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Electric dipole polarizability of group-13 ions using perturbed relativistic coupled-cluster theory:
Importance of nonlinear terms
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We compute the ground-state electric dipole polarizability α of the group-13 ions using the perturbed relativis-
tic coupled-cluster theory. To account for the relativistic effects and quantum electrodynamical corrections, we
use the Dirac-Coulomb-Breit Hamiltonian with the corrections from the Uehling potential and the self-energy.
The effects of triple excitations are considered perturbatively in the theory. Our results for polarizability are in
good agreement with previous theoretical results for all the ions. From our results we find that the nonlinear
terms in perturbed relativistic coupled-cluster theory have significant contributions and must be included to
obtain accurate value of dipole polarizability for group-13 ions. For the correction from the Breit interaction, we
find that it is largest for Al+ and decreases with increasing Z . The corrections from the vacuum polarization and
the self-energy increases with increasing Z .
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I. INTRODUCTION

The electric dipole polarizability of atoms or ions is a mea-
sure of the interaction with an external electromagnetic field
[1]. It is a key parameter, and plays an important role in prob-
ing fundamental as well as technologically relevant properties
of atoms and ions. Some current and potential implications of
α in atomic systems include discrete symmetry violations in
atomic systems [2,3], optical atomic clocks [4,5], condensates
of dilute atomic gases [6–8], high-harmonic generation and
ultrafast processes [9–12], and the search for the variation in
the fundamental constants [13].

The recent advances in the development of new and im-
proved frequency and time standards in optical domain has
increased interest in the electric dipole polarizability of atoms
and ions. One of the important reasons for this is that the
electric dipole polarizability (α) is essential to calculate the
blackbody radiation (BBR) shift in the atomic or ionic transi-
tion frequencies due to ac Stark effect. The BBR shift is one of
the dominant environment induced shifts in atomic transition
frequency, and contributes to the inaccuracy of atomic clocks.
Here, it is to be emphasized that the group-13 ions are promis-
ing candidates for accurate optical atomic clocks as they are
expected to have low fractional frequency errors [14–18].
Here, it is to be mentioned that we have used the IUPAC
nomenclature to identify the group in the periodic table [19].
Among the ions in the group, an optical atomic clock with Al+
has recently reached the fractional frequency uncertainty of
9.4 × 10−19 [20,21]. This is, perhaps, the most precise clock
in existence today. Despite the important prospect associated
with these ions, the ground-state polarizability has not been
studied in detail. For example, except for Al+, very little
data is available from the previous theoretical calculations.
This, perhaps, can be attributed to the complex nature of the
correlation effects in these divalent ions.

It can thus be surmised that there is a research gap on
the dipole polarizability for group-13 ions. But, considering
the experimental developments there are compelling reasons
to address this research gap. That is the aim of this work.
For this we employ the perturbed relativistic coupled-cluster
(PRCC) theory and compute the ground state α of group-13
ions and examine the trends in correlation effects in detail.
More precisely, our aim is to compute accurate value of α

for B+, Al+, Ga+, In+, and Tl+ ions using PRCC theory;
examine in detail the contributions from the nonlinear terms
in PRCC theory; do a comparative study with the trends
observed in other closed-shell atoms and ions [22–27]; and
examine the contributions to α from Breit interaction, vacuum
polarization and the self-energy corrections, and compare
them with other closed-shell atoms and ions. Such a study is
essential, as mentioned in Ref. [20], to obtain accurate values
of the BBR shift to reduce the uncertainty of Al+ optical
atomic clocks. And, the same reasoning applies to the other
ions of the group. In particular, the importance of obtaining
accurate values of α is that the BBR shift depends on the
differential polarizability [28]. Hence, obtaining reliable value
of the ground-state polarizability is essential.

The PRCC theory is an appropriate many-body theory to
account for the correlation effects arising from the external
perturbation. It has been used to compute accurate value of
α for several atoms and ions in a series of our previous
works [22–27]. The essence of PRCC is that it is a relativistic
coupled-cluster (RCC) theory [29–31] with an additional set
of cluster operators. The latter accounts for the effects of an
internal or external perturbation Hamiltonian. The amplitudes
of these cluster operators are obtained by solving a new set
of coupled linear equations; this is in addition to the RCC
cluster amplitude equations. The added advantage of PRCC
is that it does not employ the sum-over-state [32,33] approach
to incorporate the effects of a perturbation. The summation
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over all the possible intermediate states is subsumed in the
perturbed cluster operators. In our previous works we have
also demonstrated and verified the implementations of the
Breit interaction [23], vacuum polarization [25], and triple
excitation in unperturbed [26] and perturbed [27] cluster
operators. In the literature, there are other many-body theories
which have been used to compute α to good accuracy for a
variety of atomic systems. A recent review by Mitroy and
collaborators [34] provides a detailed overview of these many-
body theories and their applications. The remaining part of
the paper is organized as follows. In Sec. II we provide an
overview of the RCC and PRCC theories. In Sec. III we
provide the calculational details where we discuss the basis
functions, nuclear potential, etc., used in the present work.
The results obtained from our computations are analyzed and
discussed in Sec. IV. Unless stated otherwise, all the results
and equations presented in this paper are in atomic units(h̄ =
me = e = 1/4πε0 = 1).

II. THEORETICAL METHODS

We use the Dirac-Coulomb-Breit no-virtual-pair Hamil-
tonian HDCB to incorporate the relativistic effects in high-Z
atoms. It provides a good description of the structure and
properties of heavier atoms and ions. For an N-electron atom
or ion,

HDCB =
N∑

i=1

[cαi · pi + (βi − 1)c2 − VN (ri )]

+
∑
i< j

[
1

ri j
+ gB(ri j )

]
, (1)

where α and β are the Dirac matrices. In the present work
the negative-energy continuum states of the Hamiltonian are
projected out by using the kinetically balanced finite GTO
basis sets [35,36], and selecting only the positive energy states
from the finite size basis set [37,38]. The last two terms,
1/ri j and gB(ri j ), are the Coulomb and Breit interactions,
respectively. The Breit interaction, which represents the in-
terelectron magnetic interactions, is

gB(r12) = − 1

2r12

[
α1 · α2 + (α1 · r12)(α2 · r12)

r2
12

]
. (2)

The Hamiltonian HDCB satisfies the eigenvalue equation,

HDCB|�i〉 = Ei|�i〉, (3)

where |�i〉 is the exact atomic state and Ei is the correspond-
ing exact energy.

In the presence of external perturbations, the Hamiltonian
HDCB is modified with the addition of the perturbation interac-
tion terms. For example, the total Hamiltonian in the presence
of an external electric field Eext is

HTot = HDCB + λHint, (4)

where Hint = −D · Eext is the interaction Hamiltonian, aris-
ing from the interaction between the induced electric dipole
moment D of the atom and the external electric field Eext.
And, λ is a perturbation parameter. The modified Hamiltonian
satisfies the eigenvalue equation,

HTot|�̃i〉 = Ẽi|�̃i〉, (5)
where |�̃i〉 and Ẽi represent the perturbed atomic state and the
corresponding perturbed eigenenergy, respectively.

To compute |�i〉 and |�̃i〉 we use RCC [30] and PRCC
[22–27] theories, respectively. In the RCC theory the ground-
state atomic wave function of a closed-shell atom is

|�0〉 = eT (0) |�0〉, (6)

where |�0〉 is the reference state wave function and T (0) is
the cluster operator. The perturbed ground state, based on the
PRCC theory, is

|�̃0〉 = eT (0)+λT(1)·E|�0〉 = eT (0)
[1 + λT(1) · Eext]|�0〉.

(7)
For an N-electron closed-shell atom T (0) = ∑N

i=1 T (0)
i and

T(1) = ∑N
i=1 T(1)

i , where i is the order of excitation. An ap-
proximation, which captures most of the correlation effects, is
the coupled-cluster single and double (CCSD) approximation
[39]. With this approximation,

T (0) = T (0)
1 + T (0)

2 , (8a)

T(1) = T(1)
1 + T(1)

2 . (8b)

These cluster operators in second quantized notations are

T (0)
1 =

∑
a,p

t p
a a†

paa, (9a)

T (0)
2 = 1

4

∑
a,b,p,q

t pq
ab a†

pa†
qabaa, (9b)

T(1)
1 =

∑
a,p

τ p
a C1(r̂)a†

paa, (9c)

T(1)
2 = 1

4

∑
a,b,p,q

∑
l,k

τ
pq
ab (l, k){Cl (r̂1)Ck (r̂2)}1a†

pa†
qabaa, (9d)

where t ...
... and τ ...

... are the cluster amplitudes, a†
i (ai) are

single-particle creation (annihilation) operators, and abc . . .

(pqr . . .) represent core (virtual) single-particle states or
orbitals. Here, we have used C tensors to represent the
perturbed cluster amplitudes to incorporate the rank of
D in the perturbation Hamiltonian. Besides this modifica-
tion, T(1)

2 are also constrained by the parity and triangu-
lar conditions [23]: (−1)(la+lp) = (−1)(lb+lq ); | ja − jp| � l �
( ja + jp), | jb − jq| � k � ( jb + jq), and |l − k| � 1 � (l +
k), where l ( j) represents the orbital (total) angular momentum
of the single-electron state.

The unperturbed cluster operators T (0) used in Eq. (6) are
obtained by solving the coupled nonlinear equations:

〈
�p

a

∣∣HN + [HN , T (0)] + 1

2!
[[HN , T (0)], T (0)] + 1

3!
[[[HN , T (0)], T (0)], T (0)]|�0〉 = 0, (10a)

〈
�

pq
ab

∣∣HN + 1

2!
[[HN , T (0)], T (0)] + 1

3!
[[[HN , T (0)], T (0)], T (0)] + 1

4!
[[[[HN , T (0)], T (0)], T (0)], T (0)]|�0〉 = 0. (10b)
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The states |�p
a〉 and |�pq

ab〉 are singly and doubly excited determinants obtained by replacing one and two electrons from
core orbitals in |�0〉 with virtual electrons, respectively. And, HN = HDCB − 〈�0|HDCB|�0〉 is the normal-ordered Hamiltonian.
These equations are solved first and the cluster amplitudes so obtained incorporate the electron-electron correlation effects
arising from the Coulomb and Breit interactions to all orders. Similarly, the operators T(1) in Eq. (7) are the solutions of the
coupled equations,

〈
�p

a

∣∣HN + [HN , T(1)] + [[HN , T (0)], T(1)] + 1

2!
[[[HN , T (0)], T (0)], T(1)]|�0〉 = 〈

�p
a

∣∣[D, T (0)] + 1

2!
[[D, T (0)], T (0)]|�0〉, (11a)

〈
�

pq
ab

∣∣HN + [HN , T(1)] + [[HN , T (0)], T(1)] + 1

2!
[[[HN , T (0)], T (0)], T(1)] + 1

3!
[[[[HN , T (0)], T (0)], T (0)], T(1)]|�0〉

= 〈
�

pq
ab

∣∣[D, T (0)] + 1

2!
[[D, T (0)], T (0)]|�0〉. (11b)

We refer to the above equations as the PRCC equations
for singles and doubles, respectively. These are coupled linear
equations, but nonlinear in T (0). More precisely, the left-hand
side of the singles (doubles) equation contain terms which are
two (three) orders in T (0). This is to account for the correlation
effects associated with Hint more accurately. We solve these
equations using the Jacobi method, and to remedy the slow
convergence of this method we employ direct inversion of the
iterated subspace (DIIS) [40].

Solving the PRCC equations is, however, computationally
expensive. This is due to the large number of many-body
diagrams arising from the contraction with multiple T (0)

operators. But, in most of the cases the contribution from the
nonlinear terms is very small. In such cases, only the terms
linear in T (0) can incorporate most of the correlation effects.
Then, Eq. (11) are simplified to〈

�p
a

∣∣HN + [HN , T(1)]|�0〉 = 〈
�p

a

∣∣[D, T (0)]|�0〉, (12a)〈
�

pq
ab

∣∣HN + [HN , T(1)]|�0〉 = 〈
�

pq
ab

∣∣[D, T (0)]|�0〉. (12b)

We refer to these equations as the linearized perturbed
coupled-cluster (LPRCC) equations. The LPRCC incorpo-
rates all the important many-body effects like random-phase
approximation and provides a good description of the atomic
properties in the presence of the perturbation. In our previous
works on the dipole polarizability for closed-shell systems
[22–27], we have demonstrated that α obtained using LPRCC
agrees well with the available theory and experimental data.

In the PRCC theory, the ground-state dipole polarizability
of close-shell atoms or ions is [27]

α = −〈�̃0|D|�̃0〉
〈�̃0|�̃0〉

. (13)

From Eq. (7), using the expression of |�̃0〉 we can write

α = −〈�0|T(1)†D̄ + D̄T(1)|�0〉
〈�0|�0〉 , (14)

where D̄,= eT (0)†
DeT (0)

, and in the denominator 〈�0|�0〉 is
the normalization factor. Considering the computational com-
plexity, we truncate D̄ and the normalization to factor to sec-
ond order in the cluster amplitudes. Based on earlier studies,
the contributions from the higher order terms are negligible
[26,27]. To further improve the results we also incorporate the
triply excited cluster amplitudes T(1)

3 perturbatively [27]. And,
the results so obtained are labeled as PRCC(T).

III. CALCULATIONAL DETAILS

The use of basis set with good descriptions of single-
electron wave functions and energies is critical to get accurate
results from RCC and PRCC computations. In this work we
use the Gaussian-type orbitals (GTOs) [35] as the single-
electron basis for RCC and PRCC computations. The GTOs
are finite basis set orbitals in which the orbitals are expressed
as linear combinations of Gaussian-type functions (GTFs).
Specially, the GTFs of the large component of the orbitals
have the form,

gL
κ p(r) = CL

κir
nκ e−αpr2

, (15)

where p = 0, 1, 2, . . ., m is the GTO index and m is the
number of GTFs. And, the exponent αp = α0β

p−1, where α0

and β are two independent parameters optimized separately
for each orbital symmetries. This choice of the exponents is
referred to as the even-tempered basis set. The small compo-
nents of orbitals are derived from the large components using
the kinetic balance condition [36]. To incorporate the effects
of the finite size of the nucleus we use two-parameter finite
size Fermi density distribution,

ρnuc(r) = ρ0

1 + e(r−c)/a
, (16)

where a = t4 ln(3). The parameter c is the half charge radius
of the nucleus so that ρnuc(c) = ρ0/2, and t is the skin
thickness.

To generate GTO basis we optimize α0 and β parameters
so that the orbital energies, both the core and virtual orbitals,
match the numerical orbitals obtained from the CRASP2K code
[41]. In addition, we also match the self-consistent field (SCF)
energies. It must be mentioned here that the virtual orbitals in
d (for Al+ and Ga+) and f (for Ga+, In+, and Tl+) symme-
tries have significant contributions to the dipole polarizability.
Hence, it is essential to optimize the virtual orbitals in d and
f symmetries. The optimized α0 and β parameters for all the
ions are given in Table I.

To improve the quality of single-electron basis further,
we also incorporate the effects of Breit interaction, vacuum
polarization, and the self-energy corrections in the basis gen-
eration. These improved orbitals are then used in RCC and
PRCC computations. This leads to, through a change in the
cluster amplitudes, a small but important change in the dipole
polarizability of all the ions.
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TABLE I. The α0 and β parameters of the even tempered GTO
basis used in our calculations.

s p d

Ion α0 β α0 β α0 β

B+ 0.0046 2.258
Al+ 0.0020 2.038 0.0020 2.105
Ga+ 0.0046 2.258 0.0048 2.215 0.0045 2.120
In+ 0.0053 1.862 0.0052 1.870 0.0058 1.880
Tl+ 0.0570 1.895 0.0498 1.820 0.0615 1.955

IV. RESULTS AND DISCUSSIONS

The SCF and single-electron energies from optimized GTO
match very well with the GRASP2K results for all the ions. The
largest deviation in the SCF energy is of the order 10−3 hartree
and this is observed in the case of In+. For the remaining ions
the deviation is much smaller, and lowest is in the case of
B+ where the deviation is of order 10−6 hartree. The detailed
discussions on SCF and orbital energies, and the contributions
from the Breit interaction, vacuum polarization, and the self-
energy corrections are given in the Appendix. For comparison,
we also computed the contribution from Breit interaction and
vacuum polarization to the SCF energies obtained from the
B-spline basis using the code by Zatsarinny and Fischer [42].
Overall the sign and magnitude of our results with GTOs
are in very good agreement with the B-spline results for all
the ions.

In Table II we list the values of α obtained from our
computations. And, for comparison, the results from previous
works are also listed in the table. As seen from the table, the
LPRCC values of α are on average ≈24% larger than the
previous theoretical results for all the ions. This is in contrast
to the trends observed in our previous works [22–27], where
we showed that LPRCC results are reliable for the ground-
state polarizability for closed-shell systems. This could be due
to the larger electron-correlation effects associated with the
two-valence nature of these ions, which is further enhanced
due to the orbital contraction as these are singly charged
ions. To account for the strong correlation effects, in the
present work, we include the nonlinear terms in PRCC theory.
This accounts for the electron correlation effects arising from
the perturbation more accurately through the coupling with
T(1)

1 cluster operators. More precisely, from our computations
we find a large cancellation due to the contribution from a

nonlinear diagram arising from the PRCC term HN T (0)
2 T(1)

1 .
And, hence, it reduces the value of α, which is identified as
PRCC in the table.

In terms of correlation effects, as mentioned earlier, one
major advantage with PRCC theory is that it does not use the
sum-over-state approach [32–34]. The latter is a widely used
technique to compute the dipole polarizability by summing
over a selected set of intermediate states. So, the accuracy
of this approach is limited by the number of excited states
included in the summation. For divalent atomic systems, like
the present case of group-13 ions, it is often difficult to obtain
a large set of intermediate states, and this leads to errors
in the computed properties. In PRCC, the summation over

TABLE II. The final value of α (in a.u.) from our calculations are
compared with the other theory and experimental results. The values
of α listed from present work include the effects of Breit interaction,
vacuum polarization, and the self-energy corrections.

Present Previous
Ion work Method works Method

B+ 12.809 LPRCC 9.62 [16] CI+all-order
9.413 PRCC 9.57 [43] CCD+ST(CCD)
9.415(56) PRCC(T) 9.64(3) [44] CICP

Al+ 28.624 LPRCC 24.05 [16] CI+all-order
23.502 PRCC 24.14(8) [45] RCC
23.516(141) PRCC(T) 23.78(15)a [46] Finite-field

24.07(41)b [46] Finite-field
24.12 [47] CI
24.14(12) [48] CICP
24.20(75) [49] Sum-rule
24.2 [50] MBPT

Ga+ 21.722 LPRCC 17.95 [51] CICP
17.762 PRCC 18.14(44) [49] Sum-rule
17.814(107) PRCC(T)

In+ 30.167 LPRCC 24.01 [16] CI+all-order
24.398 PRCC 24.16(3)c [52] Finite-field
24.467(147) PRCC(T) 24.33(15)d [52] Finite-field

18.8(13) [49] Sum-rule

Tl+ 22.834 LPRCC 19.60 [17] CI+all-order
20.113 PRCC 12.7(12) [49] Sum-rule
20.129(121) PRCC(T)

aFinite-field using energies from RCI calculations.
bFinite-field using energies from RCC calculations.
cFinite-field using energies from RCI calculations.
dFinite-field using energies from RCC calculations.

all the possible intermediate states within a chosen basis set
is subsumed in the perturbed cluster amplitudes. Thus, it
circumvents the need to compute a large set of intermediate
states and this translates into improved accuracy.

The next important correlation effects, in addition to the
relativistic effects and Breit interactions which we include
through the DCB Hamiltonian, arise from the vacuum polar-
ization and the self-energy. The details related to the imple-
mentation of these are provided in Appendix A. In Table III
we give the contributions to α from the DC Hamiltonian and
each of the other terms. As we observe from the table, the
contributions from the Breit interaction and vacuum polariza-
tion are opposite in phase to the DC value, and hence reduce

TABLE III. Separate contributions to α from different interaction
terms in the Hamiltonian used in PRCC calculations.

Method Al+ Ga+ In+ Tl+

PRCC(DC) 23.9989 18.0556 24.7449 20.2159
Breit int. −0.4994 −0.3006 −0.3647 −0.1283
Vacuum pol. −0.0004 −0.0018 −0.0070 −0.0274
Self-energy 0.0028 0.0090 0.0249 0.0526
Total 23.5019 17.7621 24.3981 20.1128
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FIG. 1. The percentage contributions to α from Breit interaction, vacuum polarization, and the self-energy corrections.

the total value of α. The contribution from the self-energy
correction, however, has the same phase as DC but much
smaller than the Breit contribution. For quick comparison,
we show the percentage contributions from these interactions
in Fig. 1. As seen from the figure, the contributions are not
negligible. The largest contribution from the Breit interaction
is in the case of Al+ and it is ≈2.1%. This is consistent with
Ref. [16], where Safronova et al. estimated the contribution to
BBR shift for Al+ as 1.4%. This estimate is, however, using
the Breit interaction at the level of the single-particle basis. In
the present case, we use the DCB Hamiltonian at all steps of
computations in the PRCC theory. The largest contributions
from the self-energy and vacuum polarization are in the case
of Tl+, and these are ≈0.3% and 0.1%, respectively. To the
best our knowledge, there are no previous results for group-13
ions which include corrections from vacuum polarization,
self-energy, and consistent inclusion of Breit interaction. The
combined contribution from these interactions are ≈2.1%,
1.7%, 1.6%, and 1.1%, respectively for Al+, Ga+, In+, and
Tl+ ions. This suggests that these interactions must be in-
cluded in the many-body calculations to obtain the accurate
value of α for group-13 ions.

To further improve the accuracy of our calculations, we in-
clude the T (0)

3 perturbatively in the PRCC computations. The
details related to the inclusion of T (0)

3 in RCC and PRCC are
given in our previous works, Refs. [26,27]. The perturbative
T (0)

3 are the efficient way to incorporate the effects of triple
excitations in coupled-cluster many-body calculations for two
main reasons: First, it incorporates the dominant contribution
through the first-order perturbation correction, and second, it
is computationally less expensive than the full triples calcu-
lations. In Table II the value of α with perturbative T (0)

3 are
listed as the PRCC(T). We find that the largest contribution
is in the case of Ga+ and it is ≈0.3% of the PRCC value.
This is small but not negligible. Hence, T (0)

3 is included in the
coupled-cluster computations to get accurate values of α.

A. Basis convergence

The results given in Table II are obtained by using an
optimal orbital basis set for each of the ions. The orbital basis
sets are chosen such that these are the minimal sets which
give converged values of α. To show the convergence trend,
in Table IV we give values of α for different basis sizes. As
using the DCB Hamiltonian in the PRCC is more compute
intensive, we use the Dirac-Coulomb (DC) Hamiltonian to

determine the convergence. And, this is a suitable choice as
the correlation effects associated with the Breit interaction
is much smaller compared to the Coulomb interaction. For
example, the computation of α for heavy ions like Tl+ with
a basis set of 156 orbitals takes more than a week with 134
threads. As discernible from the table, to obtain a converged
basis we start with a moderate basis size and add orbitals in
each symmetry systematically until the change in α is less

TABLE IV. Convergence pattern of α calculated using Dirac-
Coulomb Hamiltonian (except for B+) as function of the basis set
size. The values listed are in atomic units (a3

0).

No. of orbitals Basis size α

B+

97 (13s, 13p, 12d, 7 f , 6g, 4h) 9.292
119 (15s, 15p, 14d, 9 f , 8g, 6h) 9.346
139 (17s, 17p, 16d, 11 f , 10g, 8h) 9.358
168 (20s, 20p, 19d, 13 f , 12g, 10h) 9.413
173 (21s, 21p, 20d, 13 f , 12g, 10h) 9.413

Al+

131 (19s, 19p, 11d, 9 f , 9g, 8h) 23.618
148 (22s, 22p, 12d, 10 f , 10g, 9h) 23.652
159 (23s, 23p, 13d, 11 f , 11g, 10h) 23.789
166 (24s, 24p, 14d, 12 f , 11g, 10h) 23.999
169 (25s, 25p, 14d, 12 f , 11g, 10h) 23.999

Ga+

116 (16s, 16p, 14d, 7 f , 7g, 6h) 18.050
132 (18s, 18p, 16d, 8 f , 8g, 7h) 18.050
152 (20s, 20p, 18d, 10 f , 10g, 8h) 18.053
172 (22s, 22p, 20d, 12 f , 11g, 10h) 18.056
177 (23s, 23p, 21d, 12 f , 11g, 10h) 18.056

In+

128 (20s, 20p, 15d, 8 f , 6g, 5h) 24.748
139 (21s, 21p, 16d, 9 f , 7g, 6h) 24.746
150 (22s, 22p, 17d, 10 f , 8g, 7h) 24.744
162 (22s, 22p, 17d, 12 f , 10g, 10h) 24.744

Tl+

134 (16s, 15p, 15d, 12 f , 9g, 8h) 20.026
147 (17s, 16p, 16d, 13 f , 10g, 10h) 20.173
156 (18s, 17p, 17d, 14 f , 11g, 10h) 20.129
161 (19s, 18p, 18d, 14 f , 11g, 10h) 20.215
171 (21s, 20p, 20d, 14 f , 11g, 10h) 20.216
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FIG. 2. The trend of contributions to α from d , f , and g virtual orbitals.

than or equal to 10−3 in atomic units. From the table, for
example, the change in α is less than 10−3 for B+ when the
basis is augmented from 168 to 173. So, to minimize the
computation time, we consider the basis set with 168 orbitals
as optimal, and use it for the further computations to incorpo-
rate the corrections from the Breit, vacuum polarization, and
self-energy interactions. Similarly, the basis with 166, 172,
150, and 161 orbitals are considered as the optimal basis for
Al+, Ga+, In+, and Tl+, respectively. It is to be mentioned
that the GTO basis are not, in the mathematical definition,
complete. But, choosing a minimal set of exponents with well
optimized α and β provides good representation for structure
and properties calculations [38].

For a fine grain analysis, we compute α using basis sets
with selective addition of virtual orbitals in d , f , and g sym-
metries. With this analysis we identify the orbital symmetry
with dominant contribution to the correlation effects. To show
the trend, in Fig. 2 we plot the values of α for d , f , and g
symmetry with respect to the basis size. And, we see from
the figure, d virtual orbitals have significant contributions
for Al+. We attribute this to the correlation effects arising
from the strong mixing of 2p core electrons with d virtual
electrons. For the other ions, Ga+, In+, and Tl+, however,
the dominant contribution is from the virtuals in f symmetry.
This is due to the strong mixing of f virtual electrons with
3d , 4d , and 5d core electrons in the case of Ga+, In+, and
Tl+, respectively. This indicates that to obtain a high quality
polarizability results for group-13 ions, in addition to the core
orbitals, it is essential to optimize the virtual orbitals.

B. Theoretical uncertainty

In our present studies, we have identified four different
sources which can contribute to the theoretical uncertainty
of α. The first source is the truncation of the basis set in
our computations. As mentioned earlier, the recommended
values of α listed in Table II are obtained using the converged
orbital basis given in Table IV. Since the change in α on
augmenting the converged basis set is of the order of 10−3

or less, we can neglect this source of uncertainty. The second
source is the truncation to the second order of T (0) in the
expansion of D̄ in Eq. (14). In our previous work [53], using
an iterative scheme, we have shown that the contribution from
the remaining higher order terms is less than 0.1%. So, for this
case we consider 0.1% as the upper bound. The third source

is the partial inclusion of triple excitations (T(1)
3 ) in PRCC

theory. The contributions from the perturbative triples with
respect to PRCC are ≈0.06%, 0.29%, 0.28%, and 0.08% for
Al+, Ga+, In+, and Tl+, respectively. Since the perturbative
triples account for the dominant contribution, we select the
highest contribution of 0.29% from the case of Ga+ and take
it as an upper bound to this source of uncertainty. Finally,
the fourth source of theoretical uncertainty is associated with
the frequency-dependent Breit interaction which we do not
include in this work. However, in our previous work [26]
using a series of computations with GRASP2K we estimated
an upper bound of this uncertainty to be 0.13% in the case
of two-valence atom Ra. Since Ra has higher Z than Tl+,
the highest-Z ion in the present work, we consider 0.13% as
an upper bound to this source of uncertainty. There could be
other sources of theoretical uncertainty, like the higher order
coupled perturbation of vacuum polarization and self-energy
terms, quadruply excited cluster operators, etc. But, these, in
general, have much lower contributions and their combined
theoretical uncertainty could be below 0.1%. So, combining
the upper bounds of the four different sources of theoretical
uncertainties, we attribute a theoretical uncertainty of 0.6% in
the recommended values of α given in the present work.

C. Comparison of leading terms and interactions

To understand the general trends of the leading order con-
tributions, we give the termwise contributions to α in Table V.
From the table we observe that the leading order (LO) term is
T(1)†

1 D + H.c. This is to be expected as it subsumes the con-

TABLE V. Contribution to α (in a.u.) from different terms and
their Hermitian conjugates from PRCC(DC) theory.

Terms + H.c. B+ Al+ Ga+ In+ Tl+

T(1)†
1 D 9.9782 25.2392 19.7942 27.0396 22.3619

T1
(1)†DT (0)

2 −0.3162 −0.7448 −0.6858 −1.0204 −1.1296

T2
(1)†DT (0)

2 0.2740 0.6074 0.5088 0.6818 0.5700

T1
(1)†DT (0)

1 −0.1804 −0.3342 −0.3222 −0.4134 −0.1352

T2
(1)†DT (0)

1 0.0106 0.0206 0.0170 0.0212 −0.0078

Normalization 1.0367 1.0329 1.0696 1.0632 1.0714

Total 9.4207 23.9989 18.0556 24.7449 20.2159
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tributions from the Dirac-Hartree-Fock (DHF) and the core
polarization effects. The next to leading order (NLO) term
is T1

(1)†DT (0)
2 + H.c. The contribution from the NLO term

is opposite in phase to the LO term. And, in absolute terms
it is ≈ − 3% each for B+, Al+, Ga+, and In+, and ≈ − 5%
for Tl+. The other two terms which have contributions ≈1%
or larger are T2

(1)†DT (0)
2 and T1

(1)†DT (0)
1 terms. The contri-

bution from the former is roughly twice than the latter but
opposite in phase for all the ions. An important trend is that the
contributions from terms with T1

(1)†, namely T1
(1)†DT (0)

2 and
T1

(1)†DT (0)
1 , are opposite in phase to the LO term. This could

be due to the correlation effects which compensates the excess
contribution from the core-polarization effects subsumed in
the LO term.

For comparative study of the Breit interaction, as men-
tioned earlier, the largest contribution is in the case of Al+.
And, from Table III one prominent trend is that the change
arising from the inclusion of Breit interaction is negative and
opposite to the DC. This is consistent with the previous result
reported for Tl+ [17] and our previous works [23,26,27]. As
shown in Fig. 1, the contribution from the Breit interaction
decreases with increasing Z of the ions. The same trend
is observed in our previous works on alkaline-earth-metal
atoms and the group-12 elements, where the heavier atoms Ra
and Hg have smaller contributions than the lighter atoms. In
absolute terms the percentage contributions to α for Al+, Ga+,
In+, and Tl+ are ≈ − 2.1%, −1.7%, −1.5%, and −0.6%,
respectively.

In the case of vacuum polarization and the self-energy
corrections to α, an important trend is that the contributions
from these two are opposite in phase. More importantly, the
same pattern is observed in our previous work on dipole
polarizability of group-12 elements [27]. Quantitatively, the
contribution from the self-energy is much larger and has the
same phase as the LO term. In terms of actual values for Al+
the contributions from these interactions are ≈ − 0.002% and
0.01% of the PRCC(DC) value, respectively. Although, there
is no clear trend in the fractional contribution to α, there is
a prominent pattern of increasing magnitude of the contri-
butions from the interactions with Z . So, as to be expected,
the largest contributions are in Tl+ and these are −0.0274
and 0.0526, respectively. This indicates the importance of
incorporating these effects to obtain accurate values of
properties.

D. Detailed analysis

To gain better insights on the results, we compare the
value of α from our calculations with previous theoretical
results, and dwell on the relevant physics which can account
for the differences. This is with a particular focus on the
correlation effects. For clarity, we give the description for
each of the ions separately. To the best of our knowledge,
as mentioned earlier, there are no experimental data. It is
also to be emphasized again that one major difference be-
tween previous works and the present work is that they do
not include the corrections from Breit interaction, vacuum
polarization, and the self-energy. Based on our results, con-
tributions from these are not negligible. For instance, it could
be as large as 2.1%, as we get in the case of Al+, discussed
earlier.

1. B+

For B+, there are three previous theoretical results in the
literature. And, the values of α reported in these are 9.62,
9.57, and 9.64 from Safronova et al. [16] using CI + all-
order, Archibong et al. [43] using CCD + ST(CCD), and
Cheng et al. [44] using CICP, respectively. In the CI + all-
order method [16], correlation effects due to valence electrons
are treated using the configuration interaction (CI). And, the
correlations due to the core electrons are incorporated in CI
with an effective Hamiltonian obtained from the second-order
perturbation theory. The upper bound on the uncertainty in
the BBR shift is ≈10%. And, this is attributed to the Breit,
core-valence correlation, and incomplete treatment of core
excitations in the effective Hamiltonian, in the CI + all-order
computations for B+, Al+, In+, and Tl+ ions [16,17]. The
uncertainty at the level of polarizability is, however, expected
to be lower than the BBR shift. In the CICP method, like
the case of CI + all-order, the valence-valence correlations
are treated using the CI, and the core-valence correlations are
included with the help of a semiempirical core-polarization
potential. The reported error in CICP value of α is about
0.3% for B+. The other method, CCD + ST(CCD), is a
much earlier work where α is computed using the perturbed
energy, obtained from the coupled-cluster calculations. In the
present calculation of ground-state polarizability, within the
framework of PRCC, we treat group-13 ions as the closed-
shell systems, and all the relevant correlations are included
through cluster operators to all-orders. Our PRCC(T) result,
9.415, is about 2.1% lower than the average value of the
previous three results.

2. Al+

Among all the ions, Al+ has the largest number of previous
results. In addition to CI + all-order and CICP methods
discussed above, α for Al+ is also calculated using the
RCC, CI, sum-rule, and MBPT- and RCI-based finite-field
methods. Among these, in terms of mathematical formalism,
the RCC method used in Kállay et al. [45] is closest to
ours. They have used the relativistic general-order coupled-
cluster theory, where the higher-order cluster excitations are
considered by using the many-body diagrammatic technique-
based automated programming tools. Except for the RCI-
based finite-field result, 23.78 [46], the values of α reported
in other works are very close to each other, and the average
value is 24.10. Among the previous results, the largest and
smallest theoretical errors are 3.1% and 0.3%, respectively,
associated with the sum-rule [49] and RCC [45] calculations.
It is, however, to be emphasized again that these results are
obtained without the Breit and QED corrections. As to be
expected our PRCC(DC) value of α, 23.999, without the
Breit and QED corrections, matches well with the previous
results. The PRCC(T) result of 23.516 is, however, 2.4%
smaller than the average of the previous results. That is, the
Breit and QED corrections lowers the PRCC(DC) result by
2%. And, most importantly, this is larger than the theoret-
ical uncertainty of 0.3% reported for the RCC results. In
our case, as discussed earlier, considering all the dominant
contributions, the upper bound of the theoretical uncertainty
is 0.6%.
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3. Ga+

For Ga+, we found two previous results. Among these,
the value of 18.14 [49] obtained using sum-rule has ≈2.4%
theoretical uncertainty. The other result of 17.95 [51] using
CICP seems more accurate as it has a theoretical uncertainty
of ≈1.9%. These results are obtained without the Breit and
QED corrections. Like in the case of Al+, our PRCC(DC)
result of 18.056 is close to the previous results. However,
the PRCC(T) result of 17.814 is 0.8% and 1.8% lower than
these previous results of Cheng et al. [51] and Reshetnikov
et al. [49], respectively. Based on our results, the inclusion of
the Breit and QED corrections lowers the PRCC(DC) results
by 1.3%, which is lower than change in Al+. This again
demonstrates the importance of including Breit and QED
corrections to obtain accurate values of α.

4. In+

For In+, there are four theoretical values of α reported in
previous works. And, it is evident from the entries in Table II
that there is a wide variation among the previous results. The
lowest value of α is 18.8, obtained by using the sum-rule [49],
while the highest value is 24.33, computed using the finite-
field method based on the RCC theory [52]. The reported
theoretical uncertainties in these results are 6.9% and 0.62%,
respectively. The other two values, 24.16 and 24.01, using the
RCI-based finite-field method from Ref. [52] and CI + all-
order calculation from Safronova et al. [16] lie between these
results. Like the previous ions, these results do not include
the Breit and QED corrections. Based on our results the Breit
and QED interactions lower the PRCC(DC) result by 1.4%.
And, it is not surprising that our recommended value of 24.467
based on PRCC(T) is close to the RCC-based finite-field result
[52], which has 0.62% theoretical uncertainty.

5. Tl+

For Tl+, we found two theoretical results from the pub-
lished results. And, there is a large difference between these
two results: The value of 19.60 obtained using CI + all-order
theory [17] is 54% larger than the value of 12.7 computed
using the sum-rule method [49]. The contribution from Breit
interaction to α in our results is ≈ − 0.6%. This is consistent
with the estimated value of −0.5% in Ref. [17]. In the other
work, Ref. [49], the error in the reported data is about 9.4%.
Our PRCC(T) result, 20.129, is closer to the CI + all-order
result of 19.60, however, larger by about 2.7%.

V. CONCLUSION

We have computed the ground-state electric dipole polar-
izability of group-13 ions using the PRCC theory. To account
for the relativistic effects and QED corrections, we have used
the Dirac-Coulomb-Breit Hamiltonian with the corrections
from the Uehling potential and the self-energy. The effects
of triple excitations are considered perturbatively. Our results
from PRCC and PRCC(T) using the Dirac-Coulomb Hamil-
tonian are in excellent agreement with the previous results
for all the ions. The results using the Dirac-Coulomb-Breit
Hamiltonian are, however, lower than most of the previous
results except for In+. We attribute this to the effects of the
Breit interaction, which is considered in our work but not

in the previous works. The other important observation from
our computations is that we need to go beyond the LPRCC
to obtain accurate results for the group-13 ions. The LPRCC
results are on average ≈24% larger than the PRCC results.
This could be due to the strong correlation effects arising from
the divalent nature of the group-13 ions. And to account for
such large correlation effects the nonlinear terms in the PRCC
theory must be included.

Based on our analysis of the corrections arising from the
Breit interaction we find two trends. First, the contribution
for all the ions are negative, and hence reduces the total
value of α. The same pattern is also observed in the case of
noble-gas atoms [23], alkaline-earth-metal atoms [26], and
the group-12 elements [27]. In the case of singly ionized
alkali-metal atoms [24], however, we get a different trend.
Second, in terms of the percentage contribution, we observed
the largest contribution of ≈2.1% in the case of Al+. And, as
we go towards the heavier ions the contribution decreases, the
lowest is ≈ − 0.63%, in the case of Tl+. A similar pattern
is also observed in the case of alkaline-earth-metal atoms
and group-12 elements where the heavier atoms Ra and Hg
have the smaller contributions, of ≈ − 0.4% and −0.02%,
respectively, than the lighter ones. In the case of noble-gas
atoms, however, we observed an opposite trend where the
heaviest atom Rn has the largest contribution of ≈0.1%.

For the Uehling potential and the self-energy corrections,
we observed a trend of increasing contributions from the
lighter ions to the heavier ions. This is to be expected as the
heavier atoms have the larger relativistic effects. The largest
contributions are ≈ − 0.1% and 0.3% from the Uehling po-
tential and the self-energy corrections, respectively, in the
case of Tl+. We observed an opposite trend from the Uehling
potential in the case of group-12 elements [27], where Zn
has larger contribution (≈ − 0.3%) than the Hg (≈ − 0.1%).
For the self-energy correction, the group-12 elements show a
mix behavior where both Zn and Hg have larger contribution
than Cd.

To conclude, the inclusion of Breit interaction and QED
corrections together contribute ≈2.1%, 1.7%, 1.6%, and
1.1%, to the ground state α of Al+, Ga+, In+, and Tl+,
respectively. Based on our analysis, the upper bound on the
uncertainty in our results is 0.6% for all the ions. Considering
that the previous results were obtained without the inclusion
of Breit and QED corrections our results have the potential to
improve the estimated value of the BBR shift, and hence in
the measurement of the optical clock frequency.

ACKNOWLEDGMENTS

We thank Chandan Kumar Vishwakarma for useful dis-
cussions. The results presented in the paper are based on
the computations using the High Performance Computing
clusters, Padum and Vikram-110 at the Indian Institute of
Technology Delhi, New Delhi and Physical Research Labo-
ratory, Ahmedabad, respectively.

APPENDIX A: BREIT INTERACTION, VACUUM
POLARIZATION, AND SELF-ENERGY CORRECTIONS

For Breit interaction we use the approach introduced by
Grant and Pyper [54] where the Breit interaction operator
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TABLE VI. The SCF energy from GTO using the Dirac-Coulomb Hamiltonian is compared with the GRASP2K [41] results. The
contributions from the Breit interaction and the vacuum polarization are compared with the results from the B-spline code [42]. All the
values are in hartree.

ESCF �ESCF
Br �ESCF

Ue

Ion GTO GRASP2K GTO B-spline GTO B-spline

B+ −24.24516 −24.24516 0.00148 0.00148 −0.00004 0.00005
Al+ −242.12904 −242.12905 0.04221 0.04222 −0.00170 −0.00178
Ga+ −1942.36249 −1942.36368 0.85161 0.85207 −0.05758 −0.05990
In+ −5880.24254 −5880.24386 4.12196 4.12552 −0.39075 −0.40518
Tl+ −20274.62436 −20274.62463 23.65940 23.69367 −4.11174 −4.23753

gB
r12

is expanded as a linear combination of irreducible tensor
operators. We employ the expressions given in Ref. [55] to
incorporate the effects of gB

r12
in single-electron basis as well

as RCC and PRCC calculations. To analyze the effects of gB
r12

in detail, we compute contributions to SCF energy as well as
the single-electron energies for all the ions. The correction to

TABLE VII. The orbital energies (in hartree) from GTO compared with the GRASP2K [41] results for B+, Al+, Ga+, and In+. The
contributions from the Breit interaction, vacuum polarization, and the self-energy corrections to GTOs are also listed. The self-energy
corrections are calculated using the code QEDMOD by Shabaev et al. [61]. Here [x] represents multiplication by 10x .

Orbital GTO GRASP2K �εDC �εBr �εUe SE

B+

1s1/2 −8.18820 −8.18820 −1.078[−6] 1.205[−3] −1.348[−5]
2s1/2 −0.87408 −0.87408 3.724[−8] 4.683[−5] 5.942[−7]

Al+

1s1/2 −58.94477 −58.94478 8.394[−6] 2.723[−2] −7.343[−4] 1.350[−2]
2s1/2 −5.23616 −5.23616 4.048[−6] 9.664[−4] −4.822[−5] 9.440[−4]
2p1/2 −3.53257 −3.53258 4.032[−6] 1.723[−3] 1.136[−5] −2.500[−5]
2p3/2 −3.51519 −3.51520 4.458[−6] 7.349[−4] 1.136[−5] 2.000[−5]
3s1/2 −0.65347 −0.65347 1.089[−7] 6.139[−5] −2.642[−6] 5.900[−5]

Ga+

1s1/2 −384.21919 −384.21918 −1.465[−5] 4.854[−1] −2.484[−2] 2.759[−1]
2s1/2 −49.60651 −49.60652 1.478[−5] 3.530[−2] −2.449[−3] 2.908[−2]
2p1/2 −43.74307 −43.74302 −5.118[−5] 6.234[−2] 1.936[−4] −7.880[−4]
2p3/2 −42.71436 −42.71431 −4.938[−5] 4.065[−2] 2.107[−4] 1.499[−3]
3s1/2 −6.88488 −6.88493 5.125[−5] 3.734[−3] −3.663[−4] 4.324[−3]
3p1/2 −4.92169 −4.92172 3.056[−5] 6.753[−3] 3.833[−5] −6.900[−5]
3p3/2 −4.77952 −4.77956 3.626[−5] 3.637[−3] 4.111[−5] 2.000[−4]
3d3/2 −1.47943 −1.47940 −3.519[−5] 3.032[−4] 3.061[−5] −1.000[−5]
3d5/2 −1.45974 −1.45972 −2.084[−5] 8.746[−4] 3.038[−5] 1.100[−5]
4s1/2 −0.69963 −0.69963 −3.644[−8] 2.315[−4] −2.099[−5] 2.700[−4]

In+

1s1/2 −1033.04303 −1033.04354 5.114[−4] 2.158 −1.166[−1] 1.312
2s1/2 −158.20733 −158.20736 3.044[−5] 1.956[−1] −1.871[−2] 1.606[−1]
2p1/2 −147.10243 −147.10239 −3.817[−5] 3.362[−1] 6.087[−4] −9.080[−4]
2p3/2 −139.31685 −139.31682 −3.620[−5] 2.276[−1] 1.086[−3] 1.316[−2]
3s1/2 −31.67750 −31.67749 −6.513[−6] 2.699[−2] −3.591[−3] 3.156[−2]
3p1/2 −27.15033 −27.15031 −2.113[−5] 5.005[−2] 1.768[−4] 2.770[−4]
3p3/2 −25.70130 −25.70128 −1.989[−5] 3.007[−2] 2.800[−4] 2.527[−3]
3d3/2 −17.78575 −17.78573 −2.199[−5] 1.392[−2] 2.638[−4] −2.080[−4]
3d5/2 −17.49281 −17.49280 −3.223[−6] 5.087[−3] 2.589[−4] 2.580[−4]
4s1/2 −5.58097 −5.58098 3.750[−6] 3.905[−3] −6.601[−4] 5.837[−3]
4p1/2 −4.02420 −4.02420 5.036[−7] 7.208[−3] 6.176[−5] 5.400[−5]
4p3/2 −3.76860 −3.76860 −2.824[−6] 3.599[−3] 8.024[−5] 4.160[−4]
4d3/2 −1.30374 −1.30375 8.368[−6] 2.132[−4] 6.288[−5] −2.600[−5]
4d5/2 −1.26861 −1.26861 3.999[−6] 9.058[−4] 6.182[−5] 3.200[−5]
5s1/2 −0.63575 −0.63575 −4.827[−7] 3.259[−4] −5.627[−5] 5.100[−4]
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TABLE VIII. The orbital energies (in hartree) from GTO compared with that from the GRASP2K [41] results for Tl+. We also provide the
contributions from the Breit interaction, vacuum polarization, and the self-energy corrections. The self-energy corrections are calculated using
the code QEDMOD by Shabaev et al. [61]. Here [x] represents multiplication by 10x .

Orbital GTO GRASP2K �εDC �εBr �εUe SE

1s1/2 −3164.43045 −3164.43029 −1.619[−4] 11.438 −1.658 7.801
2s1/2 −569.10850 −569.10847 −2.862[−5] 1.289 −2.369[−1] 1.190
2p1/2 −545.21645 −545.21644 −1.574[−5] 2.168 −1.613[−2] 1.012[−1]
2p3/2 −469.18398 −469.18397 −1.088[−5] 1.362 7.960[−3] 1.468[−1]
3s1/2 −138.62965 −138.62966 7.600[−6] 2.397[−1] −5.398[−2] 2.766[−1]
3p1/2 −127.91899 −127.91900 1.550[−6] 4.140[−1] −3.956[−3] 3.027[−2]
3p3/2 −110.79473 −110.79474 1.850[−6] 2.461[−1] 2.336[−3] 3.545[−2]
3d3/2 −93.35056 −93.35059 2.126[−5] 1.802[−1] 2.602[−3] −2.150[−3]
3d5/2 −89.72674 −89.72677 2.463[−5] 1.163[−1] 2.462[−3] 4.477[−3]
4s1/2 −32.55930 −32.55932 1.562[−5] 4.945[−2] −1.363[−2] 7.001[−2]
4p1/2 −27.91070 −27.91071 1.151[−5] 8.834[−2] −8.320[−4] 7.596[−3]
4p3/2 −23.69397 −23.69398 1.113[−5] 4.601[−2] 7.719[−4] 8.733[−3]
4d3/2 −16.11031 −16.11033 2.634[−5] 2.455[−2] 7.758[−4] −5.640[−4]
4d5/2 −15.31327 −15.31328 2.968[−6] 1.038[−2] 7.413[−4] 1.169[−3]
4 f5/2 −5.45750 −5.45748 −1.622[−5] −5.867[−3] 5.503[−4] 0.000
4 f7/2 −5.28151 −5.28149 −2.175[−5] −1.193[−2] 5.396[−4] 0.000
5s1/2 −5.88606 −5.88606 −4.033[−6] 7.680[−3] −2.652[−3] 1.377[−2]
5p1/2 −4.25160 −4.25159 −4.585[−6] 1.333[−2] −1.795[−5] 1.330[−3]
5p3/2 −3.48442 −3.48442 −1.251[−6] 5.378[−3] 2.810[−4] 1.459[−3]
5d3/2 −1.16120 −1.16120 4.185[−6] 4.544[−4] 2.194[−4] −6.200[−5]
5d5/2 −1.07329 −1.07330 2.670[−6] −1.067[−3] 2.070[−4] 1.230[−4]
6s1/2 −0.68952 −0.68952 −1.365[−6] 6.872[−4] −3.000[−4] 1.519[−3]

single-electron energy due to Breit interaction is

�εBr(i) = ε′
i − εi, (A1)

where εi and ε′
i represent the orbital energies obtained by

solving the Dirac-Hartree-Fock and Dirac-Hartree-Fock-Breit
orbital equations self-consistently, respectively. Similarly, the
correction to the SCF energy is

�ESCF
Br = ESCF

DCB − ESCF
DC , (A2)

where ESCF
DCB and ESCF

DC are the SCF energies computed using
DCB and DC Hamiltonian, respectively. The �ESCF

Br com-
puted from our implementation on GTO is given in Table VI
where we compare our results with a recently reported code
for B-spline basis by Zatsarinny el al. [42]. The contributions
to the orbital energies are tabulated in Tables VII (for B+,
Al+, Ga+, and In+) and VIII (for Tl+) for a quantitative
description.

The effects of vacuum polarization is considered using
the Uehling potential [56], which provides the leading order
contribution. It must, however, be modified to include the
effects of finite nuclear size [57,58] and in our present work
we use the expression given in Ref. [59]. In our previous work,
Ref. [25], we had discussed the details of the implementation.
To quantify the effects in the present work, we compute the
corrections to orbital energies as well as the SCF energy for
all the ions. The correction to orbital energy is

�εUe(i) = ε′
i − εi, (A3)

where ε′
i and εi are the energies with and without Uehling

potential, respectively. Similarly, the correction to SCF

energy is

�ESCF
Ue = ESCF

(DC+Ue) − ESCF
DC , (A4)

where ESCF
DC+Ue and ESCF

DC are the SCF energies computed using
DC plus Uehling potential and DC Hamiltonian, respectively.
The �ESCF

Ue from our computations are tabulated and com-
pared with the results from the B-spline code [42] in Table VI.
And �εUe(i) are given in Tables VII and VIII.

The effects of the self-energy (SE) correction to orbitals are
considered through the model Lamb-shift operator introduced
by Shabaev et al. [60]. For this we use the code QEDMOD [61],
developed by the same authors, to compute the corrections
to the orbital energies. These corrections to energies are
applied and used in the RCC and PRCC computations. A
similar analysis was reported for the group-12 elements in
our previous work [27]. The data on SE corrections to orbital
energies, computed using the QEDMOD code, are listed in
Tables VII and VIII.

APPENDIX B: SCF AND ORBITAL ENERGIES

In Table VI we compare the SCF energy from GTO with
GRASP2K [41]. Considering the Breit correction, the sign of
�ESCF

Br is positive for all the ions and matches with the
B-spline results. The positive sign of �ESCF

Br indicates an
increase in the SCF energy, which we attribute to the spatial
contraction of the orbitals. Interestingly, we observed the
same trend of �ESCF

Br in the case of the noble-gas [23] and
group-12 elements [27]. Examining the values listed in the
table, we find that our GTO results are in excellent agreement
with the B-spline results. The largest difference is of the
order of 10−2 hartree, which occurs in the case Tl+. The last
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TABLE IX. The orbital energies for virtual orbitals (in hartree)
from GTO is compared with the GRASP2K [41] results for Al+ and
Ga+. Here [x] represents multiplication by 10x .

Orbital GTO GRASP2K �ε

Al+

3d3/2 −0.05791 −0.05791 4.859[−9]
3d5/2 −0.05791 −0.05791 4.851[−9]
4d3/2 −0.03254 −0.03254 5.076[−7]
4d5/2 −0.03254 −0.03254 5.076[−7]
5d3/2 −0.02072 −0.02072 4.973[−6]
5d5/2 −0.02072 −0.02072 4.973[−6]
6d3/2 −0.01430 −0.01433 2.706[−5]
6d5/2 −0.01430 −0.01433 2.706[−5]
7d3/2 −0.01039 −0.01049 9.621[−5]
7d5/2 −0.01039 −0.01049 9.620[−5]
8d3/2 −0.00781 −0.00800 1.975[−4]
8d5/2 −0.00781 −0.00800 1.975[−4]

Ga+

4 f5/2 −0.03126 −0.03087 −3.936[−4]
4 f7/2 −0.03126 −0.03087 −3.947[−4]
5 f5/2 −0.02001 −0.01946 −5.518[−4]
5 f7/2 −0.02001 −0.02024 2.304[−4]
6 f5/2 −0.01388 −0.01484 9.610[−4]
6 f7/2 −0.01388 −0.01406 1.798[−4]
7 f5/2 −0.01015 −0.00998 −1.695[−4]
7 f7/2 −0.01015 −0.00998 −1.672[−4]
8 f5/2 −0.00762 −0.00793 3.140[−4]
8 f7/2 −0.00762 −0.00793 −3.164[−4]
9 f5/2 −0.00584 −0.00624 −3.982[−4]
9 f7/2 −0.00584 −0.00622 −3.856[−4]
10 f5/2 −0.00484 −0.00506 2.148[−4]
10 f7/2 −0.00484 −0.00507 2.227[−4]
11 f5/2 −0.00377 −0.00410 3.231[−4]
11 f7/2 −0.00377 −0.00411 3.366[−4]
12 f5/2 −0.01273 −0.00351 −9.222[−3]
12 f7/2 −0.01273 −0.00350 −9.236[−3]

two columns of Table VI show the comparison of �ESCF
Ue

from GTO with the B-spline data. Unlike �ESCF
Br , �ESCF

Ue
from GTO has negative value for all the ions, indicating a
decrease in the SCF energy. This decrease in SCF energy
implies the relaxation of the orbitals. There is a sign mismatch
in the results of B+, though, the contribution is very small. For
the remaining ions, both sign as well as magnitude of GTO
results are in good agreement with the B-spline data.

In Tables VII and VIII we list the orbital energies of
GTO and compare that with the numerical orbitals obtained
from the GRASP2K. The orbital energies of core as well as
virtual orbitals from GTO are in excellent agreement with the
GRASP2K results for all the ions. Among the core orbitals, the
largest difference between the two results is of the order of
10−4 hartree, in the case of 1s1/2 orbitals of In+ and Tl+. For
all other orbitals, in all the ions, the difference is even smaller.
Among the virtuals, as shown in Tables IX and X, the largest
difference of the order of 10−2 hartree is observed in the case
of 5 f of Tl+.

Examining the contributions to orbital energies from the
Breit interaction, �εBr is positive for all the orbitals in all the

TABLE X. The orbital energies for virtual f orbitals (in hartree)
from GTO are compared with the GRASP2K [41] results for In+ and
Tl+. Here [x] represents multiplication by 10x .

Orbital GTO GRASP2K �ε

In+

4 f5/2 −0.03127 −0.03127 −5.307[−8]
4 f7/2 −0.03127 −0.03127 −6.643[−8]
5 f5/2 −0.02002 −0.01985 −1.720[−4]
5 f7/2 −0.02002 −0.01978 −2.334[−4]
6 f5/2 −0.01390 −0.01407 1.736[−4]
6 f7/2 −0.01390 −0.01414 2.348[−4]
7 f5/2 −0.01021 −0.01379 3.585[−3]
7 f7/2 −0.01021 −0.01008 −1.211[−4]
8 f5/2 −0.07786 −0.07929 1.436[−4]
8 f7/2 −0.00779 −0.00795 1.621[−4]
9 f5/2 −0.00609 −0.00524 −8.482[−4]
9 f7/2 −0.00609 −0.00543 −6.567[−4]
10 f5/2 −0.00490 −0.00594 1.045[−3]
10 f7/2 −0.00490 −0.00575 8.538[−4]

Tl+

5 f5/2 −0.03127 −0.02002 −1.125[−2]
5 f7/2 −0.03127 −0.02002 −1.125[−2]
6 f5/2 −0.02002 −0.01390 −6.116[−3]
6 f7/2 −0.02002 −0.01390 −6.115[−3]
7 f5/2 −0.01390 −0.01021 −3.686[−3]
7 f7/2 −0.01390 −0.01021 −3.686[−3]
8 f5/2 −0.01020 −0.00782 −2.382[−3]
8 f7/2 −0.01020 −0.00782 −2.382[−3]
9 f5/2 −0.00776 −0.00618 −1.579[−3]
9 f7/2 −0.00776 −0.00617 −1.579[−3]
10 f5/2 −0.00595 −0.00500 −9.461[−4]
10 f7/2 −0.00595 −0.00500 −9.461[−4]
11 f5/2 −0.00449 −0.00413 −3.565[−4]
11 f7/2 −0.00449 −0.00413 −3.565[−4]
12 f5/2 −0.00336 −0.00347 1.168[−4]
12 f7/2 −0.00336 −0.00347 1.165[−4]
13 f5/2 −0.00297 −0.00296 −1.145[−5]
13 f7/2 −0.00297 −0.00296 −1.203[−5]
14 f5/2 −0.01735 −0.00255 1.991[−2]
14 f7/2 −0.01735 −0.00255 1.990[−2]

ions. This indicates the relaxation of the orbitals. A similar
trend was also found in our previous work on group-12
elements [27]. When we compare the values of �εBr, we
observe two important trends. First, as to be expected, the
inner core orbitals have the larger corrections. For instance,
�εBr, 4.854 × 10−1 hartree, for 1s1/2 orbital in Ga+ is three
orders of magnitude larger than that of 2.315 × 10−4 for 4s1/2.
As we observe from the tables, this difference is larger in the
case of heavier ions In+ and Tl+. Second, �εBr increases with
Z . For instance, �εBr in Tl+ is ≈5, 7, 9, 12, and 23 times
larger in magnitude than In+ for 1s1/2, 2s1/2, 3s1/2, 4s1/2, and
5s1/2 orbitals, respectively.

Looking into the contributions from the Uehling potential,
we find that the s orbitals in all the ions and p1/2 orbitals in
Tl+ tend to contract. This is an important difference from the
Breit contribution. The other important point to observe is that
�εUe is smaller than �εBr for all the states in all the ions. In
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terms of actual contribution within an ion, similar to the trend
of Breit interaction, �εUe for inner cores are larger than the
outer core orbitals. This trend is to be expected as the vacuum
polarization being an attractive and short-range potential has
the large effects on the orbitals with finite probability density
within the nucleus.

Considering the contributions from the self-energy to the
orbital energies, they are negligibly small in the case of B+.
So, we do not provide the contributions for B+. As we observe
from the tables for other ions, like Breit interaction and

vacuum polarization corrections, the self-energy correction
SE also is largest for the inner cores, and decreases for orbitals
with higher principal quantum numbers. This is because the
inner core orbitals have the larger relativistic effects. Looking
in terms of the signs of SE, we observe a mix trend. The
SE in negative for p1/2 and d3/2 orbitals in the case of Al+,
Ga+, and In+ ions. However, it is negative only for p1/2

orbitals in the case of In+. In terms of the magnitude of the
corrections from Al+ to Tl+, as to be expected, it increases
with Z .
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