloch-Grüneisen formula
predicts that, at low temperature, 	(T ) ∝ T m where m � 2
(e.g., m = 2 for electron-electron scattering and m = 5 for
electron-phonon scattering) [53–55]. For realistic systems
which feature deviations from this ideal configuration, de-
stroying the periodicity of the crystal (e.g., due to impurities
in the crystal as well as other static defects, including disloca-
tions and the sample’s surface), a residual resistivity appears
at T = 0 [55].

A. Limiting behaviors

The Boltzmann-Mermin permittivities feature two limit-
ing regimes. For values |u| → ∞, obtained when vF � ω/k
and/or k
 � 1, the dielectric functions in Eqs. (8) recover the
usual local Drude description of the metal [22], i.e., εl (ω, k) =
εt (ω, k) → ε(ω) = 1 − ω2

p[ω(ω + i	)]−1. Physically, these
values correspond to a regime where the phase velocity (vph =
ω/k) of the electromagnetic radiation is much larger than the
Fermi velocity and/or the field’s wavelength is much larger
than the electron’s mean-free path. The opposite limit, |u| →
0, is connected to wavelengths that are sufficiently small so
that they resolve the electron’s ballistic motion, i.e., vF 
 vph

and/or k
 
 1 [56]. In this case, the permittivities take the
form

εl (ω, k) ≈ 1 + 3

k2λ2
TF

+ i
ω	L

l (k)

ω2
p

, (10a)

εt (ω, k) ≈ 1 − 3

k2λ2
TF

+ i
ω2

p

ω	L
t (k)

, (10b)

where 	L
l (k) = 3πω4

p/(2v3
Fk3) and 	L

t (k) = 4vFk/(3π ) are
the semiclassical Landau damping rates for longitudinal and
transverse fields propagating in a fermionic plasma [24,57].
Landau damping can be understood as resulting from a net
energy-momentum transfer from the field to the electronic
fluid. It occurs both in classical and quantum gases when the
phase velocity of the radiation is smaller than the speed of the
quasiparticles. Landau damping is therefore closely related to
the quasiparticle’s distribution in phase space. This means that
in our case the expressions for 	L

l,t (k) are directly connected
to the specific form of the equilibrium distribution f0 that we
chose at the beginning of our analysis. It is worth pointing out
that in Eqs. (10) the collision rate 	 completely dropped out
from the expressions for the permittivity, showing that Landau
damping prevails as the main source of attenuation for the
field (see also Ref. [25]).

The above-described regimes and the corresponding length
scales are inherited by the surface impedances through
Eqs. (5), where the role of the three-dimensional wave vector
is roughly taken by its in-plane component p [see also Eq. (37)
for a more detailed discussion of the behavior of ZTE(ω, p)].
This means that Eqs. (5) tend to Eqs. (6) if p
 � 1 and, as
we are going to see below, the Casimir-Polder interaction
recovers the local behavior in this limit. Conversely, for
p
 
 1, Landau damping will act as the main source of
dissipation in the reflection coefficients of Eqs. (4), modifying
the interaction accordingly.
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FIG. 2. Magnetic Casimir-Polder free energy F as a function
of the atom-surface separation za. We multiply the curve by z3

a

and normalize to the corresponding local value at za = 100 μm.
The magnetic dipole is oriented parallel to the surface (anisotropic
polarizability βT

xx = βT
yy, βT

zz = 0). The transition frequency is ωa =
2 μeV and the atom is trapped above a gold surface (ωp = 9 eV,
	 = 	Au = 30 meV, vF ≈ αfsc with αfs the fine-structure constant).
The system is in equilibrium at temperature T = Ta. The free energy
obtained using a local Drude model F lc (black line) changes its
power-law dependence z−3

a → z−1
a for separations much smaller than

the skin-depth δa [see Eq. (13) and discussion below]. The nonlocal
description (red line) deviates from the previous curve for distances
shorter than the electron mean-free path 
 = vF/	. At short separa-
tions, the distance dependence is no longer described by a power law
but is logarithmic according to the expression in Eq. (16) (dashed
line, red). In the inset we give the relative deviation of the nonlocal
from the local material model.

B. Free energy

In order to illustrate the impact of spatial dispersion on
the atom-surface interaction, we analyze in the following the
behavior of the magnetic Casimir-Polder free energy. The
nonlocal material model and its local limit differ in their
dependence on the radiation’s wave vector. The exponential in
the Green tensor of Eq. (3) selects the wave vectors dominat-
ing the interaction as p ∼ 1/za. Hence, the impact of spatial
dispersion on the Casimir-Polder free energy can be seen best
as a function of atom-surface separation. After a rotation in
the complex frequency plane [8], the magnetic Casimir-Polder
free energy in Eq. (1) can be written as

F (za, T ) = πkBT
∞∑

n=0

′
�T (za, inν), (11)

where ν = 2πkBT/h̄ is the first Matsubara frequency and the
prime indicates that the first term of the sum has to be taken
with a prefactor 1/2. Here we have defined the function

�T (za, ω) = − 1

π
Tr[βT (ω) · hT (za, ω)]. (12)

The magnetic polarizability constrains the contributing fre-
quencies to ωa and sets the maximally relevant length scale
to the wavelength λa = 2πc/ωa (in the centimeter range for
magnetic interactions). In the following, we focus on the limit
za � λa of F (za, T ), where retardation effects can safely be
neglected. In Fig. 2 we report the results obtained for F (za, T )
using a purely local (Drude) dielectric model for the metallic

surface and the nonlocal expressions in Eqs. (8). We notice
that the two descriptions lead to identical results at large
distances. In particular, for separations larger than the metallic
skin-depth δa, the free energy scales as z−3

a in both cases. For
za � δa, however, the local description yields a free energy
which behaves as

F lc ≈ πkBT
∞∑

n=0

′ n2ν2

zac2
[ε(inν) − 1]�T (inν)

≈ πkBT

λ̄2
pza

∞∑
n=0

′ n

n + 	
ν

�T (inν), (13)

where we define

�T (ω) = μ0

Tr[βT (ω)] + βT
zz(ω)

(8π )2
. (14)

The expression in Eq. (13) is obtained using the nonretarded
expression for the Green tensor in Eq. (3), which is formally
equivalent to taking the limit c → ∞. The permittivity is
significantly different from its vacuum value for ω < ωp and,
since the polarizability is different from zero only for ω �
ωa � ωp, we can consider the limit ω/(cp) � 1 and use the
approximation

rTE(ω, p) ≈ ε(ω) − 1

4

ω2

c2 p2
. (15)

The contribution of the TM polarization gives only minor
corrections in the limit described above.

The free energy for the nonlocal description starts to differ
from the local one for distances smaller than the mean-free
path 
. Since the relevant frequencies are such that ω < ωa �
	, in the limit za � 
 we can use the result of Appendix A
and write

Fnl ≈ −πkBT ln

[
2za

γ ′
E


] Int[	/ν]∑
n=0

′ 4nν

vFλ̄
2
p

�T (inν), (16)

where γ ′
E = e−γE with γE the Euler-Mascheroni constant and

Int[x] gives the largest integer smaller than x. In accordance
with our approximations, we also set a limit to the number
of Matsubara frequencies involved in the sum. Notice that
including nonlocality in the description of the metal reduces
the strength of the interaction [58], also changing its distance
dependence. With respect to the local case, spatial dispersion
quickly induces an attenuation larger than 10% as soon as
the atom-surface separation is shorter than the mean-free path
(see inset of Fig. 2). It is also interesting to remark that
this correction would not occur in simpler spatially nonlocal
material models. For instance, in the hydrodynamic descrip-
tion (see for example [59]), one models the quasiparticles of
the electronic plasma by means of the hydrodynamic Euler
equation rather than the Boltzmann equation, i.e., as a com-
pressible fluid of particles that interact via collisions and that
are repelling each other via the Fermi pressure. It turns out that
only the longitudinal permittivity is modified as a function of
the Fermi velocity [58]. The transverse permittivity, however,
equals the (local) Drude description, leaving rTE unchanged.
Since the latter provides the dominant contribution for separa-
tions za � 
, spatial nonlocality induced by the hydrodynamic
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model has a negligible impact on the magnetic Casimir-Polder
free energy.

IV. CASIMIR ENTROPY

In order to set the context for the analysis provided in the
subsequent sections, we need to briefly review the general
characteristics of the Casimir entropy. We focus first on
features that neither depend on the specific geometry nor on
the specific material properties of the system. For clarity,
however, we consider later the magnetic Casimir-Polder in-
teraction as a specific example.

A. General framework

As was pointed out in previous works (see for example
[60]), the first important remark is that all the thermody-
namical properties related to the Casimir effect (entropy,
free energy, etc.) are differential quantities. They focus on
the interaction and arise from the difference of the same
quantity calculated for two different configurations involving
interacting versus noninteracting bodies. Usually the param-
eter distinguishing these two configurations is the separation
between the objects, which is finite for the interacting
objects and infinity for the noninteracting ones. The Casimir
entropy is derived from the negative derivative with respect to
temperature of the Casimir free energy and it can always be
written as

S (za, T ) = − d

dT

∞∑
n=0

′
πkBT �T (za, inν). (17)

The details of the function �T (za, ω) depend on the geometry
and on the properties of the system [see Eq. (12) for the
magnetic Casimir-Polder interaction]. In general, �T (za, ω)
is analytic in the upper part of the complex ω plane and it
allows for an intrinsic temperature dependence which stems
from the physical properties of the bodies involved in the
interaction. Given that [�T (za, ω)]∗ = �T (za,−ω∗) (crossing
relation [61]), �T (za, ω) is a real-valued function along the
positive imaginary frequency axis, i.e., for ω = iξ (ξ > 0).
The function �T (za, ω) = −∂ωIm[�T (za, ω)] gives the
system’s differential mode density, i.e., the difference between
the number of modes with a frequency in [ω,ω + dω] for
the interacting configuration and the same number for the
noninteracting configuration. Since �T (za, ω) vanishes for
|ω| → ∞ [62] and from the crossing relation it follows that
Im[�T (za, 0)] = 0, the integral of �T (za, ω) over all positive
frequencies is zero. This indicates that the total number
of modes (which can be infinite in both cases) does not
change when going from the interacting to the noninteracting
configuration. Their spectral distribution, however, does.

From Eq. (17) we obtain that at high temperature the
entropy tends to the value

S (za, T )
T →∞≈ −πkB

�T (za, 0)

2
− π

kB

2
∂T �T (za, 0). (18)

The expression of S (za, T ) for T → 0 is somewhat more
involved. Following the approach described in Appendix B

(see also Ref. [13]), we obtain

S (za, T )

T →0≈ πkB
�T (za, iν) − �T (za, 0)

2
− 2

3

π2k2
B

h̄
∂ν�

T (za, iν)T

− h̄

2

∫ ∞

0
dξ∂T �T (za, iξ ). (19)

In the following, we focus on the fist two terms of the above
expression, since it turns out that the last term can be safely
neglected for most of our considerations (see Appendix B).
The two previous equations link the behavior of the Casimir
entropy at low and high temperature to the behavior of the
function �T (za, ω) and its derivative within a region of the
complex plane around ω ∼ 0. Since low-frequency effects
are strongly influenced by dissipative mechanisms [56], both
extremal cases described in the Eqs. (18) and (19) are closely
intertwined with dissipation in the system. Furthermore, the
limit of high temperatures for the Casimir entropy can be
connected to the limit of large separations for the Casimir
free energy (see for example Ref. [63]). The latter implies that
the Casimir entropy is positive for T → ∞, if the interaction
leads to an attractive force at large separations. By the same
token, the Casimir entropy at high temperature is negative, if
the Casimir force is repulsive for large distances.

The situation for T → 0 is considerably more complicated.
If �T (za, ω) is well behaved for ω ∼ 0, Eq. (19) can be indeed
further simplified to read (see also Appendix B)

S (za, T ) ≈ π2

3

k2
B

h̄
�0(za, 0)T . (20)

We find that in these cases the entropy vanishes at least
linearly with the temperature. Notice that �0(za, 0) 
= 0 for
any ohmic material but it may vanish otherwise. For the
systems considered in the literature, calculations have shown
that �0(za, 0), when it is nonzero, is positive for an interaction
being repulsive at large distances while it is negative for
an attractive interaction [similar arguments can be used for
Eq. (19)]. This implies that S (za, T ) can be a nonmonotonic
function of T vanishing at least in one intermediate tempera-
ture [63–67]. For an analysis of the entropy’s low-temperature
behavior and its interplay with the geometry of the system and
the material properties see also Ref. [68].

A nonvanishing entropy, however, can occur when

lim
T →0

�T (za, αT ) 
= lim
T →0

lim
ω→0

�T (za, ω), ∀α 
= 0. (21)

When the limits do not commute, S (za, T ) approaches for
T → 0 the constant value

S0 = lim
T →0

πkB
�T (za, iν) − �T (za, 0)

2
(22)

rather than going to zero. Once again, the sign of this constant
depends on the configuration and while for attractive interac-
tions it is negative [12,13,17], for repulsive forces it is positive
[26].

In the next sections we analyze some mechanisms that can
lead to Eqs. (20) and (21). In particular, we will establish a
connection with the thermodynamic properties of overdamped
resonances (eddy currents), with special focus on the case of
the magnetic Casimir-Polder interaction.
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B. Entropy for the magnetic Casimir-Polder interaction

As an example of the previous results, let us consider first
the case of the magnetic Casimir-Polder interaction, where the
metallic half-space is described by the Drude model with a
constant damping 	. Using the definition in Eq. (14) and the
result in Appendix A, we obtain

�T (za, 0) ≈ �T (0)

zaD
> 0. (23)

For the nonlocal SCIB model the mode density at low fre-
quencies additionally depends on the ratio of the atom-surface
separation and the electron’s mean-free path 
. While for
za 
 
 we recover Eq. (23), in the opposite limit we obtain
(see Appendix A)

�T (za, 0)
za�
∝ −4

�T (0)

λ̄2
pvF

ln

[
2za




]
> 0. (24)

In both cases, according to Eq. (20), S (za, T ) vanishes linearly
with the temperature. The entropy approaches zero from the
positive side, matching the above discussion (see also Fig. 2
and Ref. [26]). The numerical evaluation of the mode density
for low frequencies using the local and the nonlocal material
model can be found in Fig. 3. The result confirms our predic-
tion and we see that, in general, the inclusion of nonlocality
leads to a reduction of the mode density with respect to the
local limit. This behavior is also agreement with the reduction
of the magnetic Casimir-Polder interaction observed in Fig. 2.

Next, let us consider the case of a metal where the dissipa-
tion rate is assumed to follow the behavior of a perfect crystal,
i.e., vanishing for T → 0 faster than linearly. We note that
in this case the function �T (za, ω) features the discontinuous
behavior described in Eq. (21). Due to the vanishing diffusion
coefficient D(T ) = 	(T )λ̄2

p, the divergence of the expression
given in Eq. (23) prevents the use of Eq. (20). Starting from
Eq. (19), the second term tends to zero leaving, as expected, a
residual Casimir entropy with the value

S0 = 4πkB
�0(0)

z3
a

F

(
za

λ̄p

)
. (25)

In the previous equation we define

F (x) = −
∫ ∞

0
dyy2e−2y y −

√
y2 + x2

y +
√

y2 + x2
, (26)

which is a positive, monotonically increasing function (see
Fig. 4). For za � λ̄p, F → 1/4 recovering the value already
reported in Ref. [26].

If we use the nonlocal description of the metal instead
[see Eqs. (8)], the entropy at zero temperature vanishes
even if 	(T )/T → 0 for T → 0. From Eq. (19), using
Eq. (A12) and that limT →0 �T (0) = 0, the expression for the
low-temperature entropy reduces to

S (T → 0)

πkB
≈ −2

9
ν
�T (0)

vFλ̄
2
p

ln

[(
2

γ ′
E

)3
ν

νnl

]

∝ −T ln

[
T

T nl

]
, (27)

FIG. 3. Numerical evaluation of the Casimir-Polder mode den-
sity for frequencies ω � ν lc = D/z2

a at temperature T = Ta nor-
malized to the local (Drude) limit �T (za, 0) [see Eq. (23)]. As in
Fig. 2, we plot the situation for an anisotropic dipole with transition
frequency ωa = 2π × 480 MHz and report the results using the local
(Drude) material model (black, solid line) and the nonlocal SCIB
model (red, solid line). In both scenarios, the (differential) mode
density exhibits low-frequency quasinormal excitations which, in
part, can be traced back to the eddy modes of the configuration. For
frequencies ω � ν lc, the mode densities approach their respective
local (normalization) and nonlocal (red, dashed line) limits given by
Eqs. (23) and (24). However, at frequencies near the atomic reso-
nance ω ∼ ωa, the different models coincide. We choose za = 100 λ̄p

and 	 = 0.01 	Au in order to ensure that za � λ̄e [see Eq. (38)] and
the (nonlocal) eddy modes can have a significant impact according
to Eq. (39). Also, for the parameters used here, the typical excitation
energies of eddy modes in both material models lay within the same
range, i.e., ν lc ∼ νnl. For comparison, we display the result regarding
separations z̃a = λ̄p smaller than the cutoff wavelength λ̄e (gray,
solid line). Again, the mode density approaches its nonlocal limit
for ω → 0 (gray, dashed line), but its impact, with respect to the
(shifted) atomic transition frequency (ν lc = D/z2

a → D/z̃2
a) and the

local material model, is significantly reduced [see discussion below
Eq. (39)].

where the frequency scale νnl is set to

νnl = 4vF

3πza

λ̄2
p

z2
a

= λ̄2
p

z2
a

	L
t (1/za) (28)

and T nl gives a corresponding temperature. The previous ex-
pressions show that, in the nonlocal case, S (T → 0) vanishes
following a nonalgebraic relation highlighting the important
role that Landau damping plays in determining the entropy of
the system at low temperature.

In Fig. 4 we depict the nonmonotonic behavior of the
magnetic Casimir-Polder entropy for our specific system.
We present the numerical results considering both constant
and temperature-dependent dissipation rates and employ the
nonlocal material description and the local approximation. As
predicted, independent from the behavior of the dissipation
rate, the entropy of the nonlocal material model vanishes for
T → 0: It behaves linearly (∝ T ) for constant dissipation and
goes as S ∝ −T ln [T/T nl] when 	(T )/T → 0. Conversely,
for the local description, S goes to zero for constant 	, but
approaches the value S → S0, if for example 	 ∝ T 5 [26].
Note that the transition from what we call “high temperatures”
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FIG. 4. Magnetic Casimir-Polder entropy in the low-temperature
regime normalized to the value S0 defined in Eq. (25). The numerical
results for an anisotropic dipole-configuration (dipole moment paral-
lel to the xy plane) modeled as a two-level system with transition
frequency ωa = 2 μeV are reported. The atom is placed at za =
1 μm separation from the metallic bulk. For comparison, we plot
the entropy using a local Drude model with constant dissipation
rate (gray, solid line) vanishing linearly for low temperatures as
given by Eq. (20) (gray dashed line). The local Drude model
with a temperature-dependent dissipation rate 	(T ) = 	Au[T/Tc]5

(electron-phonon scattering), instead, goes to a constant for T →
0 (black, solid line) as well as the contribution solely stemming
from Eddy modes (black, dashed line). Using the nonlocal material
model (red, solid line), the entropy does vanish for T → 0 also if
	(T )/T → 0. The asymptotic curve of the nonlocal entropy (red,
dashed line) is obtained from Eq. (19). The inset shows the details
of the behavior for T → 0 [local (gray) and nonlocal (orange)] in
connection with the expression in Eq. (19).

to “low temperatures” is marked in terms of the atomic
transition temperature Ta. In addition, for temperatures T 

Tc ≡ h̄vF/(kBza) (∼16 K for za = 1 μm and vF = αfsc) spatial
nonlocality can be, to very good approximation, neglected and
the curves of the different scenarios become indistinguishable.

C. Nernst theorem and the plasma-Drude controversy

The previous results are relevant with respect to one of the
most controversial and still discussed laws of thermodynam-
ics, i.e., the Nernst theorem [69,70] (see Refs. [71–73] and
references therein for some recent discussions and Ref. [74]
for a historical perspective). In one of its formulations, due
to Planck in 1911, this thermodynamic principle implies that
the entropy of a system at equilibrium goes to zero at T = 0
[75]. This finds its justification within quantum theory and
the often found uniqueness of the (well-ordered) ground state
of systems. However, many systems have challenged this
formulation featuring different nonzero residual entropies as
a symptom of some level of disorder which persists when
the temperature is extrapolated to zero. Nernst himself gave
a version of his law stating that a finite size system at equilib-
rium has an entropy at zero temperature, which is independent
of any external macroscopic parameters (e.g., volume, pres-
sure, temperature). For infinite systems, some investigations
[76–79] have pointed out that the entropy may be crucially
related to the distribution of low-energy excitations in the
limit T → 0. The correct value is then related to a specific

thermodynamic limiting procedure, which amounts to divid-
ing the free energy by some of the system’s extensive param-
eters [77,78,80]. This would, e.g., involve the existence of a
bulk thermodynamic entropy per particle [81]. A connection
to the degeneracy of the ground state can be reestablished
when the latter is suitably interpreted [72,79].

Although one can construct models which violate Nernst
theorem [81,82], the physical origin of a finite distance-
dependent interaction entropy in Eq. (25) remains puzzling,
especially when contrasted with the nonlocal calculation
which does not pose any issue. From the standpoint of
condensed matter theory, the Drude model is certainly an
oversimplification of the physics occurring in a conductor. In
particular, for 	 → 0, the mean-free path 
 becomes increas-
ingly larger indicating that a metal at low frequencies is inad-
equately described by the local description. Using the Drude
model artificially keeps the metal in the local regime, even
in the limit 	 → 0 [see also Eq. (37) below]. Conversely, the
SCIB model [Eqs. (8)] approaches its nonlocal limit and the
scattering-induced damping as well as its temperature depen-
dence loose their relevance for the material’s bulk response.
Since at low temperature the Casimir entropy vanishes for the
nonlocal model, one might be then tempted to conclude that
nonlocality is directly responsible for the vanishing entropy.
We are going to see in the following, however, that this is not
the case and that the actual reasons lie deeper in the statistical
properties of the electron gas.

Given the general structure of the relations in Eqs. (21) and
(22) it is not surprising that a nonzero entropy was found in
several other configurations. We have already mentioned that
results similar to Eq. (25) have been reported for the plane-
plane Casimir interaction (further examples can be found in
Refs. [83,84]), where a finite negative entropy was found [12].
The nonlocal description of the metal in Eqs. (8) led instead to
a vanishing entropy [25,85]. Based on this result, the authors
of [12] concluded that the Nernst theorem is not fulfilled by
the Drude model, claiming its thermodynamic inconsistency.
The distrust in the Drude description can be understood within
a broader context involving room temperature experimental
results for the Casimir force between a gold coated sphere and
a plane: The measurements performed in a range of distances
�1 μm [86–90] are in disagreement with the prediction
obtained using the Lifshitz formula [91] and the Drude model.
They agree, however, with a theoretical description where
no further changes are made beside setting the dissipation
rate to zero, the so-called plasma model. The Drude model,
however, appears to better agree with measurements in a
range of distances between ∼1 and ∼7 μm, once a residual
background electrostatic component of the force has been
removed using a two-parameter fitting procedure [92]. In
combination with the experimental results, the nonvanishing
entropy at zero temperature has been used to criticize the
Drude model in favor of the nondissipative plasma description
for which S (T → 0) → 0 [12]. Also, as discussed above,
within the Lifshitz description of the Casimir interaction, the
behavior of the entropy in the limit T → 0 and of the force
at large distances and/or temperature originate from the low
frequency response of the material, where Drude and plasma
model notably differ. Experimentally, the measurement of the
dielectric function for low frequencies is a nontrivial task
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and results can differ significantly from sample to sample
[93]. Since the dielectric function can be measured in a finite
frequency interval only, one is obliged to apply extrapolation
techniques [94]. It is important to mention that, despite the
entropy vanishes at zero temperature, the spatially nonlocal
permittivity functions in Eqs. (8) and the SCIB model [25]
do not resolve the issue on the quantitative description of the
force measurements at room temperature, since the prediction
is very similar to that of the Drude model. A solution for
this problem might require a more careful modeling of the
material’s optical response as well as a deeper understanding
of the underlying physics.

To the best of our knowledge, a precise and comprehensive
understanding of the physical origins for the different out-
comes of the zero-temperature entropy depending on the cho-
sen material model is missing so far, even from the theoretical
point of view. In the following, rather than directly focusing
on the Nernst theorem, we investigate the thermodynamics
of the underlying processes. To this end, we will connect
the zero-temperature entropy to the statistical properties of
the eddy modes and provide the physical foundation for
explaining the different behaviors.

V. OVERDAMPED MODES IN LOCAL MATERIALS

In general, eddy currents are diffusive bulk modes that
occur in conducting materials under the influence of slowly
varying magnetic fields [21,22,95,96]. A physical interpreta-
tion of the peculiar behavior of the Casimir entropy in the
plane-plane configuration and for the Drude model has been
provided in Ref. [17] in terms of eddy or Foucault current
modes (see also Refs. [97–99]). Some of the properties of
these currents are not a unique feature of the plane-plane con-
figuration. In general, eddy currents are diffusive modes that
occur in conducting materials under the influence of slowly
varying magnetic fields [21,22]. When a material interface
is present, the dynamics of these currents below the surface
is associated with an evanescent field. Mathematically, eddy
currents are characterized by a purely imaginary frequency
(overdamped oscillations) [17,95]. For metallic half-spaces
overdamped modes manifest themselves in the (differential)
mode density �T (za, ω) as a branch cut (continuum of modes)
in the complex frequency plane along the negative imaginary
axis [18,100]. In the local (Drude) description, the branch
cut results from the square roots occurring in the surface
impedances [Eqs. (6)] and it is bounded by the branch points
at ω = −i	 and ω = −iξ lc

0 (p), where

ξ lc
0 (p) ≈ 	

p2λ̄2
p

1 + p2λ̄2
p

(29)

is the purely imaginary solution of ω2ε(ω)/c2 − p2 = 0. Both
electromagnetic polarizations exhibit this feature. However,
for the TM polarization the impact of the branch cut is
strongly reduced by the divergence of the dielectric function
at zero frequency. Physically, this behavior is associated with
the screening of surface charges arising from the orthogonal
component of the electric field, which effectively decouples
the dynamics of the field inside and outside the material.
Consequently, the evanescent field generated in vacuum by

the eddy currents is essentially TE polarized and therefore
predominately magnetic. In close connection, for the Drude
model with 	(T ) vanishing faster than T , calculations have
shown that the inequality in Eq. (21) is related to a discon-
tinuous behavior of ZTE/ZTE

0 in the complex plane, while
ZTM/ZTM

0 is regular [13].
In general, the contribution to the full mode density stem-

ming from eddy modes can be isolated by utilizing a contour
integration in the complex plane [18,100]

ηT (za, ω) = −
∫ 	

0

dξ

π

ξ

ξ 2 + ω2
∂ξ Im[�T (za,−iξ + 0+)]

= ∂ω

∫ 	

0

dξ

π

ω Im[�T (za,−iξ + 0+)]

ξ 2 + ω2
. (30)

By an expansion of the poles of the Green tensor related
with Mittag-Leffler’s theorem [60,101], Eq. (30) connects
a Lorentzian spectrum centered at zero frequency to each
overdamped mode ω = −iξ along the branch cut [100]. As
a result, we have that �T (za, ω) = ηT (za, ω) + �T

other (za, ω),
where �T

other (za, ω) is the (differential) mode density corre-
sponding to the remaining resonances in the system (cavity
modes, bulk and surface plasmon-polaritons [102,103]). Since
the Green tensor selects values of p ∼ 1/za, Eq. (29) sets the
characteristic frequency scale for eddy modes (za 
 λ̄p)

ω ≈ ν lc = D

z2
a

(31)

and, consequently, 0 < ω < ν lc gives the frequency region
where ηT (za, ω) is substantially different from zero.

Similarly to the plane-plane configuration [18], we find for
the Drude model that the full mode density describing the
magnetic Casimir-Polder interaction and that stemming from
the eddy currents alone coincide at very low frequency, i.e.,
�T (za, ω) ≈ ηT (za, ω) for ω → 0. Note that the latter approx-
imation becomes more accurate, the better the resonance from
overdamped eddy modes and the atomic resonance ω ∼ ωa

can be separated in the mode spectrum. This is particularly
true for 	/T → 0 as T → 0 (see Appendix C for details).
Importantly, for the Drude model, ηT (za, 0) diverges for 	 →
0, but the product

NT
lc = ηT (za, 0)ν lc ≈ �T (0)

z3
a

(32)

stays constant (it does not depend on the diffusion coefficient
D and therefore on 	). The quantity NT

lc can be associated with
the number of overdamped modes effectively participating
in the interaction and is not modified even for vanishing
collision-induced dissipation. In the next section we show how
this feature contributes to the appearance of a nonvanishing
entropy in the limit T → 0.

VI. RESIDUAL ENTROPY AND EDDY CURRENTS

The dominance of eddy modes at low frequencies is
also reflected in the behavior of the corresponding en-
tropy contribution Se(T ). Upon replacing the system’s full
mode spectrum in the free energy of Eq. (1) with the
scale defined in Eq. (30), we can define the contribution to
the magnetic Casimir-Polder free energy Fe, arising from
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the overdamped modes [100]. For a constant dissipation
rate, the corresponding entropy evaluates to Se(T → 0) ≈
(π2/3)(k2

B/h̄)η0(za, 0)T . It linearly vanishes for T → 0 and
matches the behavior of the entropy due to the full mode
spectrum (for more details see Appendixes B and C).

If we now consider the case where 	(T )/T → 0 for T →
0, we find that, due to the behavior of ηT (za, ω), the modes
contributing to the free energy have an energy h̄ω � E lc =
h̄ν lc � kBT . This means that, even for a vanishing T , the
relevant modes are always thermally excited [17,18,100]. In
a broader perspective, we have the unusual circumstance
that for T → 0 a subset of the total system is behaving
classically. Since the free energy per mode can be written as
kBT ln 2 sinh [h̄ω/(2kBT )] ≈ kBT ln[h̄ω/(kBT )], after a par-
tial integration, we can estimate the free energy connected to
eddy modes to

Fe(T ) = kBT
∫ ∞

0
dω ln 2 sinh

[
h̄ω

2kBT

]
ηT (za, ω)

∼ −kBT
∫ ν lc

0

dω

ω

∫ ω

0
dω′ηT (za, ω

′)

T →0−−→ −kBT N0
lc, (33)

where we use that ν lc vanishes faster than T for T → 0
and that ηT (za, ω) is different from zero for 0 < ω � ν lc.
Relation (33) not only shows that the interaction entropy is
extensive, but also that at low temperature, under the con-
dition 	(T )/T → 0, the free energy stemming from eddy
currents resembles the energy of an ensemble of identical
classical oscillators with a total number ∼N0

lc [17,104,105].
The corresponding entropy is thus constant and of the order
of kB (entropy per “particle”) times the number of modes
N0

lc effectively participating in the interaction. This expression
is consistent with the value obtained in Eq. (25) for S0. In
other words we can say that in the limit h̄	(T ) < kBT , the
eddy modes decouple from the external field (not even radi-
ation damping occurs) and their finite-temperature disorder
is partially frozen down onto the system’s zero-temperature
state. This state, which is reminiscent of some features of
glassy systems but that curiously occurs in the limit of a
vanishing damping, was dubbed Foucault glass in previous
work [17,18].

Using Eq. (30), a more careful calculation yields for T →
0 (see also Appendix C)

Fe(T ) ≈ kBT
∫ 1

0
dx

Im[�T (za,−ix	(T ) + 0+)]

2x
. (34)

For the Drude model in the limit T → 0, the integrand of the
previous expression no longer depends on the temperature and
the corresponding entropy stays finite at T = 0. Similarly to
the procedure followed in Refs. [18,100], using the analytic
properties of the function �T (za, ω), upon employing a shift
of the integration contour toward infinity, we can show that
Se(T = 0) = S0. Indeed, the contour encircling the branch
cut characterizing the eddy currents can also be re-interpreted
as a contour in the opposite direction around the remaining
part of the complex plane. We can then use the residue theo-
rem and sum over the poles of the integrand. These are located
at x = 0 and at the poles of �T (za, ω) for 	(T ) → 0, which

correspond to all the other modes of the system (excluding the
eddy currents) in the nondissipative limit of the material (i.e.,
the plasma model). For the latter, the resulting expression is
the same that one would have obtained in the high temperature
(large distance) limit and we can write

Fe(T ) ≈ kBT
π

2

[
�0

plasma(za, 0) − �T (za, 0)
]
. (35)

The second term is arising from the pole in x = 0. The sub-
script “plasma” in the first term indicates that the limit T → 0
in �T (za, ω) is taken first and the limit ω → 0 afterwards.
Starting from Eq. (35) we then arrive at an expression for
the entropy, which is equivalent to that of Eq. (19), showing
that the eddy currents are entirely responsible for the residual
entropy evaluated for the full mode spectrum (see Fig. 4, black
dashed line).

VII. OVERDAMPED MODES IN THE
NONLOCAL DESCRIPTION

For spatially nonlocal material models the above analysis
must be revisited. In contrast to the Drude limit, at low fre-
quency the Landau damping serves as an additional damping
mechanism which will modify the eddy modes’ properties
and characteristic energy. Since it plays a central role in
the behavior of the Casimir entropy at zero temperature, we
focus in the following on the transverse electric impedance
in Eq. (5b). Substituting x = p/k, we can rewrite the surface
impedance as

ZTE(ω, p)

ZTE
0 (ω, p)

= − 2

π

∫ 1

0
dx

1√
1 − x2

p
√

p2 − ω2

c2

εt
(
ω,

p
x

)
ω2x2

c2 − p2
. (36)

While εt (ω, p/x) is a smooth function of x over the integration
range, 1/

√
1 − x2 diverges for x → 1. We can hence expand

the dielectric function around x = 1, obtaining at the leading
order

ZTE(ω, p)

ZTE
0 (ω, p)

≈
√

ω2

c2 − p2√
εt (ω, p) ω2

c2 − p2
. (37)

Equation (37) reduces to Eq. (5b) when vF � ω/p and/or
p
 � 1. It again shows that, since the electron’s mean-free
path diverges for a vanishing collision damping, using the
Drude model in the limit 	(T ) → 0 is equivalent to using
a local description in a region where the SCIB in contrast
predicts a substantial nonlocal response. Due to the form of
εt (ω, p), Eq. (37) exhibits a logarithmic branch cut between
the points ωL

± = ±vF p − i	. As in the local case, Eq. (37) also
features an algebraic branch cut along the negative imaginary
frequency axis. The cut connects one branch point still at ω =
−i	 with the other now located at ω = −iξ nl

0 (p). ξ nl
0 (p) is ap-

proximately given by the imaginary zero of εt (ω, p)ω2/c2 −
p2. Together, these branch cuts form an upside-down T-shaped
structure (see Fig. 5). Physically, the appearance of the first cut
parallel to the real-frequency axis is a direct consequence of
the Landau damping in the semi-infinite bulk and derives from
a singularity in the dynamics of the electronic fluid, which
occurs when the quasiparticles have a speed v ∼ ω/p. Indeed,
at zero temperature, the Fermi-Dirac distribution prescribes
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+ +

eddy modes

FIG. 5. Schematic visualization of the mode density’s branch-cut
structure [see Eq. (37)] for fixed wave vector in the complex fre-
quency plane using the spatially nonlocal model. Eddy modes in the
material are reflected by a branch cut on the negative imaginary axis
constrained by ω ∈ [−i	,−iξ nl

0 (p)]. Parallel to the real frequency
axis we find an additional branch cut bounded by ωL

± = ±vF p − i	
that is connected to Landau damping in the material (see main text).
Both cuts meet in ω = −i	 and form an upside-down T-shaped
structure.

|v| � vF, which indicates a damping for ω � ±vF p [46]. In
our case an additional damping occurs due to a particle’s finite
collision rate 	 and makes up for the second branch cut. It
describes the generalization of the eddy current modes to the
nonlocal case. For good conductors (
 
 λ̄p and 	/ωp � 1),
we obtain (see Appendix D)

ξ nl
0 (p) ≈ 	L

t (p)p2λ̄2
p, p � 1

λ̄e(
)
≡ 1




[
3π

4


2

λ̄2
p

]1/3

. (38)

This is formally similar to Eq. (29), but replaces 	 →
	L

t (p) = 4vF p/(3π ), showing that the Landau damping drives
the diffusive process that characterize the dynamics of the
eddy modes. The most important feature of the previous ex-
pression is, however, that the field can only diffuse for wave-
lengths λ̄ > λ̄e(
) due to spatial dispersion. As soon as the
motion of the electrons becomes more and more ballistic and
the mean-free path 
 becomes large, the eddy modes are no
longer supported by the system—they are effectively “frozen
out” (see Fig. 6). This critical wavelength λ̄e is equivalent to
the condition 	 = ξ nl

0 (p), for which the branch cut’s upper
and lower bounds coincide, leading to the disappearance of
the corresponding eddy currents’ contributions. In analogy to
the local case we can define the typical excitation energy of
eddy currents for spatially nonlocal conductors described by
the SCIB model. Once again, since p ∼ 1/za, the value ξ nl

0
corresponds to an energy scale

Enl ≈ 4

3π

h̄vFλ̄
2
p

z3
a

= h̄νnl. (39)

Enl is directly related to the frequency scale encountered
in the low-temperature behavior of the entropy within the
nonlocal description [see Eq. (28)]. From the point of view
of the Casimir entropy the most important aspect is, however,
that ξ nl

0 (p) does depend on the collision rate only via the
cutoff wavelength λ̄e. For comparison, in the local Drude
model, both branch points are linearly proportional to 	 and
all eddy modes show the same dependence. Upon rescaling
with respect to 	, the branch cut on the negative imaginary
axis exists for all 0 < p < ∞. In the limit 	 → 0 this ef-
fectively corresponds to infinitely many permanent current
modes flowing through the plasma. Indeed, in the limit 	 → 0

FIG. 6. We report ξ nl
0 as a function of pλ̄p [see the parametric

expression in Eq. (D5)] for different values of the collision-induced
dissipation 	 (black, drawn through line). Parameters are chosen as
in Fig. 2 and we utilize the dissipation rate of gold 	Au ∼ 30 meV as
a typical scale. For positive wave vectors, ξ nl

0 (p) is strictly bounded
by the domain 0 � ξ nl

0 (p) � 	 (horizontal dotted line). The larger
the collision-induced dissipation rate 	, the more it resembles 0 �
ξ nl

0 (p) � 	 the local limit ξ lc
0 of Eq. (29) (black, dashed line). For

small dissipation rates the behavior of ξ nl
0 is well approximated by

Eq. (38) (red, dashed line).

the mode density of all eddy modes mathematically collapses
as lim	→0 ηT (za, 0) = ∞, giving rise to the discontinuous
behavior in Eq. (21). In the nonlocal case, it remains true
that for 	(T )/T → 0 (T → 0) the eddy currents are always
excited. However, the Fermi-Dirac statistics (through the Lan-
dau damping) leads to a suppression of the modes, which is
different from the collapse in ω → 0 described above: The
branch cut asymptotically disappears but no singular behavior
occurs in ω ∼ 0. This is visible in Figs. 6 and 7, where we

FIG. 7. Imaginary part of the transverse electric reflection coeffi-
cient evaluated at the r.h.s. of its branch cut on the negative imaginary
axis. The complex frequencies are measured in multiples of the
dissipation rate 	. We depict the result for a local Drude model (solid
line) and the nonlocal SCIB model (dashed line) both vanishing at
their lower bound ξ = 	. The parameters are the same as in Fig. 2
and we fixed 	 = 10−5 eV as well as p = 1/μm in order to resolve
the transition regime from local to nonlocal response (λ̄−1

e ≈ 3/μm).
For fixed wave vector the branch-cut’s upper bound ξ lc

0 of the local
model is uniquely defined via the value of 	. In the nonlocal case,
however, the upper bound is given by ξ nl

0 [see Eq. (38)].
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report the impact of the limit 	 → 0 on the branch-point
ξ nl

0 (p) and rTE. We see that, while in the local limit ξ lc(p)/	
does not depend on the material damping, in the nonlocal case
the range of wave vectors involved in the diffusive dynamics
of the eddy currents shrinks with 	. This eventually leads
to the disappearance of the reflection coefficient’s branch
cut for pλ̄e > 1 (see Fig. 7). As a consequence, for the
magnetic Casimir-Polder free energy in the nonlocal case,
the integrand of Eq. (34) still depends on temperature and,
since Im[rTE(−ix	(T ) + 0+)] vanishes for T → 0, Fe(T )
approaches zero faster than linearly ensuring Se(T → 0) = 0.
Repeating the analysis of Eq. (33) one can still approximately
write that Fe ∼ −kBT NT

nl with NT
nl = ηT (za, 0)νnl. The free

energy is described again as an ensemble of identical classical
particles, resembling the local description. However, in the
nonlocal description, when the temperature decreases, the
number of particles is reduced and NT

nl → 0 for T → 0.

VIII. THERMODYNAMICAL PROPERTIES
OF THE OVERDAMPED MODES

Notwithstanding the oversimplifications inherent in the
Drude model, in light of the previous results and of the
numerous systems featuring a residual entropy at zero tem-
perature [73], it is interesting to further investigate the origin
of a finite value for S0. From the viewpoint of statistical
physics, a vanishing entropy in the limit T → 0 occurs only
if the system has—in this limit—one and only one microstate
available, which is quantum-mechanically connected with the
existence of a unique (nondegenerate) ground state [69,70].
If the ground state is degenerate, the system does not have
a well-prescribed order at T = 0 and a residual constant
entropy appears [69]. As mentioned above, in condensed
matter physics, such a behavior is typical of systems, where
some amount of disorder remains at zero temperature or,
equivalently, when there is lack of information about the state
of the system at T = 0 [70,73]. The Casimir entropy S0 
= 0
points therefore to a situation where, for either the interacting
or the noninteracting state or—more likely—for both of them,
some form of disorder is still trapped in the system for T → 0.

To understand how this aspect affects our system, it is
convenient to analyze first the quantum-thermodynamical
properties of a single overdamped mode of frequency ξ . As
for the eddy currents, we assume that the mode frequency can
depend on the temperature, i.e., ξ ≡ ξ (T ). For such a system
the free energy can be written as Fξ = E0

ξ + �Fξ , where

E0
ξ = 1

π

∫ �→∞

0
dω

h̄ω

2

ξ

ω2 + ξ 2
∼ −h̄ξ ln

[
ξ

�

]
> 0 (40)

represents the ground state energy. In analogy to the free
energy of an (over)damped harmonic oscillator [104–108],
this expression diverges and requires a regularization through
a cut-off frequency � [17,109]. The thermal contribution is
given instead by

�Fξ = kBT

π

∫ ∞

0
dω ln

[
1 − e− h̄ω

kBT

] ξ

ω2 + ξ 2
. (41)

The behavior of Eq. (41) in the limit T → 0 strongly depends
on the ratio ξ/T . We have that

�Fξ
T →0−−→

⎧⎨
⎩

−πk2
BT 2

6h̄ξ
< 0, ξ/T → ∞,

kBT
2 ln

[ h̄ξ

kBT

]
< 0, ξ/T → 0.

(42)

The first case (ξ/T → ∞) occurs, for instance, when the dis-
persive mode frequency ξ approaches a nonzero constant for
T → 0. The second is typical for ξ ∝ 	(T ) with 	(T ) ∝ T m

and m > 2 such as in the perfect crystal limit. Let us consider
next the corresponding partition function Z (β ) = exp[−βFξ ]
and the density of states ρdos(E ) defined by

Z (β ) =
∫ ∞

0
dE ρdos(E )e−βE , (43)

where β = (kBT )−1 [110]. In the case of a temperature-
independent ξ (ξ/T → ∞ for T → 0), the density of states
reads

ρdos(E ) = δ
(
E − E0

ξ

) + σ
(
E − E0

ξ

)
θ
(
E − E0

ξ

)
, (44)

where θ (x) is the Heaviside function and σ (x) is a function
such that σ (x) → π/(6h̄ξ ) for x → 0. The density of states
shows that the system has a unique ground state at energy
E = E0

ξ plus a continuous spectrum of excited modes starting
at E = E0

ξ [107]. Accordingly, the corresponding entropy
vanishes at T = 0.

However, if ξ/T → 0 the above analysis yields drastically
different results. Indeed, both E0

ξ and �Fξ depend on tem-
perature and the difference between ground state energy and
thermal correction looses its meaning. In addition, in the limit
T → 0 in Eq. (42) one has �Fξ 
 E0

ξ so that the partition
function takes the form

Z (β )
β→∞−−−−→

h̄ξβ→0

[
1

h̄ξβ

]1/2

. (45)

Equation (45) exhibits certain similarities with the partition
function of a free classical oscillator or a particle trapped in
a one-dimensional box [104,105,108]. Notice, however, that
the expression in Eq. (45) diverges in the limit T → 0 while
a for a free particle it goes to zero. This can be seen as a
direct consequence of the fact that the “size” of the oscillator
L ∝ √

h̄/ξ becomes much larger than the thermal de Broglie
wavelength λth ∝

√
h̄2β [80], i.e.,

Z (β ) ≈ L

λth
→ ∞. (46)

This is the range where quantum effects must become impor-
tant, while the description above shows that the diffusive cur-
rents are (one could say incoherently) behaving as a classical
system.

Let us now specify the calculation to the overdamped
modes occurring in our system when 	(T )/T → 0 and the
Drude model is used. Due to the properties of the branch
points discussed in Sec. V all the mode frequencies are
proportional to the collision rate. As in Eq. (34), we can write
ξ = x	(T ) and multiply the partition function in Eq. (45)
by (h̄	β )1/2. This amounts to performing a common shift
in the energy of all modes, which, due to its differential
nature, does not affect the thermodynamical properties of
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the corresponding Casimir interaction. The relevant parti-
tion function of a single overdamped mode, consequently, is
given by

Z̃ (β )
β→∞−−−−→

h̄ξβ→0

[
1

x

]1/2

⇒ ρ̃dos(E )
E→0−−→

[
1

x

]1/2

δ(E ). (47)

We find a density of states that describes a system with a
ground state having an effective degeneracy [1/x]1/2. Since
we have not singled out a specific overdamped mode, Eq. (47)
characterizes all of these modes and, in particular, they all
have a common ground state. Only the degeneracy, which
grows as the inverse square root of ξ/	, is quantitatively
different from mode to mode. The contribution to the Casimir
interaction stemming from these resonances is obtained by
summing (integrating) over all these modes using the differen-
tial mode density μ(x) = − limT →0 ∂xIm[�T (za,−ix	(T ) +
0+)]. For the Drude model, since all modes are proportional
to the collision rate, the parametrization discussed above
leads to a value of μ(x) which is nonzero. The resulting
expression is the free energy given in Eq. (34) and the finite
entropy S0 can therefore be interpreted as resulting from the
differential degeneracy exp[−S0/kB] of the system’s ground
state. The value is distance dependent because the modal
spectral density in the interacting configuration is different
from that in the noninteracting one. As a result the differential
number of modes behaving classically changes as a function
of za. Our findings are consistent with Eq. (33), where the free
energy due to the eddy currents has be interpreted as that of
an effective number N0

lc of identical classical oscillators.
In the nonlocal case the frequency of the overdamped

modes depends on the collision rate in a way that is different
from the local case. It is still possible to write ξ = x	(T ), due
to the cutoff in p [see Eq. (38)], but the density μ(x) vanishes
this time with T → 0. While the eddy currents in the nonlocal
case preserve their characteristics (e.g., thermally excited at
low temperature, degenerate ground state), due to an intrinsic
mechanism related to the SCIB description, their number NT

nl
is drastically reduced to zero for T = 0 (see also the argument
at the end of the previous section and discussion below).

IX. MAGNETOHYDRODYNAMICS
AND LONDON’S THEORY

It is insightful to add yet another (hydrodynamic) perspec-
tive to our analysis. As we have mentioned several times in
the foundational sections, a metal can essentially be described
as a plasma of electrons. In addition, the eddy currents are
related to a diffusive dynamics of the electromagnetic field
within a dissipative metal (see for example Sec. VIII). In
classical plasma physics this phenomenon is known as mag-
netic viscosity and can be regarded as a simple consequence
of the magnetohydrodynamic equations of motion [111]. It
also shares interesting connections with one of the oldest
phenomenological descriptions of superconductivity, i.e., the
London theory [112–114].

For a spatially local homogeneous nonmagnetic metal we
can write the equation of motion for the current j(r, t ) in terms

of the electric field E(r, t ) as

(∂t + 	)j(r, t ) = ε0c2

λ̄2
p

E(r, t ), (48)

which is known for leading to the Drude permittivity. At
low frequencies the partial derivative can be neglected and
the current fulfills Ohm’s law. It is important to note that
Eq. (48) assumes a local relation between the field and the
current, which can be justified only if the field is essentially
homogeneous. As we discussed earlier, some difficulties can
appear due to eventual interfaces [113]. Upon combining the
above expression with the Maxwell equations and neglecting
the displacement current, we obtain for the magnetic field
B(r, t ),

∂t B(r, t ) = (
λ̄2

p∂t + D
)∇2B(r, t ), (49)

where D = 	λ̄2
p is once again the diffusion coefficient intro-

duced in Sec. III (in the framework of magnetohydrodynamics
sometimes called magnetic viscosity coefficient [111]). At
low frequency (i.e., the Ohmic regime), we can neglect the
time derivative on the r.h.s. of Eq. (49) relative to the diffusion
coefficient. We then have ∂t B(r, t ) = D∇2B(r, t ), showing
that the magnetic field effectively obeys a diffusion equation.
The corresponding expressions for the (eddy) currents as well
as the electric field associated with this diffusive magnetic
field can be derived from Maxwell equations and one can
show that inside the material the fields are predominately
magnetic in nature [22,95,115]. In magnetohydrodynamics,
the limit for D → 0 (occurring for example when 	 → 0) in
the diffusion equation of the magnetic field B corresponds to
a regime where the plasma is behaving as a highly conducting
fluid. The magnetic field lines, instead of diffusing through the
plasma, are frozen within the material [111]. The latter can be
concluded from the following consideration. For a vanishing
collision rate, Eq. (48) is replaced by the equation ∂t j(r, t ) =
(ε0c2/λ̄2

p)E(r, t ) called the “acceleration equation” by London
[112,113]. The acceleration equation was used to describe the
existence of stationary currents in a superconductor [112,113]
and, when combined with Maxwell equations, leads to the
expression

∇2[B(r, t ) − B0(r)] = 1

λ̄2
p

[B(r, t ) − B0(r)]. (50)

The main consequence of Eq. (50) is that, as observed in a
superconductor, any external field B(r, t ) can penetrate the
material only within a length of the order of λ̄p. More interest-
ing for us is the field B0(r), which in London’s theory repre-
sents a frozen magnetic field: A relic describing the “memory
of the field existing in the metal” before the transition to the
nondissipative limit [112]. By implication, the total field deep
inside the material can be nonzero if it was nonzero at some
initial time. Observing that the Meissner effect always leads
to the expulsion of the magnetic flux from the superconductor
(perfect diamagnetism), the London brothers concluded that
the acceleration equation is not compatible with a description
of superconductivity. Instead, they suggested a modification
of the equations which is effectively equivalent to the assump-
tion of the additional boundary condition B0(r) = 0.
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FIG. 8. Illustration of low-frequency magnetic field character-
istics associated with conducting materials. (a) A Drude metal is
transparent for low-frequency magnetic fields (Bohr–van Leeuwen
theorem [117]). (b) A superconductor will actively exclude any
magnetic field present when it undergoes the phase transition to the
superconducting state (Meissner effect). In agreement with the Lon-
don theory, a nondissipative version of the Drude model (sometimes
called plasma model) which assumes a vanishing field inside the
material is a simple description of a superconductor [112]. (c) If
a (classical) conductor already is penetrated by a magnetic field
and is then cooled through the transition to a zero-resistance state
(ideal conductor), the magnetic field is expected to maintain in place
(solution discarded by the London theory) [118].

Let us now return to our original system. We have seen that
using the Drude model for a dissipative (local) description of
the material first and then taking the limit 	 → 0 afterwards
induces a screening which prevents any additional field from
penetrating into it, effectively decoupling the internal material
dynamics from the external field. Matter cannot dissipate en-
ergy even through radiation and a static memory of the initial
magnetic field is preserved inside it (see Fig. 8). Imposing
that the initial field is zero inside the material is essentially

equivalent to adding a further constraint (not included in the
Drude model description), which emulates the Meissner effect
in superconductivity. In these terms, a Drude model, where the
dissipation rate is removed from the very beginning (plasma
model) and the internal field is set to zero, is nothing but a
simple description of a superconductor [17,116].

Since we are dealing with fluctuating fields, there is
one more subtlety to be discussed. The relic field always
has a zero mean value, 〈B̂0(r)〉 = 0, but nonzero correla-
tion 〈B̂0(r)B̂0(r′)〉 
= 0. In order to see more clearly how
a nonvanishing correlation occurs, it is convenient to use
the fluctuation-dissipation theorem for the currents inside the
material

〈ĵ(r, ω)ĵ(r′, ω′)〉sym

= 2π h̄ω2 coth

[
h̄ω

2kBT

]
Im[ε(ω, r, r′)]δ(ω + ω′), (51)

where we considered the symmetric correlation function. For
a bulk described by the Drude model we have that

Im[ε(ω, r, r′)] = 	

ω

ω2
p

ω2 + 	2
δ(r − r′). (52)

If we now consider the limit T → 0 with 	(T ) → 0, but
	(T )/T → 0, the current-current correlation tensor becomes
time independent and takes the form

〈ĵ(r, t )ĵ(r′, t ′)〉sym ∼ ω2
p

2π
kBT δ(r − r′). (53)

Equation (53) is almost identical to that obtained in the limit
T → ∞ (classical limit) and constant 	, where, however, a
factor e−	|t−t ′ | appears. The two expressions are identical for
	 → 0. Within the Green tensor formalism one can also show
that the field correlator is nonzero and time independent in
the zero-temperature limit. In the limit 	 → 0, Eqs. (49)–(53)
hence reveal that the static (zero-frequency) component of the
field fluctuations, which were originally existing below the
surface, are trapped inside the bulk and supported by perma-
nent currents. These currents evolve from the eddy currents in
the limit of vanishing dissipation and behave classically even
at low temperature and despite the fact that no additional fields
can penetrate the material.

The free energy in Eq. (34) and the corresponding entropy
can be regarded as thermodynamically characterizing the state
of the relic field (what has been called Foucault glass above).
In fact, Eq. (34) can be seen as a mathematical consequence
of the Bohr–van Leeuwen theorem [117]. The theorem states
that, in classical systems, a consistent application of statistical
mechanics and classical mechanics does not allow for mag-
netic effects. Effectively, this means that matter and transverse
field components decouple. The free energy of the total sys-
tem becomes the sum of the free energy of the two subsystems
material and field [119–122]. As we saw, the limit T → 0 with
	(T )/T → 0 corresponds to a regime where the currents in
the metal are behaving classically even at low temperature. In
this unusual regime an application of the Bohr–van Leeuwen
theorem gives that, due to the decoupling between matter and
field, the magnetic contribution to free energy arising from
the permanent currents within the material is quantitatively
equivalent but opposite in sign to the magnetic part of classical
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free energy of the electromagnetic field. Note that the mode
density of the latter must be obtained in the limit 	 → 0
[18,100], i.e., for a nondissipative material description. Hence,
in this limit the eddy current’s free energy is formally equiv-
alent to the (negative) Casimir free energy obtained for the
plasma model in the high temperature limit [see for example
Eq. (34) and discussion at the end of Sec. VI]. This last value
must be corrected to exclude the contribution stemming from
the electric field related to TM polarizations [the second term
on the r.h.s. of Eq. (35)].

Notice that the arguments outlined above do not apply
to the permittivities given in Eqs. (8). It reveals indeed that
the main difference between the spatially local and nonlocal
material descriptions does not arise from the nonlocality itself
but rather and more generally from the statistical behavior
of the system. As already pointed out before, even though a
nonlocal interaction is relevant for describing the behavior of
the eddy currents and can lead to the disappearance of the en-
tropy defect, not all nonlocal descriptions are equivalent. For
instance, hydrodynamic extensions of the Drude model (see
for example [35,59]) also lead to a finite entropy defect at zero
temperature [123–125]. It is using a full quantum-statistical
description for the equilibrium distribution of the electrons
in the plasma which drastically modifies the behavior of the
eddy currents at low temperature and leads to their disappear-
ance. In the specific case of Eqs. (8), even if 	(T )/T → 0
for a vanishing temperature, the current-current correlation
cannot behave according to classical statistics and, due to the
Fermi-Dirac distribution, must always display some degree of
“quantumness” (preventing also the application of the Bohr–
van Leeuwen theorem). Within the present description, we
can therefore say that the mechanism leading to the vanishing
entropy at T = 0 is rather the quantum-statistical description
of the electrons than the Landau damping, although the latter
is always a consequence of the former.

X. DISCUSSION AND CONCLUSIONS

In the present paper we have isolated and studied the
thermodynamic properties of overdamped resonances (eddy
currents), with special focus on their role in atom-surface
interactions. In particular, we have analyzed the behavior
of the magnetic Casimir-Polder entropy in the limit of low
temperatures for the spatially local (Drude) model and a
nonlocal description of a metal based on the semiclassi-
cal Boltzmann-Mermin description, the SCIB model. If the
electrons’ collision rate vanishes for T → 0 (e.g., perfect
crystal model) as a power law of temperature with an ex-
ponent larger than one, the previous material descriptions
give results that qualitatively differ in the low-temperature
regime: While the nonlocal description leads to a vanish-
ing entropy, the local model provides a nonzero distance-
dependent entropy. We have shown that the behavior of the
Drude model is associated with an unusual regime where the
eddy currents decouple from the external radiation, become
undamped, and behave classically even at low temperatures.
This means that they are characterized (i) by an excitation
energy which is always lower than kBT and (ii) by a degen-
erate ground state. For a local description in the limit T →
0 and 	(T )/T → 0 all overdamped frequency modes col-

lapse toward the ground state following classical (Maxwell-
Boltzmann) statistics and inheriting the constraints of this de-
scription in terms of statistical mechanics. Since the (differen-
tial) spectral mode density depends on the atom-surface sep-
aration, the number of eddy currents effectively follows this
behavior giving rise to the nonvanishing distance-dependent
entropy.

Overdamped modes also occur within the nonlocal descrip-
tion. Nevertheless, the inclusion of spatial dispersion deeply
modifies their structure and behavior. The most important
change is the appearance of a cutoff in the dispersion relation
in one of the two branch points defining the cut along the
negative imaginary axis that represent the eddy currents in the
complex-frequency plane. We have connected the appearance
of the cutoff with the Landau damping occurring in the non-
local system, but ultimately it is the underlying Fermi-Dirac
statistics that characterizes the spatial dispersion and that
leads to a vanishing entropy at zero temperature. Physically,
this amounts to limitations in the diffusive dynamics of the
currents when the electrons’ ballistic regime becomes domi-
nant. As a result, the eddy current mode density is very differ-
ent from the local case and disappears in the limit T → 0 and
	(T )/T → 0 (instead of collapsing towards ω ∼ 0), leading
to a vanishing Casimir entropy for T → 0. Eddy currents are
diffusive bulk currents and not surface currents [95,96]. They
are therefore sensitive to the material’s optical response in the
region inside the object itself. Our analysis highlights that,
in addition to the common focus on the surface’s properties,
attention must be also devoted to the bulk’s properties, since
they can become relevant in determining the properties of the
Casimir(-Polder) interaction.

We have related our results to the characteristics of the
electromagnetic field within a plasma described by the stan-
dard magnetohydrodynamic theory [111]. For vanishing vis-
cosity (dissipation), the magnetic flux is trapped within the
material supported by currents which are the nondissipative
static (ω ∼ 0) version of the eddy currents. While any addi-
tional magnetic field can penetrate the material only to within
a distance comparable to the reduced plasma wavelength, a
relic field disorder can still pervade the material and preserves
a certain memory of the diffusive dynamics occurring for
finite dissipation. It is the free energy and the entropy of this
relic field which is responsible for the finite Casimir entropy at
T = 0. Such a situation can only occur if the currents within
the plasma behave classically even at low temperatures and
their density is high enough. It is prohibited, however, once
certain statistical properties (in our case the Pauli exclusion
principle via the Fermi-Dirac statistics) enter the description
of the system.

Finally, we would like to note that the above description
can also account for certain properties of the Casimir free
energy in metallic films [126]. Here it was shown that in the
limit of a diverging plasma frequency, for which the perfect
electric conductor limit should be recovered, the Drude model
and its nondissipative version, the plasma model, behave quite
differently. At high temperatures, the plasma model gives
rise to a vanishing free energy while it stays constant for
the Drude model. Once again, a diverging plasma frequency
implies a transition of the material from a diffusive to a highly
conducting state (D → 0 for λ̄p → 0) and the constant free
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energy corresponds to that of the relic field disorder trapped
in the material. As discussed in the main text, a description in
terms of the plasma model is consistent with the description
of a metal in the superconducting state for which the field
inside the material has been expelled because of the Meissner
effect. The different results for the Casimir free energy of
metallic films can, therefore, be explained from a lack of
perfect diamagnetism for the perfect electric conductor limit
obtained from the Drude model.
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APPENDIX A: THE FUNCTION �T (za, ω)

This Appendix is devoted to the analysis of the function
�T (za, ω) obtained for the magnetic Casimir-Polder interac-
tion, when we use the nonlocal description of the metal. We
will focus on the nonretarded region za � λa. From Eqs. (3)
and (14) we can write

�T (za, ω) ≈ −�T (ω)

z3
a

∫ ∞

0
dy y2e−yrTE

(
ω,

y

2za

)
, (A1)

where we make the change of variable y = 2za p. For the local
description of the metal we can use Eq. (15) and obtain

�T (za, ω) ≈ −�T (ω)

za

ω2

c2
[ε(ω) − 1]. (A2)

In the nonlocal case, using Eqs. (4) and (5b), the reflection
coefficient can be written as

rTE(ω, p) ≈ 1

2

[
ZTE(ω, p)

ZTE
0 (ω, p)

− 1

]

≈ 1

2

[∫ 1

0
dx

2
π√

1 − x2

1

1 − εt
(
ω,

p
x

)
ω2x2

p2c2

− 1

]

= 1

2

∫ 1

0
dx

2
π√

1 − x2

εt
(
ω,

p
x

)
ω2x2

p2c2

1 − εt
(
ω,

p
x

)
ω2x2

p2c2

, (A3)

where we have used that

∫ 1

0
dx

2
π√

1 − x2
= 1. (A4)

From Eqs. (8), in the limit |ω| � 	, we can use the following
approximation for the dielectric function:

εt

(
ω,

y

2zax

)
≈ i

ω2
p

ω	
gt

(
i
za




2x

y

)
, (A5)

where 
 = vF/	 is again the mean-free path. Since the largest
contributions arise from x, y ∼ 1, the ratio za/
 is determining
the limiting behavior of the function gt (u). As explained in
the main text for za 
 
, one has gt ∼ 1 and we recover the
local result in the corresponding limit. In the opposite case
(|u| → 0) we have

εt

(
ω,

y

2zax

)
≈ i

ω2
p

ω

3π

2

za

vF

x

y
. (A6)

Notice that the previous expression is valid only if

za




2x

y
< 1 ⇒ y >

2za



(0 � x � 1). (A7)

This is in contrast with the boundary y ∼ 0 in the integral
in Eq. (A1). However, since za � 
, the range 0 < y < 2za/


gives a subleading contribution to the integral and can safely
be neglected. For the reflection coefficient we hence obtain

rTE

(
ω,

y

2za

)
≈ 1

2

∫ 1

0
dx

2
π√

1 − x2

iω 3π
4

λ̄p

vF

x3

y3

( 2za
λ̄p

)3

1 − iω 3π
4

λ̄p

vF

x3

y3

( 2za
λ̄p

)3

≈ i
3π

4
ω

za

vF

(
2za

λ̄p

)2 ∫ 1

0
dx

2
π√

1 − x2

x3

y3

= i
ω

y3

za

vF

(
2za

λ̄p

)2

. (A8)

Importantly, in the second line of the last expression we
have approximated the denominator in a way which amounts
to neglecting the dielectric function appearing in the denom-
inator of Eq. (A3). This is possible since, from Eq. (A6), the
dielectric function stays finite as long as y > 2za/
 and the
dominant values are for y ∼ 1. The condition on the distance
needs, however, a stronger constraint and za � 
 must be
replaced with

za � 


[
2

3π

λ̄2
p


2

]1/3

. (A9)

Inserting the previous result in Eq. (A1) we obtain

�T (za, ω) ≈ −4iω
�T (ω)

vFλ̄
2
p

∫ ∞

2za



dy
e−y

y

≈ 4iω
�T (ω)

vFλ̄
2
p

ln

[
2za

γ ′
E


]
, (A10)

where γ ′
E = e−γE with γE the Euler-Mascheroni constant.

Using �T (za, ω) = −∂ωIm[�T (za, ω)], the previous equation
directly leads to Eq. (24).

The last steps in the above derivation are no longer valid
if 	 → 0. This limit is interesting for the evaluation of the
entropy at small temperatures and therefore we focus only
on the limit |ω| → 0. In this case 
 → ∞, leading to the
divergence of Eq. (A10) or, equivalently, in the density of
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modes in Eq. (24). However, since the constraint in Eq. (A7)
includes now y = 0, it is not possible to neglect the dielectric
function in the denominator of Eq. (A3). A simplification is
possible if we impose that

y 

[

3π

4

|ω|λ̄p

vF

]1/3 2za

λ̄p
= 2

[
h̄|ω|
Enl

]1/3

, (A11)

where Enl is the characteristic energy of the eddy currents for
the nonlocal description of the metal given in Eq. (39). For
|ω| → 0 the previous limit amounts to neglecting a subleading
contribution in the integral in Eq. (A1). We then obtain

�T (za, ω) ≈ 4

3
iω

�T (0)

vFλ̄
2
p

ln

[(
2

γ ′
E

)3 h̄|ω|
Enl

]
. (A12)

APPENDIX B: ENTROPY BEHAVIOR
AT LOW TEMPERATURE

In this Appendix we analyze the Casimir entropy at low
temperature. Our approach is based on an improvement
of a method originally presented in [13]. As explained in
Sec. IV, the entropy is related to the behavior of the function
�T (za, ζ ), where ζ is a complex frequency. Dropping, for
simplicity, the distance dependence from Eq. (17) we have

S (za, T )

πkB
= − d

dν

∞∑
n=0

′
ν�T (inν)

= −
∞∑

n=1

[
�T (inν) + inν�T

ζ (inν)
]

− �T (0)

2
−

∞∑
n=0

′
ν

h̄∂T �T (inν)

2πkB
. (B1)

Here the prime indicates that the first term of the sum has
to be taken with a prefactor 1/2 and we define �T

ζ (ω) =
[∂ζ�

T (ζ )]|ζ=ω. Upon writing �T (inν) = n�T (inν) − (n −
1)�T (inν) and after straightforward but rather cumbersome
algebra, we can write the second line in the above expres-
sion as

−
∑
n=1

inν

[
�T

ζ (inν) + �T (inν) − �T [i(n + 1)ν]

iν

]

=
∑

n=1,m=2

n�T
ζ m (inν)

(iν)m

m!

=
∮

C

dz

2π i

∑
n=1,m=2

n(iν)m

(z − inν)m+1
�T (z), (B2)

where C denotes a path that encloses counterclockwise the
upper part of the complex z plane. In the last step of the
previous calculation we use that �T (z) is analytic in the upper
part of the complex plane. In the limit of ν → 0, we obtain∑

n=1

n(iν)m

(z − inν)m+1
=

∑
n=0

(iν)m−1(i[n + 1]ν)

(z − i[n + 1]ν)m+1

≈
∫ ∞

0
dx

(iν)m−2[x + iν]

(z − [x + iν])m+1

= (iν)m−2(z − imν)

m(m − 1)(z − iν) j
. (B3)

Then, the first two terms of the series in m are∮
C

dz

2π i

[
(z − i2ν)

2(z − iν)2
+ iν(z − i3ν)

6(z − iν)3

]
�T (z)

≈ 1

2
�T (iν) − 1

3
iν�T

ζ (iν)

= 1

2
�T (iν) − 1

3
ν∂ν�

T (iν). (B4)

Collecting all the terms and approximating the rightmost sum
in Eq. (B1) by an integral we obtain

S (T → 0)

πkB
≈�T (iν) − �T (0)

2
− 1

3
ν∂ν�

T (iν)

−
∫ ∞

0
dξ

h̄∂T �T (iξ )

2πkB
. (B5)

Upon assuming that the function �T (iν) is well behaved in
the limit ν → 0 (see the main text), Eq. (B5) can be further
simplified as

S (T → 0)

πkB
≈ 1

6
ν�T (0) −

∫ ∞

0
dξ

h̄∂T �T (iξ )

2πkB
, (B6)

where we use that �T (ω) = Re[�T (ω)] + iIm[�T (ω)] (with
the real and imaginary part being, respectively, even and odd
in ω) and that �T (ω) = −∂ωIm[�T (ω)]. In most of the cases
we can safely neglect the third term in Eqs. (B5) and (B6):∫ ∞

0
dξ∂T �T (za, iξ ) = ∂	(T )

∂T
∂	

∫ ∞

0
dξ�T (za, iξ ) (B7)

since it vanishes faster than linearly for vanishingly small
temperatures.

Interestingly, the very same result of Eq. (B6) can
be obtained by regarding, in Eq. (1), the expression
coth [h̄ω/(2kBT )] as a distribution. Then we can employ its
asymptotic moment expansion [127,128]

coth [τω] ∼ sgn[ω] +
∑
n=0

μn(−1)nδ(n)(ω)

n!τ n+1
for τ → ∞,

(B8)

where μn denotes the moments of the (regularized) distribu-
tion defined as

μn =
{

0, n even,∫ ∞
−∞ dω ωn

(
coth[ω] − sgn[ω]

)
, n odd.

(B9)

In our case, τ = h̄/(2kBT ) is the thermal coherence time,
which indeed tends to infinity for T → 0. In order to re-
cover Eq. (B6), we consider the first two terms of the sum
in Eq. (B8), with μ1 = π2/6 and Im[�T (za, 0)] = 0. The
previous expression also allows us to easily consider higher
order terms and write

S (za, T )

kB

= −
∑
k=0

μ2k+1(k + 1)Im�ω2k+1 (za, 0)

(2k + 1)!

[
2kBT

h̄

]2k+1

.

(B10)
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APPENDIX C: DENSITY OF EDDY CURRENTS

In this Appendix we analyze the contribution to the density
of mode ηT (za, ω) stemming from the eddy currents. Starting
from the definition in Eq. (30) we focus on the limit ω → 0
and consider first the case with a constant damping rate 	. In
order to simplify the calculation we consider the limit where
the contribution of the eddy currents is more relevant, i.e.,
when 	 is the smallest (but finite) frequency scale in the
system. In this case we have that

ηT (za, 0) ≈ �T (0)I (2, 2) − μ0

(8π )2
βT

zz(0)
I (0, 0)

c2
. (C1)

Here we define the parameter-dependent integral

I (i, j) = − 8

π
Im

∫ 	

0

dξ

ξ i

∫ ∞

ξ/c
dκ κ je−2κza

κ −
√

κ2 − κ2
ξ

κ +
√

κ2 − κ2
ξ

.

(C2)

The corresponding integrand becomes complex valued as
soon as κ2 < κ2

ξ = ξ/[D − ξλ̄2
p], thus defining an upper

bound for the κ integration. Substituting dy = dκ/κξ and
dκξ = Dκ3

ξ dξ/(2ξ 2), the integral reads

I (i, j) = 32

πD

∫ ∞

0
dκξ κ

j−2
ξ

(
Dκ2

ξ

κ2
ξ λ̄

2
p + 1

)2−i

×
∫ 1

ϕ(ξ )
dy y j+1

√
1 − y2e−2yκξ za , (C3)

where ϕ(ξ ) = √
(ξ	 − ξ 2)/ωp ∈ [0, 	/(2ωp)] is a symmet-

ric positive function centered around 	/2 and vanishing
at ξ = 0, 	. In the limit of good conductors, 	/ωp �
1, we can approximate ϕ(ξ ) ≈ 0. The remaining integral
can be evaluated exactly obtaining I (2, 2) = [Dza]−1, while
I (0, 0)/c2 ∝ D/c2. Upon neglecting this subleading contri-
bution, ηT (za, 0) becomes equivalent to the result reported
in Eq. (23). Using the results of Appendix B, one can show
that in this case the entropy contribution stemming from the
eddy modes vanishes linearly with the temperature as Se =
(π2/3)(k2

B/h̄)η0
e (za, 0)T .

Consider now the case where the dissipation rate obeys
a power-law dependence with regards to temperature, i.e.,
	 ∝ T m, where m � 2. In general, starting from Eq. (30),
after a partial integration, the entropy due to eddy modes can
be written as

Se = h̄

2π
∂T

∫ ∞

0
dω coth

[
h̄ω

2kBT

]

×
∫ 	

0
dξ

ω

ξ 2 + ω2
Im�T (za,−iξ + 0+). (C4)

We make the change of variables ξ = x	, x < 1, ω = z	 and
obtain

Se = h̄

2π
∂T

{
	

∫ 1

0
dx Im�T (za,−ix	 + 0+)

×
∫ ∞

0
dz coth

[
z

h̄	

2kBT

]
z

x2 + z2

}
. (C5)

Since only the thermal contribution is relevant and the integral
is convergent, z � 1 and for 	/T → 0 the cotangent hyper-
bolic can be approximated with the inverse of its argument.
The resulting integral in z can be performed and as a result, in
the case of a perfect crystal, we obtain for the low-temperature
limit of the eddy currents’ contribution to the entropy

Se = kB

2

∫ 1

0
dx

Im�0(za,−i	x + 0+)

x

∣∣∣∣
	→0

, (C6)

which is independent of the dissipation rate 	 [see Eq. (C2)].
Using Eq. (A1) and performing the y integration, we
eventually obtain

Se = 4πkB
�0(0)

z3
a

F

(
za

λ̄p

)
, (C7)

where F (x) is the function defined below Eq. (25). Equation
(C7) confirms the argument outlined below Eq. (34), i.e.,
Se → S0 (T → 0).

APPENDIX D: THE NONLOCAL BRANCH POINT

In this Appendix we study the characteristics of the nonlo-
cal branch-point ξ nl

0 (p) defined as the purely imaginary solu-
tion of εt (ω, p)ω2/c2 − p2 = 0. To this end it is convenient to
change the variables according to ω = −iξ = −i	(1 − s), so
that real values of ξ correspond to real values of s. The passiv-
ity of our system implies that s < 1 and from comparison with
the local case we expect that s > 0. After some manipulations,
using the expressions in Eqs. (8), the zeros of the argument of
the square root in the denomination of Eq. (37) can be found
by solving

s3
λ̄2

p


2
+ 	2

ω2
p

s(1 − s)2x2 − (1 − s)gt (x)x2 = 0. (D1)

For finding ξ nl
0 (p) we are interested in the real solution of

the previous equation only, where x = s/(p
) > 0 and the
function gt (x) is given by

gt (x) = 3

2
[(1 + x2)x arccot[x] − x2]

≈
{

3π
4 |x|, x � 1,

1, x 
 1.
(D2)

If we look at s and x as two independent variables, Eq. (D1)
can be solved exactly for s(x). But for our purpose it is
sufficient to consider the reduced cubic equation obtained by
neglecting the term proportional to 	2/ω2

p which usually is
quite small in metals:

s3 + s

2

λ̄2
p

gt (x)x2 − 
2

λ̄2
p

gt (x)x2 = 0. (D3)

Since gt (x)x2 � 0, the real solution of the previous equation
is given by

s0(x) = 2x



λ̄p

√
gt (x)

3
sinh

[
1

3
arcsinh

(
3

2x

λ̄p




√
3

gt (x)

)]
.

(D4)
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We can then describe the behavior of ξ nl
0 (p) in terms of the

parametric solution

ξ nl
0 (p) ≈

{
	[1 − s0(x)],
p = s0(x)

x
 .
(D5)

Specifically, we find that s0(0) = 0 � s0(x) � 1 = s0(∞) in-
dicating that for the branch point we have 0 � ξ nl

0 (p) � 	,
where the value ξ nl

0 (p) = 0 corresponds to x → ∞ and p = 0.
The relation ξ nl

0 (p) = 	 is fulfilled for

p = 1




[
3π

4


2

λ̄2
p

]1/3

. (D6)

This also is the maximum value that the variable p can take.
If 
 
 λ̄p, then x � 1 (vF/c 
 	/ωp) and the solution takes
the form given in Eq. (38). This can be seen directly from
Eq. (D4) which now reads

1 + s

2

λ̄2
p

3π

4

(
1

p


)3

− 
2

λ̄2
p

3π

4

(
1

p


)3

≈ 0

⇒ s ≈ 1 − 4

3π
p3
λ̄2

p. (D7)

As a result, the corresponding frequency is

ξ nl
0 (p) ≈ 4

3π
p3vFλ̄

2
p, (D8)

which coincides with the expression given in Eq. (38).
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