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Nonlinear isotope-shift effects in Be-like, B-like, and C-like argon
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Violation of linearity of the King plot is investigated for a chain of partially stripped argon isotopes. The
nonlinearity originates within the standard model from subtle contributions to the isotope shifts from next-to-
leading order effects, which have never been systematically studied so far. In light atoms these nonlinear effects
are dominated by the quadratic nuclear recoil (∝1/M2, where M is the nuclear mass). Large-scale relativistic
calculations of the linear and quadratic mass shift and the field shift are performed for the 2P fine-structure
transitions in Be-like, B-like, and C-like argon ions. Nonlinearities of the King plots from 5 to 30 kHz are found,
which is four orders of magnitude larger than previous estimates in comparable systems. Accurate calculations
of these effects are vital for identification of possible nonlinearities originating from physics beyond the standard
model.
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I. INTRODUCTION

Investigations of isotope-shift phenomena offer an excel-
lent possibility to selectively probe nuclear effects and to
extract nuclear parameters from the observed atomic spectra.
On the theoretical side, the isotope shifts of atomic levels have
the advantage that they can be calculated to a much higher
absolute precision than the atomic energy levels. Depending
on the nuclear charge Z , the isotope shifts are governed either
by the nuclear mass (low-Z ions) or by the finite nuclear
size (high-Z ions), thus yielding an opportunity for a detailed
study of individual nuclear effects. On the experimental side,
the isotope-shift phenomena offer a possibility for extracting
information about the nucleus, by means of the so-called
King-plot analysis [1,2].

Isotope-shift studies can also improve our understanding of
fundamental physics. It has recently been demonstrated [3,4]
that isotope-shift measurements can be used to constrain the
coupling strength of hypothetical new-physics boson fields
to electrons and neutrons. More specifically, the presence
of a light boson particle would cause a nonlinearity of the
King plot for the isotope shifts of two atomic transitions of
several isotopes of the same element. The absence of the
King-plot nonlinearities observed so far allowed the authors to
draw constraints on the coupling strength of the hypothetical
particles.

Experimentally, no King-plot nonlinearities were observed
in the measurements [5,6] performed at the 100 kHz accuracy
level. The present-day isotope-shift experiments, however,
may improve the accuracy by several orders of magnitude.
Specifically, measurements of optical-clock transitions were
demonstrated on a few-Hertz precision level, by simultane-
ously exciting two Ca+ isotopes in the same trap [7]. An
even higher precision can be achieved by using correlated or

even entangled states [8]. The coherent high-resolution optical
spectroscopy [9] can provide access to isotope-shift measure-
ments of highly charged ions, thus tremendously extending
the choice of useful transitions.

As already pointed out in Ref. [4], some small nonlineari-
ties of the King plot should appear within the standard model
framework, but they have never been calculated. The only
attempt to address this issue was made by Flambaum and co-
workers [10], who derived approximate analytical formulas
for the field shift in the mean-field approximation and calcu-
lated the King-plot nonlinearities for heavy and superheavy
atoms. In the present work we perform relativistic calculations
of the nonlinear isotope-shift effects for several fine-structure
transitions in argon ions. We also analyze constraints on
hypothetical boson fields that can be realistically derived from
the King-plot analysis in these systems.

The isotope-dependent part of the energy of an electronic
state of an atom is traditionally represented as a sum of the
mass shift and the field shift,

Eis = m

M
K + R2

λ̄2
C

F, (1)

where m is the electron mass, M is the nuclear mass, R =
〈r2〉1/2 is the root-mean-square (rms) radius of the nuclear
charge distribution, and λ̄C is the Compton wavelength di-
vided by 2π (λ̄C = 386.159 fm and λ̄C = 1 in relativistic
units). K and F are usually called the mass-shift and the
field-shift constant, respectively. Note that, in our formulation,
the constants K and F have units of energy, since they are
multiplied by dimensionless ratios in Eq. (1).

It is important that in the present work we require Eq. (1)
to be exact in the standard model framework. In other words,
we ascribe all higher-order effects to K and/or to F , which
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thus acquire some dependence on nuclear parameters. In many
practical situations, this weak dependence can be ignored and
one can treat K and F as “constants” depending only on the
electronic state of the atom but not on the nuclear properties of
the isotope. As explained below, such an assumption leads to
a King plot which is exactly linear. In the present work, how-
ever, we will address deviations from this linear form, caused
by a tiny dependence of K and F on nuclear parameters.

II. KING PLOT

The King plot [1,2] is a widely used method that allows
for a systematic study of the isotope shifts of two atomic
transitions in a chain of isotopes. In order to construct a King
plot, we consider two electronic transitions (which will be
labeled as “a” and “b”) for a chain of at least four isotopes of
the same element with mass numbers (A0, A1, A2, . . .). Note
that the transitions a and b may belong to different charge
states of the same element.

A. Standard formulation

Within the standard formulation, the mass-shift and field-
shift constants in Eq. (1) are assumed to depend only on
the electronic transition but not on the isotope. In this case,
the isotope shift of the energy of the transition a between
the isotopes i and j is

Eai j =
(

m

Mi
− m

Mj

)
Ka +

(
R2

i

λ̄2
C

− R2
j

λ̄2
C

)
Fa

≡ Mi jKa + Ri jFa. (2)

Introducing the modified transition energies nai j ,

nai j = Eai j

Mi j
, (3)

one rewrites Eq. (2) as

nai j = Ka + Ri j

Mi j
Fa. (4)

Considering Eq. (4) for two transitions a and b, one can
eliminate the isotope-dependent constant Ri j/Mi j , arriving
at

nbi j =
(

Kb − Fb

Fa
Ka

)
+ Fb

Fa
nai j . (5)

Fixing the index j and plotting nbi j (= yi) against nai j (= xi)
for different isotopes i, one gets the linear dependence of the
form

yi = A + Bxi, (6)

where the coefficients A and B do not depend on the isotope
parameters. The dependence of nbi j on nai j is widely known
as the King plot [1,2]. Measuring the modified frequencies
nbi j and nai j , one obtains the experimental values for the
coefficients A and B, i.e., for the ratio of the field-shift
constants Fb/Fa and for the combination Kb − (Fb/Fa)Ka.

B. Extended formulation: Standard model

We now take into account that the constants K and F in
Eq. (1) depend not only on the transition but also on the
isotope, K ≡ Kai = Ka + δKai, and the same for F . In this
case, Eq. (4) becomes

nai j = Kai j + Ri j

Mi j
Fai j, (7)

where

Kai j =
m
Mi

Kai − m
Mj

Ka j

Mi j
≡ Ka + δKai j, (8)

Fai j =
R2

i

λ̄2
C

Fai − R2
j

λ̄2
C

Fa j

Ri j
≡ Fa + δFai j . (9)

Equation (5) then becomes

nbi j =
(

Kbi j − Fbi j

Fai j
Kai j

)
+ Fbi j

Fai j
nai j . (10)

Considering the above equation as a functional dependence
of nbi j (= yi) on nai j (= xi) for different values of the isotope
index i and a fixed j = 0, we get a set of equations

yi = Ai + Bixi. (11)

The coefficients Ai and Bi in the above equations depend
(slightly) on the isotope index i and, therefore, the (three or
more) points (yi, xi ) no longer lie on a straight line.

Restricting to the minimal number of three points, the
nonlinearity of a three-point curve (11) may be conveniently
defined [10] as a shift of the ordinate of the third point from
the straight line defined by the first two points,

δy = (y3 − y1) − y2 − y1

x2 − x1
(x3 − x1). (12)

Rewriting this definition for the King plot, we arrive at

δEb30 = M30

[
nb30 − nb10 − nb20 − nb10

na20 − na10
(na30 − na10)

]
.

(13)

Note that δEb30 has the unit of energy. Physically, it is the
difference of the (A3, A0) isotope shift of the transition b
from the linearly predicted position based on the (A2, A0) and
(A1, A0) isotope shifts of the transitions a and b.

δEb30 is the definition of the King-plot nonlinearity as
used in Ref. [10]. It has, however, a drawback of being not
symmetrical with respect to the transitions a and b. In other
words, with just three points, there are two different nonlin-
earities, δEb30 and δEa30 (where δEa30 is obtained from δEb30

by a ↔ b). In the present work, we define the nonlinearity in
a symmetric way, as a half-sum of these two absolute values,

�NL(ab) = �NL(ba) = 1
2 (|δEa30| + |δEb30|). (14)

C. Extended formulation: New physics

We now consider the King-plot analysis in the presence of
a hypothetical boson particle with mass mφ . The interaction
between the electrons and neutrons mediated by such a boson
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can be effectively described [11] by a Yukawa-type potential,

Vφ = −αNP(A − Z )
e−mφr

r
, (15)

where A − Z is the number of neutrons in the nucleus and αNP

is the coupling constant, αNP = qnqe, where qn and qe are the
strength of coupling to neutrons and electrons, respectively.

With a new particle, the isotope-dependent part of the
energy of the reference state becomes [cf. Eq. (1)]

Eis = m

M
K + R2

λ̄2
C

F + αNP

α
AXφ, (16)

where A is the mass number of the isotope and α is the
fine-structure constant. Xφ is the “new-physics” isotope-shift
constant defined as

Xφ =
〈
−

∑
k

α e−mφrk

rk

〉
, (17)

where k numerates the electrons in the atom and the matrix
element is evaluated with the atomic reference-state wave
function. The expression for the reduced frequency now be-
comes [cf. Eq. (7)]

nai j = Kai j + Ri j

Mi j
Fai j + αNP

α

Ai − Aj

Mi j
Xφ,a, (18)

where we took into account that the isotope dependence of
Xφ,a can be safely neglected.

III. THEORY OF THE ISOTOPE SHIFT

A. Leading effects

The mass shift of energy levels is induced by the nuclear
recoil effect. Within the Breit approximation [i.e., up to the or-
der (Zα)4m/M], the recoil effect is induced by the relativistic
recoil operator [12,13]

Hrec ≡ m

M
H̃rec = m

M
(H̃rnms + H̃rsms), (19)

where Hrnms and Hrsms are the relativistic normal and specific
mass shift operators, respectively,

H̃rnms = 1

2

∑
k

[
p2

k − Zα

rk

(
αk + (αk · rk )rk

r2
k

)
· pk

]
, (20)

H̃rsms = 1

2

∑
k �=l

[
pk · pl − Zα

rk

(
αk + (αk · rk )rk

r2
k

)
· pl

]
, (21)

and summations over k and l run over all electrons. Fully
relativistic calculations of the isotope-shift effects were per-
formed over the past two decades by several groups [14–19].

The leading, linear in m/M mass-shift constant is given by
the expectation value of the nuclear recoil operator with the
(nonrecoil) atomic wave function of the reference state,

K (1) = 〈H̃rec〉. (22)

The field shift of energy levels is induced by the effect of
the finite nuclear size (fns). The leading field-shift constant
can be obtained as an expectation value of the derivative of the
nuclear binding potential Vnuc over the square of the nuclear

rms charge radius R2 [20]

F = 〈VFS〉, (23)

where

VFS =
∑

k

∂Vnuc(rk )

∂ (R/λ̄C )2
, (24)

and the summation over k runs over all electrons.

B. Quadratic mass shift

The leading isotope dependence of the mass-shift constant
K comes from the quadratic [∝ (m/M )2] nuclear recoil effect,

K = K (1) + m

M
K (2). (25)

Within the Breit approximation, the quadratic mass shift is
induced by the second-order perturbation of the operator
Hrec. It is known [21] that, for a spin-zero nucleus, there
is no additional recoil operator ∝ (m/M )2 within the Breit
approximation.

We calculate the quadratic mass-shift constant K (2) in two
steps. First, we construct the nuclear-recoil-corrected many-
electron wave function by including the recoil operator (19)
into the Dirac-Coulomb-Breit Hamiltonian and diagonalizing
the Hamiltonian matrix. Second, we determine K (2), neglect-
ing higher-order ∝ (m/M )3 effects, by taking the difference

m

M
K (2) = 1

2 [〈H̃rec〉M − 〈H̃rec〉], (26)

where 〈.〉M indicates the matrix element calculated with the
nuclear-recoil-corrected wave function and 〈H̃rec〉 = K (1) does
not depend on M. The factor of 1/2 removes the double
counting coming from the presence of the recoil terms both
in the operator and in the wave function.

The quadratic recoil correction is known analytically for
the hydrogenlike ions and numerically for the helium atom
[21]. For a hydrogenlike system, the nonrelativistic contribu-
tion to K (2) is induced by the reduced mass and is just opposite
to the corresponding contribution to K (1),

K (2)
nr (hydr) = −K (1)

nr (hydr). (27)

This can also be used as a reasonable approximation for the
nonrelativistic contribution to K (2) in few-electron systems
(since the two-electron part of the nuclear recoil is usually
smaller than the one-electron part). However, the relativis-
tic effects can cause significant deviations from this simple
formula. In particular, it was shown in Ref. [21] that for
helium the relativistic correction to K (2) is much larger that
the corresponding correction to K (1). It is, therefore, not
surprising that the numerical calculations of K (2) performed
in this work for the relativistic fine-structure transitions show
significant deviations from the simple nonrelativistic estimate
(27).

C. Other nonlinear effects

It was pointed out in Ref. [10] that for light atoms, such
as argon considered here, the quadratic nuclear recoil is
the main source of nonlinearity of the King plot within the
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standard model framework. We now confirm this statement
by examining other possible sources of a nonlinearity.

First, we consider the energy correction that depends both
on the nuclear mass M and the nuclear size R. The underlying
physical effect is the fns correction to the nuclear recoil
(“fns recoil”). Strictly speaking, this is neither mass shift nor
field shift, but we can formally enforce the form of Eq. (1)
by ascribing the corresponding correction either to K or to
F . It is tempting to try to calculate this effect numerically,
e.g., by varying the nuclear radius in the numerical code for
the relativistic recoil correction. This would lead, however,
to a completely incorrect result. It was shown in Ref. [22]
that the numerically dominant fns recoil contribution coming
from the relativistic operator (19) is spurious and is exactly
canceled by the corresponding part of the QED fns recoil
effect. Therefore, any meaningful calculation of the fns recoil
effect can be performed only within the framework of QED,
which is beyond the scope of the present paper.

In the present study, we estimate the fns recoil effect within
the nonrelativistic independent-electron approximation. In
this limit, the fns recoil effect is induced just by the reduced-
mass correction to the leading fns contribution; see, e.g.,
Ref. [23]. Therefore, within this approximation the leading
field-shift constant should be multiplied by the reduced-mass
prefactor,

F → F

(
1 − 3

m

M

)
. (28)

We expect that this estimation gives the correct order of
magnitude of the effect, even though we are considering the
fine-structure transitions, for which the nonrelativistic approx-
imation does not work well.

Another effect that may contribute to the nonlinearity of
the King plot is the relativistic correction to the field shift.
For a light hydrogenlike atom, the numerically dominant rel-
ativistic fns correction is delivered by the leading logarithmic
approximation and is given by (see, e.g., Ref. [23])

δEfns = δEfns,nr

[
1 − (Zα)2 ln

(
Zα

R

λ̄C

)]
, (29)

where δEfns,nr is the nonrelativistic fns energy shift. Note that
this relativistic correction appears also in the fully relativistic
approach [10,24], originating through a modification of the
exponent of the R dependence of the fns energy shift,(

Zα
R

λ̄C

)2

→
(

Zα
R

λ̄C

)2γ

, (30)

where γ =
√

1 − (Zα)2.
Only the R-dependent part of the relativistic fns correction

contributes to the nonlinearity of the King plot. As an estima-
tion, we assume it to have the same form as for the hydrogenic
atoms,

F → F

[
1 − (Zα)2 ln

(
R

λ̄C

)]
. (31)

Finally, we consider the nuclear polarization, which is
obviously isotope dependent and thus contributes to the non-
linearity of the King plot. Reference [25] reported the follow-
ing estimate for the nuclear-polarization energy shift δEnpol,

which is based on available calculations for medium- and
high-Z ions,

δEnpol ≈ − 1

1000
δEfns ± 100%. (32)

This estimate gives a reasonable Z scaling of the nuclear
polarization but can significantly underestimate the effect for
the isotope shift. In order to correct for this, we introduce an
additional dependence on the mass number A,

δEnpol ≈ − 1

1000
δEfns

(
A

A0

)n

± 100%, (33)

where A0 is the mass number of a selected isotope in the
isotope chain and n is an empirical parameter. The giant
resonance model of the nuclear polarizability by Migdal [26]
(see also Ref. [10]) yields δEnpol ∝ R2A, and thus n = 1. Nu-
merical calculations of the nuclear-polarization energy shifts
for isotope chains of heavy H-like ions [27] suggest even
larger values of n. For our estimates in the present work we
will use n = 3 and assume that it yields the expected order of
magnitude of the effect. So, we estimate the influence of the
nuclear polarization on the nonlinearity of the King plot by
applying the following multiplicative factor to the field-shift
constant:

F → F

[
1 − 1

1000

(
A

A0

)3]
. (34)

IV. CALCULATIONS

In the present work we investigate the 2P fine-structure
transitions in Be-like, B-like, and C-like argon, specifically,
the (1s)22s2p 3P2 − 3P1 transition in Ar14+ (labeled as “a”),
the (1s)2(2s)22p 2P3/2 − 2P1/2 transition in Ar13+ (labeled as
“b”), and the (1s)2(2s)2(2p)2 3P1 − 3P0 transition in Ar12+

(labeled as “c”). We perform relativistic calculations of the
mass-shift and field-shift constants K (1), K (2), and F . The
calculations are performed by the relativistic configuration-
interaction (CI) method with configuration-state wave func-
tions (CSFs) constructed with B-splines. Our implementation
of the method is described in Refs. [28,29].

The present calculation of the isotope-shift constants en-
counters several difficulties. The first one comes from the
fact that we are considering the fine-structure transitions, for
which all relativistic effects are very much enhanced. The
second one comes from strong mixing of the reference state
with the closely lying levels. In order to take this into account,
we perform the CI expansions from multiple reference states,
including the dominant mixing configurations as additional
reference states. In particular, we use the 1s22s2 + 1s22p2

reference state for the Be-like argon, the 1s22s22p + 1s22p3

reference state for the B-like argon, and 1s22s22p2 + 1s22p4

for C-like argon. In the CI expansion we include the single (S),
double (D), and the dominant part of triple (T) and quadruple
(Q) excitations from the multiple reference states specified
above. The CI expansions in this work include up to 1.6
million CSFs.

Table I illustrates relative contributions of individual ex-
citations in our CI calculations of the mass-shift constants
K (1) and K (2). It can be seen that the contribution of the
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TABLE I. Results of the relativistic configuration-interaction calculation of the mass-shift constants K (1) and K (2) with inclusion of single
(S), double (D), triple (T), and quadruple (Q) excitations for Be-like, B-like, and C-like argon, in a.u.

Label Transition Ion K (1) K (2)

a (1s)22s2p 3P2 − 3P1 Ar14+ SD −0.107 23 0.289 1
SDT −0.107 22 0.289 5

SDTQ −0.107 22 0.289 5
Final −0.107 2 (3) 0.289 (3)

b (1s)2(2s)22p 2P3/2 − 2P1/2 Ar13+ SD −0.189 99 −0.324 8
SDT −0.189 57 −0.217 8

SDTQ −0.190 01 −0.201 7
Final −0.190 0 (3) −0.202 (35)

c (1s)2(2s)2(2p)2 3P1 − 3P0 Ar12+ SD −0.071 9 −2.202
SDT −0.066 2 0.120

SDTQ −0.074 0 0.310
Final −0.074 0 (16) 0.310 (68)

TQ excitations is quite small for the Be-like charge state
but becomes much more significant for B-like and especially
for C-like ions. We also observe that the relative contri-
bution of the TQ excitations is much more important for
K (2) than for K (1). Most spectacularly, the inclusion of the
TQ excitations for C-like argon reduces the result for K (2)

by an order of magnitude. The quintuple excitations (for
B- and C-like ions) are partly included in our calculations
through the usage of multiple reference states. However, a
systematic study of such excitations is presently not possible
due to technical limitations for the size of the CSFs expan-
sion. The numerical uncertainty of the obtained results was
estimated by varying the choice of the one-electron basis,
which changes the relative contributions of the individual
excitations.

V. RESULTS AND DISCUSSION

Numerical results of our relativistic calculations of the
isotope-shift constants K (1), K (2), and F are presented in
Tables I and II. The definition of the isotope-shift constants
is given by Eqs. (1) and (25). We note that our results for
K (1) do not include the QED part of the nuclear recoil, which

TABLE II. Comparison of the present calculation of the linear
mass-shift constant K (1) and the field-shift constant F for Be-like,
B-like, and C-like argon with the literature values, in a.u.

Transition Ion K (1) F

a Ar14+ −0.1072(3) −0.000 326(1)
−0.107a −0.000 3a

−0.1072c −0.000 33c

b Ar13+ −0.1900(3) −0.001 43(1)
−0.1913b −0.001 4(1)b

−0.1908c −0.001 45c

c Ar12+ −0.0740(16) −0.000 118(5)
−0.0735c −0.000 13c

aCI-DFS [30], without QED.
bCI-DFS [19], without QED.
cMCDF [17].

was accounted for Be-like and B-like argon in Refs. [19,30].
The QED correction to K (1) does not cause a nonlinearity in
the King plot, so it is not considered in the present work.
The results of our CI calculation for the linear isotope-shift
constants are in good agreement with previous relativistic
calculations [17,19,30].

Table III presents numerical results of our calculations
of the “new-physics” isotope-shift constant Xφ defined by
Eq. (17), for different values of masses of the hypothetical
boson mφ . Predictably, for small values of the boson mass mφ ,
exp(−mφr)/r ≈ 1/r, so that Xφ does not depend on mφ .

Knowing the isotope-shift constants K (1), K (2), and F for
several transitions of the same element, we can now calculate
the modified isotope shifts nxi j according to Eq. (7) and then
the nonlinearity of the King plot according to Eq. (14). We
consider the King plots constructed for three pairs of transi-
tions, (a, b), (b, c), and (a, c), and the chain of four isotopes of
Ar with the mass numbers (A0, A1, A2, A3) = (36, 38, 40, 42).

Using the values of the isotope-shift constants sum-
marized in Table II, we obtain the following results for
the King-plot nonlinearities caused by the quadratic recoil
effect:

�NL(ab) = 12.2(3) kHz, (35)

�NL(bc) = 29.(7) kHz, (36)

�NL(ac) = 5.3(1.7) kHz. (37)

We checked that other nonlinear effects discussed in Sec. III C
induce very small contributions to �NL. The largest of the sub-
leading effects is the nuclear polarization, whose contributions
to �NL for the transitions under consideration were found to
be ∼0.1–0.2 kHz.

It is interesting that the King-plot nonlinearities calculated
in this work are by 3–4 orders of magnitude larger than the
previous estimate (3 Hz) obtained for Ca+ in Ref. [10]. The
reason for such a difference is not clear to us. It might be
pointed out that no actual calculations were performed in
Ref. [10]; only the expected order of magnitude of the effect
was estimated.
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TABLE III. “New-physics” isotope-shift constant Xφ , in a.u., for different values of masses of the hypothetical boson mφ .

Transition mφ = 10 eV mφ = 102 eV mφ = 103 eV mφ = 104 eV mφ = 105 eV mφ = 106 eV mφ = 107 eV

a 0.020 0.020 0.020 0.018 0.0029 3.1×10−5 2.8×10−7

b 0.027 0.027 0.027 0.024 0.0050 1.1×10−4 1.3×10−6

c 0.014 0.014 0.014 0.013 0.0019 1.3×10−5 1.×10−7

Our calculations demonstrate that isotope-shift measure-
ments accurate at the Hertz level, like the one reported for Ca+

in Ref. [7], could no longer ignore nonlinearities appearing
in the standard model framework in the King-plot analysis.
It is clear that such effects should become observable in the
near future. Specifically for argon isotopes, an experimental
identification of the nonlinear effects calculated in the present
work is feasible by applying the quantum-logic technique,
as recently demonstrated for boronlike Ar13+ [9]. With the
same technique, the ground-state (1s)2(2s)2(2p)2 3P1 − 3P0

transition in carbonlike Ar12+ at about 1015 nm could be
resolved with a comparable level of precision (of a few
Hertz). The argon isotopes 36Ar, 38Ar, and 40Ar are stable
and affordable for such experimental studies. 42Ar is a β

emitter with a lifetime of 33 years and is in principle also
accessible for this kind of experiment, arguably with some
efforts regarding procurement and safety requirements. More
stable isotopes are available for calcium. The same transitions
in boron- and carbon-like Ca are still in the laser-accessible
range for studying the King-plot nonlinearities with even
five isotopes, corresponding to four data points in the King
plot.

Recently, there was a suggestion put forward [3,4] to
use (the absence of) the observed nonlinearity of the King
plot in the isotope-shift measurements in order to constrain
the hypothetical new long-range forces between the electron
and the nucleus. Reference [4] analyzed perspectives of such
constraints for a (rather optimistic) variant of the experimental
accuracy of 1 Hz and the absence of King-plot nonlinearities
on this level. Our calculations show that the typical King-
plot nonlinearities originating within the standard model are
much larger than 1 Hz; it is clear that we could constrain
the new-physics effects only to the level on which we are
able to control the accuracy of the nonlinear effects within
the standard model.

In order to predict which constraints on the new-physics
coupling constant αNP in Eq. (15) one could expect from
isotope-shift measurements of the transitions considered in
this work, we list in Table IV the ratios αNP/α that induce
a 1 kHz King-plot nonlinearity �NL, for different masses of
the hypotetical boson mφ . We conclude that the perspective

constraints are on a much more modest scale than was an-
ticipated in Ref. [4]. In order to obtain better constraints,
one would need to search for elements and/or transitions
for which the standard-model King-plot nonlinearities are
as small as possible. In particular, investigations of heav-
ier elements might be advantageous since for them the nu-
clear recoil effects are suppressed due to a larger nuclear
mass.

VI. CONCLUSION

In this work we performed relativistic calculations of the
isotope-shift constants for the 2P fine-structure transitions in
Be-like, B-like, and C-like argon. In particular, the quadratic
recoil constant K (2) in these systems was calculated. Because
of significant contributions from triple and quadruple excita-
tions, large-scale configuration-interaction calculations with
more than a million configuration-state functions were em-
ployed, in order to obtain reliable predictions for the quadratic
mass-shift constant.

We studied nonlinear effects in the King plot for a chain
of argon isotopes. It was demonstrated that, for such light
atoms, the nonlinear effects in the King plot are domi-
nated by the quadratic recoil effect. For the considered
fine-structure transitions, nonlinearities from 5 to 30 kHz
were found. Such effects should be clearly visible in the
forthcoming isotope-shift experiments at the Hertz accuracy
level.

The nonlinear effects in the King plot arising within the
standard model and the accuracy of their theoretical descrip-
tion put a limitation on possible constraints on hypothetical
new long-range forces between the electron and the nucleus,
which can be derived from the isotope-shift investigations.
We performed calculations demonstrating to which level the
new-physics coupling constant can be realistically constrained
for the considered transitions.

In the present study we addressed isotopes with even
number of nucleons and zero nuclear spin. For odd isotopes,
additional complications may arise due to the presence of
the hyperfine structure of the energy levels. In particular, a
measurement of the isotope shift of the 6s5d 3D1,2 − 6s6p 1Po

1

TABLE IV. Ratios of the “new-physics” coupling constant αNP to the fine-structure constant α, which would cause a nonlinearity of the
King plot of 1 kHz, for different values of masses of the hypothetical boson mφ .

Transitions mφ = 10 eV mφ = 102 eV mφ = 103 eV mφ = 104 eV mφ = 105 eV mφ = 106 eV mφ = 107 eV

αNP/α (a, b) 1 × 10−11 1 × 10−11 1 × 10−11 1 × 10−11 8 × 10−11 2 × 10−8 2 × 10−5

(b, c) 5 × 10−12 5 × 10−12 5 × 10−12 6 × 10−12 4 × 10−11 1 × 10−8 6 × 10−6

(a, c) 1.5 × 10−11 1.5 × 10−11 1.5 × 10−11 1.6 × 10−11 1 × 10−10 2 × 10−8 3 × 10−5
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transitions in barium isotopes [31] reported results in dis-
agreement with the King-plot behavior predicted by theory
[17] for odd isotopes.

Recently, we learned about a measurement of the 1S0 −
3P0,1 isotope shifts in strontium with a 10 kHz accuracy [32].
The authors observe a possible nonlinearity of the King plot
and conclude that “Future theoretical and experimental studies
should help to explain our observations...”.
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