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In the paper, we propose a protocol for the one-step interconversions between the Greenberger-Horne-
Zeilinger (GHZ) states and the W states with deterministic success probabilities. The Rydberg interactions
among three Rydberg atoms are utilized here to structure nonlocal operations for the interconversions. Addition-
ally, we construct a Lewis-Riesenfeld invariant for a four-level system and afterwards use it to reversely design
the Rabi frequencies of the effective Hamiltonian. The numerical simulations indicate that the protocol is robust
against the spontaneous emission, the dephasing, the thermal noise, the systematic errors on Rabi frequencies,
and the frequency mismatching. Therefore, the protocol may contribute to the research of the interconversions
between entanglements.
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I. INTRODUCTION

It is known that quantum entanglement plays an indis-
pensable role in the application of quantum information
processing (QIP) [1–4]. Among different entangled states,
three-particle entangled states like the Greenberger-Horne-
Zeilinger (GHZ) states [|GHZ〉 = (|000〉 + |111〉)/

√
2] and

the W states [|W 〉 = (|001〉 + |010〉 + |100〉)/
√

3] have at-
tracted many interests. With the development of research,
scientists found that both the GHZ states and W states can be
used to test quantum mechanics against local hidden theory
without Bell inequality [5–7]. On the other hand, the GHZ
states and W states possess their own characteristics. For
example, a W state is robust against the loss of a particle:
when one of the three particles loses, the other two particles
may still be entangled [8]. Besides, a GHZ state will collapse
into a mixed state with only classical correlations if any one of
the three particles is lost. Since the GHZ states and W states
own large information capacity, they are widely used in many
practical fields, for example, quantum teleportation [9–12],
quantum secure direct communication [13,14], quantum state
sharing [15,16], and so on.

As is well known, the GHZ states and the W states are two
different types of entangled states, and their interconversions
cannot be implemented only with local operations and clas-
sical communication (LOCC) [8]. However, with the GHZ
states and W states being widely used in various kinds of QIP,
researchers cannot help but think, if one can carry on flexible
interconversions between them, the GHZ states or the W
states will be regarded as the universal 3-qubit entanglements
resources. Obviously, it will improve the efficiency of some
QIP needing the GHZ states and W states. For this purpose, in
2005, Walther et al. [17] proposed a conversion of a GHZ state
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to an approximate W state by exploiting the local positive op-
erator valued measures (POVMs) and experimentally applied
the protocol in a three-photon system. The protocol provided
an innovative method to overcome the difficulty for converting
a GHZ state into a W state. Nevertheless, the conversion in
Ref. [17] is probabilistic because it is indispensable to set
imperfect local POVMs, which means the success probability
is inversely proportional to the fidelity. In a long period after
that, some outstanding protocols have been put forward to
solve the problem about the conversions of entangled states,
such as the transformation of two Einstein-Podolsky-Rosen
(EPR) photon pairs into a W state [18] and the conversion of
a cluster state into a GHZ state or a Dicke state [19]. But the
question about the conversions between the GHZ states and
the W states is still challenging. In order to get the question
settled, Cui et al. [20] proposed a protocol for converting
a four-photon GHZ state to a W state with high fidelity
based on homodyne measurement in an optical system. In
addition, Kang et al. [21] put forward a protocol to realize
interconversions between the GHZ states and the W states
in a spin system. References [20,21] successfully solved the
problem of the conversions between the GHZ states and the
W states in an optical system and a spin system, respectively.
However, there are few works focusing on the conversions in
an atomic system.

An atom is a type of useful information carrier because
it can store the information in stationary nodes. This char-
acteristic makes the atomic system popular for use in many
different kinds of QIP [22–33]. Naturally, the conversions
between the GHZ states and the W states in an atomic system
become meaningful. For realizing the conversions, Song et al.
[34] creatively designed a way to convert a W state into a
GHZ state with high fidelity based on dissipative dynamics
processes. Also, Wang et al. [35] proposed a method for the
transformation from a W state to a GHZ state in spatially sep-
arated cavities with 100% fidelity and maximal 75% success
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FIG. 1. (a) Schematic diagram of the protocol. In atomic sys-
tems, three stationary qubits, initially encoded on the W states, can
be transferred (by one step) to the GHZ states with a sequence of
Rabi frequencies indicated by R1, vice versa, the GHZ states can
be converted (by one step) into the W states with R2, a sequence of
another Rabi frequencies. (b) Detailed processes for designing the
suitable Rabi frequencies R1 and R2. “LR invariant” represents the
Lewis-Riesenfeld invariant.

probability. Both protocols [34,35] created an irreversible way
from a W state to a GHZ state, which means the applications
of protocols [34,35] may be limited in some situations where
transformations from GHZ states to W states are needful.

In order to work out the unresolved problem regarding
interconversions between GHZ states and W states in an
atomic system, we propose a protocol utilizing Rydberg in-
teractions [36–39] to structure nonlocal operations for the
interconversions. A schematic diagram for the protocol is
given in Fig. 1(a), where R1 represents the sequence of
Rabi frequencies for converting the W states into the GHZ
states, and R2 indicates the sequence of Rabi frequencies
for transforming the W states to GHZ states. Also, detailed
processes for designing suitable Rabi frequencies are shown
in Fig. 1(b). The physical model of the protocol contains
three neutral atoms with Rydberg states, and each atom is
driven by four laser pulses. The original Hamiltonian of
the physical system can be refined as a four-level effective
Hamiltonian with three time-dependent Rabi frequencies of
laser pulses. In order to design suitable Rabi frequencies of
the effective Hamiltonian for the interconversions, we exploit
Lie algebra [40] to build a Lewis-Riesenfeld (LR) invariant
[41]. Moreover, based on the LR invariant, we can inversely
design the three time-dependent Rabi frequencies of pulses
for the interconversions.

In this paper, we also give numerical simulations for the
fidelities of the interconversions by using the original Hamil-
tonian. The results show that both the conversions from the

GHZ states to the W states and conversions from the W
states to the GHZ states are stable against the influence of
spontaneous emission, dephasing, thermal noise, systematic
errors, and frequency mismatching. Therefore, the protocol is
feasible in experiment and might be helpful for conversions
between entanglements in an atomic system.

The article is organized as follows. In Sec. II, we utilize
the Rydberg interactions among three Rydberg atoms to struc-
ture nonlocal operations. After calculating, we can derive a
four-level effective Hamiltonian. In Sec. III, based on the
LR invariant and Lie algebra, we inversely design the Rabi
frequencies of laser pulses for the four-level effective Hamil-
tonian to realize the interconversions between the GHZ states
and the W states. Next, we give the numerical simulations in
Sec. IV, the expansion of model in Sec. V, and the conclusion
in Sec. VI.

II. PHYSICAL MODEL TO REALIZE THE
INTERCONVERSIONS BETWEEN THE GHZ

STATES AND THE W STATES

We consider a physical system containing three neutral
atoms with Rydberg states. As shown in Fig. 2, each particle
has one ground state |0〉k (k = 1, 2, 3) and one Rydberg state
|r〉k , where k denotes the kth atom in the physical system.
The transition |0〉k ↔ |r〉k is driven by four different classical
fields with Rabi frequencies �r1(t ), �r2(t ), �r3(t ), and �r4,
whose detunings are δ1, �2 + δ2, �3 + δ3, and �4, respec-
tively. Here, Rabi frequencies �r1(t ), �r2(t ), and �r3(t ) are
time dependent and �r4 is time independent. Each two adja-
cent atoms have Rydberg interaction with interaction energy
V . In the interaction picture, the Hamiltonian is (p, q, k =
1, 2, 3)

H (t ) =
3∑

k=1

[�r1(t )e−iδ1t + �r2(t )e−i(δ2+�2 )t

+�r3(t )e−i(δ3+�3 )t + �r4ei�4t ]|r〉k〈0|
+ H.c. +

∑
p<q

V |rr〉pq〈rr|. (1)

Here, the conditions �2 = V , �3 = 2V and {V, �4} �
{�r4, δ1, δ2, δ3} � max{|�r1(t )|, |�r2(t )|, |�r3(t )|} are
set. The effective Hamiltonian will be finally derived as (see
Appendix for the detailed processes)

Heff (t ) =
√

3�r1(t )|000〉〈Wr | +
√

3�r3(t )|W ′
r 〉〈rrr|

+ 2�r2(t )|Wr〉〈W ′
r | + H.c., (2)

with choosing

λ1 = −6�2
r4

�4
+ 4�2

r4

�4 + V
, λ2 = 4�2

r4

�4 + V
− 6�2

r4

�4 + 2V
,

λ3 = − 2�2
r4

�4 + V
, λ4 = 3�2

r4

�4
− 8�2

r4

�4 + V
+ 3�2

r4

�4 + 2V
. (3)

Note that here we code the logical 0 at ground state |0〉
and the logical 1 at Rydberg state |r〉, that is, |Wr〉 [|Wr〉 =
(|00r〉 + |0r0〉 + |r00〉)/

√
3] represents the W states and
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FIG. 2. The energy levels of the three neutral atoms with Rydberg states.

naturally the GHZ states can be defined as

|GHZr〉 = (|000〉 + |rrr〉)/
√

2. (4)

In the following work, the interconversion we want to process
is between |Wr〉 and |GHZr〉.

III. PULSE DESIGN FOR THE INTERCONVERSIONS
VIA INVARIANT

As shown in Eq. (2), the effective Hamiltonian is four level.
Hence, in this part, a method for designing Rabi frequencies
of such four-level effective Hamiltonians to implement the
interconversions between the GHZ states and the W states
is given. First of all, we briefly describe the LR theory [41]
by introducing a Hermitian invariant operator I (t ), which
satisfies (h̄ = 1)

i
∂I (t )

∂t
− [Heff (t ), I (t )] = 0. (5)

According to the theory, a solution |�(t )〉 of the time-
dependent Schrödinger equation i∂|ψ (t )〉/∂t = Heff (t )|ψ (t )〉
can be described by the eigenvectors |	n(t )〉 (n = 1, 2, 3, 4)
of I (t ) as

|�(t )〉 =
∑

n

Cneiαn |	n(t )〉, (6)

where αn is the LR phase written as

αn(t ) =
∫ t

0
〈	n(t ′)|

[
i

∂

∂t ′ − Heff (t ′)
]
|	n(t ′)〉dt ′, (7)

and

Cn = 〈	n(0)|�(0)〉. (8)

Next, we build the LR invariant with Lie algebra in a four-
level system whose basis is {−i|000〉, |Wr〉, |W ′

r 〉, |rrr〉}.

In such a basis, Eq. (2) can be rewritten as

Heff (t ) =

⎛
⎜⎝

0 �1(t ) 0 0
�1(t ) 0 �2(t ) 0

0 �2(t ) 0 �3(t )
0 0 �3(t ) 0

⎞
⎟⎠, (9)

with �1(t ) = i
√

3�r1(t ), �2(t ) = 2�r2(t ), and �3(t ) =√
3�r3(t ) [�1(t ), �2(t ), and �3(t ) always being real]. Then

Heff (t ) can be resolved as

Heff (t ) = �1(t )G1 + �2(t )G2 + �3(t )G3, (10)

where G1, G2, and G3 are

G1 =

⎛
⎜⎝

0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎠, G2 =

⎛
⎜⎝

0 0 0 0
0 0 1 0
0 1 0 0
0 0 0 0

⎞
⎟⎠,

G3 =

⎛
⎜⎝

0 0 0 0
0 0 0 0
0 0 0 1
0 0 1 0

⎞
⎟⎠, (11)

respectively. Expanding G1, G2, and G3 to Lie algebra, one
can get another three elements, such as

G4 =

⎛
⎜⎝

0 0 −i 0
0 0 0 0
i 0 0 0
0 0 0 0

⎞
⎟⎠, G5 =

⎛
⎜⎝

0 0 0 0
0 0 0 −i
0 0 0 0
0 i 0 0

⎞
⎟⎠,

G6 =

⎛
⎜⎝

0 0 0 1
0 0 0 0
0 0 0 0
1 0 0 0

⎞
⎟⎠. (12)
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Besides, the LR invariant of the four-level system can be
described as [40]

I (t ) =
6∑

m=1

ηm(t )Gm. (13)

Combining Eq. (13) with Eqs. (5, 10, 11, 12), one can derive

η̇1(t ) = η4(t )�2(t ),

η̇2(t ) = −η4(t )�1(t ) + η5(t )�3(t ),

η̇3(t ) = −η5(t )�2(t ),

η̇4(t ) = η2(t )�1(t ) − η1(t )�2(t ) − η6(t )�3(t ),

η̇5(t ) = η6(t )�1(t ) + η3(t )�2(t ) − η2(t )�3(t ),

η̇6(t ) = −η5(t )�1(t ) + η4(t )�3(t ). (14)

By using Eq. (14), the expressions of �1(t ), �2(t ), and �3(t )
can be inversely solved as

�1(t ) = η5(t )η̇6(t ) − η4(t )η̇2(t )

η4(t )2 − η5(t )2
,

�2(t ) = η̇1(t )

η4(t )
, (15)

�3(t ) = η4(t )η̇6(t ) − η5(t )η̇2(t )

η4(t )2 − η5(t )2
,

respectively. Moreover, the constraint relations can also be
obtained from Eq. (14) as

6∑
m=1

ηm(t )2 = Const, η̇1(t )η5(t ) + η̇3(t )η4(t ) = 0,

η4(t )η5(t ) + η2(t )η6(t ) − η1(t )η3(t ) = Const. (16)

Considering the constraint relations in Eq. (16), we
assume

η1(t ) = cos θ, η2(t ) = sin θ sin ϕ,

η3(t ) = sin θ, η4(t ) = sin θ cos ϕ, (17)

η5(t ) = cos θ cos ϕ, η6(t ) = cos θ sin ϕ,

in which θ and ϕ are time-dependent parameters. By substi-
tuting Eq. (17) into Eq. (15), the detailed expressions of the
Rabi frequencies can be derived as

�1(t ) = θ̇ tan 2θ tan ϕ − ϕ̇,

�2(t ) = −θ̇/ cos ϕ,

�3(t ) = θ̇ tan ϕ/ cos 2θ. (18)

Up to now, by means of designing the Rabi frequencies �1(t ),
�2(t ), and �3(t ), we can reversely construct the Hamilto-
nian Heff (t ) in Eq. (9) to drive a particular initial state to a
specific final state. Before designing the Rabi frequencies, it
is necessary to know the boundary conditions of the time-
dependent parameters θ (t ) and ϕ(t ). The boundary conditions
are decided by the initial state and the final state, which can
be expressed as |�(0)〉 and |�(T )〉, respectively, where T
represents the final time. As shown in Eq. (6), the state of
the total four-level system |�(t )〉 contains a LR phase αn(t )
(n = 1, 2, 3, 4). Therefore, it is indispensable to obtain the
phase. Based on Eq. (17), the LR invariant in Eq. (13) can
be rewritten as

I (t ) =

⎛
⎜⎝

0 cos θ −i sin θ cos ϕ cos θ sin ϕ

cos θ 0 sin θ sin ϕ −i cos θ cos ϕ

i sin θ cos ϕ sin θ sin ϕ 0 sin θ

cos θ sin ϕ i cos θ cos ϕ sin θ 0

⎞
⎟⎠. (19)

Thereupon, the orthogonal eigenvectors of I (t ) are

|	1(t )〉 = 1

2

⎛
⎜⎜⎝

i cos ϕ − √
2 sin θ sin ϕ

− sin ϕ + i
√

2 sin θ cos ϕ√
2 cos θ

1

⎞
⎟⎟⎠,

|	2(t )〉 = 1

2

⎛
⎜⎜⎝

i cos ϕ + √
2 sin θ sin ϕ

− sin ϕ − i
√

2 sin θ cos ϕ

−√
2 cos θ

1

⎞
⎟⎟⎠,

|	3(t )〉 = 1

2

⎛
⎜⎜⎝

−i cos ϕ + √
2 cos θ sin ϕ

sin ϕ − i
√

2 cos θ cos ϕ√
2 sin θ

1

⎞
⎟⎟⎠,

|	4(t )〉 = 1

2

⎛
⎜⎜⎝

−i cos ϕ − √
2 cos θ sin ϕ

sin ϕ + i
√

2 cos θ cos ϕ

−√
2 sin θ

1

⎞
⎟⎟⎠, (20)

with corresponding eigenvalues 0, 0,
√

2, and −√
2, respec-

tively. With the help of Eqs. (7, 9, 18, 20), the derivatives of
the LR phases with respect to time are given by

α̇1(t ) = −
√

2θ̇ cos θ tan ϕ/ cos 2θ = −
√

2�3(t ) cos θ,

α̇2(t ) =
√

2θ̇ cos θ tan ϕ/ cos 2θ =
√

2�3(t ) cos θ,

α̇3(t ) = −
√

2θ̇ sin θ tan ϕ/ cos 2θ = −
√

2�3(t ) sin θ,

α̇4(t ) =
√

2θ̇ sin θ tan ϕ/ cos 2θ =
√

2�3(t ) sin θ, (21)

according to the orthogonal eigenvectors |	1(t )〉, |	2(t )〉,
|	3(t )〉, and |	4(t )〉, respectively.

Now we can use the LR theory to transfer a particular initial
state into a specific final state. Here, the initial and final state
are assumed as |�(0)〉 = |Wr〉 and |�(T )〉 = |GHZr〉, respec-
tively. For simplicity, we set ϕ(0) = θ (0) = 0 and expand the
final state |�(T )〉 by Eqs. (6, 8, 20, 21) as

|�(T )〉 = i√
2

eiα3(T )|	3(T )〉 − i√
2

eiα4(T )|	4(T )〉. (22)
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To achieve the transition T1, |�(0)〉 = |Wr〉 → |GHZr〉 =
|�(T )〉, boundary conditions α3(T ) = −π/2, α4(T ) = π/2,
and ϕ(T ) = 0 should be set.

On the contrary, if the initial state is |�(0)〉 = |GHZr〉
and the final state is |�(T )〉 = |Wr〉, the boundary condition
ϕ(0) = θ (0) = 0 is chosen for the brief and the final state can
be expanded as

|�(T )〉 = 1√
2

eiα3(T )|	3(T )〉 + 1√
2

eiα4(T )|	4(T )〉. (23)

By setting α3(T ) = π/2, α4(T ) = −π/2, ϕ(T ) = 0, and
θ (T ) = 0, one can realize the transition T2: |�(0)〉 =
|GHZr〉 → |Wr〉 = |�(T )〉.

In summary, the boundary conditions are

ϕ(0) = ϕ(T ) = θ (0) = 0, α4(T ) = −α3(T ) = π/2, (24)

in the transition T1 and

ϕ(0) = ϕ(T ) = θ (0) = θ (T ) = 0,

α3(T ) = −α4(T ) = π/2, (25)

in the transition T2. According to the boundary conditions in
Eqs. (24, 25), the time-dependent parameters ϕ(t ) and θ (t ) are
given by

ϕ(t ) = a sin(πt/T ) sin(2πt/T ),

θ (t ) = b sin2(πt/T ), (26)

where a and b are parameters controlling the maximal value
of ϕ(t ) and θ (t ), respectively. Note that ϕ(t ) and θ (t ) should
meet the equation α3(T ) = √

2
∫ T

0 �3(t ) sin[θ (t )]dt =
−π/2 in transition T1 and the equation α3(T ) =√

2
∫ T

0 �3(t ) sin[θ (t )]dt = π/2 in transition T2. These
two equations restrict the relations between parameters a and
b. For ease of reading, we list the relations between a and b
of transitions T1 and T2 in Tables I and II, respectively.

Based on the results in Tables I and II, a = 0.42π and
b = 0.7069 are chosen for transition T1, and a = 0.42π and
b = −0.7069 are chosen for transition T2. Thus, by exploiting
Eqs. (18, 26), we can obtain the Rabi frequencies of the
effective Hamiltonian Heff (t ) to realize the transitions T1 and
T2. The Rabi frequencies of pulses in transitions T1 and T2

are plotted in Figs. 3(a) and 3(b), respectively. Moreover, the
fidelities of transitions T1 and T2 are plotted in Figs. 3(c)
and 3(d), respectively. From Figs. 3(a) and 3(b), one can see
that all the Rabi frequencies of pulses vanish at the initial
time and the final time, which means the pulses will be easy
to open and shut off. In Figs. 3(c) and 3(d), the fidelities

TABLE I. a and corresponding b in transition T1.

a b

0.42 π 0.7069
0.40 π 0.7226
0.38 π 0.7304
0.36 π 0.7450
0.35 π 0.7461
0.34 π 0.7540
0.32 π 0.7618
0.30 π 0.7697

TABLE II. a and corresponding b in transition T2.

a b

0.42 π –0.7069
0.40 π –0.7226
0.38 π –0.7304
0.36 π –0.7450
0.35 π –0.7461
0.34 π –0.7540
0.32 π –0.7618
0.30 π –0.7697

for the transitions T1 and T2 both reach 100%. In a word,
based on the LR invariant and Lie algebra in a four-level
system, we inversely build the effective Hamiltonian Heff (t ) to
implement transition T1: |�(0)〉 = |Wr〉 → |GHZr〉 = |�(T )〉
and transition T2: |�(0)〉 = |GHZr〉 → |Wr〉 = |�(T )〉. Since
one can convert a W state into a GHZ state by choosing

�r1(t ) = −i�1(t )/
√

3, �r2(t ) = �2(t )/2,

�r3(t ) = �3(t )/
√

3, a = 0.42π, b = 0.7069, (27)

with the expressions of �1(t ), �2(t ), and �3(t ) shown in Eqs.
(18, 26).

Analogously, one can also choose

�r1(t ) = −i�1(t )/
√

3, �r2(t ) = �2(t )/2,

�r3(t ) = �3(t )/
√

3, a = 0.42π, b = −0.7069 (28)

to convert a GHZ state to a W state.

IV. NUMERICAL SIMULATIONS

In this section, first of all, considering the decoherence
caused by the thermal noise, the dephasing, and the sponta-
neous emission, we give numerical simulations of fidelities
for the interconversions between the GHZ states and the W
states based on the master equation [42]:

ρ̇(t ) = i[ρ(t ), H (t )] + Ddeph[ρ(t )] + Dtherm[ρ(t )],

Ddeph[ρ(t )] =
6∑

l=4

[
LlρL†

l − 1

2
(L†

l Llρ + ρL†
l Ll )

]
,

Dtherm[ρ(t )] =
3∑

l=1

{
(n̄ + 1)

[
LlρL†

l − 1

2
(L†

l Llρ + ρL†
l Ll )

]
,

+ n̄

[
L†

l ρLl − 1

2
(LlL

†
l ρ + ρLl L

†
l )

]}
, (29)

where H (t ) is the original Hamiltonian shown in Eq. (1), ρ(t )
is the density matrix of the total system, and n̄ is the average
number of thermal phonons. Besides, Ll (l = 1, 2, . . . , 6) are
the Lindblad operators as

L1 =
√

�1|0〉1〈r|, L2 =
√

�2|0〉2〈r|,
L3 =

√
�3|0〉3〈r|, L4 = √

γ1(|r〉1〈r| − |0〉1〈0|),
L5 = √

γ2(|r〉2〈r| − |0〉2〈0|),
L6 = √

γ3(|r〉3〈r| − |0〉3〈0|), (30)
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FIG. 3. (a) Rabi frequencies �1(t ), �2(t ), and �3(t ) vs t/T in the transition T1. (b) Rabi frequencies �1(t ), �2(t ), and �3(t ) vs t/T in the
transition T2. (c) Fidelity F1 vs t/T in T1. (d) Fidelity F2 vs t/T in T2.

with �k (k = 1, 2, 3) being the spontaneous emission rate of
the path |r〉k → |0〉k and γk being the dephasing rate of the kth
atom. Here γ1 = γ2 = γ3 = γ and �1 = �2 = �3 = � are set
for simplicity.

Based on the experimental parameters realized in pro-
tocol [43], a group of parameters, V = 2π× 50 MHz and
�r4 = 23.56 MHz, is chosen. In this case, the total evolution
time is T = 17.83 μs here, which is short enough compared
with the lifetime and operation time of the neutral atoms
[44]. Combining the value of T with Fig. 3(a), Fig. 3(b),
and Eqs. (27, 28), the maximal values of Rabi frequencies
can be derived as max[�r1(t )] = 0.31 MHz, max[�r2(t )] =
0.11 MHz, and max[�r3(t )] = 0.19 MHz. In addition, we set
�4 = 2π× 150 MHz, which is experimentally acceptable
[43,45]. Moreover, ranges for the spontaneous emission � as
0 ∼ 2 kHz [44] and the dephasing rate γ as 0 ∼ 1 kHz are
chosen here. The average number of thermal phonons n̄ is
set in a scope as 0 ∼ 1. Considering the Bose-Einstein dis-
tribution, the average number of thermal phonons is given by

n̄ = 1/(e
h̄ω

kBT − 1). Assuming the frequency of thermal noise
as ω = 2π × 1 MHz, the scope of n̄ can be understood as the
range of experimental temperature, 0 ∼ 68.31 μK.

By substituting the parameters into the master equation in
Eqs. (29, 30), the density matrix ρ(t ) could be numerically
solved. Then we can obtain the fidelity for converting a W
state to a GHZ state by utilizing F1 = |〈GHZr |ρ1(T )|GHZr〉|
and the fidelity for transforming a GHZ state into a W state
with F2 = |〈Wr |ρ2(T )|Wr〉|. Note that ρ1(t ) corresponds to
the initial state |Wr〉 and ρ2(t ) corresponds to the initial state
|GHZr〉 here. We show the relations of F1 (F2) versus the spon-
taneous emission rate � and the dephasing rate γ in Fig. 4(a)
[Fig. 4(b)] with n̄ = 0. From Figs. 4(a) and 4(b), one could
find the fidelities F1 and F2 are both robust against the sponta-
neous emission rate � and the dephasing rate γ . Besides, the
relations of F1 (F2) versus the spontaneous emission rate � and
the average number of thermal phonons n̄ are demonstrated
in Fig. 5(a) [Fig. 5(b)] with setting γ = 0. Figures 5(a) and
5(b) prove that the protocol cannot be easily influenced by the

spontaneous emission and the thermal noise. By considering
a group of parameters such as � = 1.2 kHz, γ = 1 kHz, and
n̄ = 0.2 (i.e., experimental temperature being 26.81 μK [46]),
one can obtain F1 = 91.12% and F2 = 91.18%, which are
receivable values in experiments.

Second, taking the parametric errors in experiments into
account, we discuss the influence of fidelities for the intercon-
versions by introducing the systematic error on Rabi frequen-
cies �rk (t ) (k = 1, 2, 3). Here, after considering systematic
errors, the real Rabi frequency can be written as

�′
rk (t ) = (1 + η)�rk (t ), (31)

where η is the coefficient of the systematic error on Rabi
frequency �rk (t ). By substituting the real Rabi frequency
�′

rk (t ) into Eqs. (29, 30) and setting n̄ = � = γ = 0, we
can numerically calculate ρ(t ) and afterwards derive the final
fidelities F1 and F2. The relations between final fidelity F1 (F2)
and η are plotted in Fig. 6. One can see from Fig. 6 that even
if the coefficient of the systematic errors reaches ±10%, the
fidelities F1 and F2 are higher than 97%. Thus, the influence
of the systematic errors on Rabi frequencies is weak in the
present protocol.

In addition, it is appropriate to consider the frequency
mismatching. Under actual experimental conditions, the

FIG. 4. (a) Fidelity F1 vs the spontaneous emission rate � and
the dephasing rate γ . (b) The fidelity F2 vs the spontaneous emission
rate � and the dephasing rate γ .
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FIG. 5. (a) Fidelity F1 vs the spontaneous emission rate � and
the average number of thermal phonons n̄. (b) Fidelity F2 vs the
spontaneous emission rate � and the average number of thermal
phonons n̄.

frequency matching may not be completely satisfied. There-
fore, the real values of detuning of Rabi frequency �rk (t ) are
assumed as

δ′
1 = (1 + μ)δ1,

δ′
2 + �2 = (1 + μ)δ2 + �2, (32)

δ′
3 + �3 = (1 + μ)δ3 + �3,

with μ being the error rate and δ1, δ′
2 + �2 and δ′

3 + �3

being the ideal values of the detuning of Rabi frequency
�rk (t ), respectively. Through the same calculative process,
the relationships between final fidelities F1 and F2 and error
rate μ are plotted in Fig. 7, respectively. Note that n̄ = � =
γ = η = 0 is set here. From Fig. 7, one can find that the
fidelities F1 and F2 are both higher than 95% when the error
rate of frequency matching is μ = 1%. Therefore, the protocol
is also robust against frequency mismatching.

V. EXPANSION

With multiparticle entanglement (the number of particles
N � 4) being popular in recent research [47,48], it is mean-
ingful to implement the interconversions between the N-qubit
GHZ states and the N-qubit W states, whose definitions are

|GHZr〉 = (|0〉⊗N + |r〉⊗N )/
√

2,

|Wr〉 = 1√
N

N∑
n=1

σ+
n |0〉⊗N , (33)

respectively, in which σ+
n = |r〉n〈0| is the raising operator

of the nth atom. Similarly, we can also construct a system
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FIG. 6. Fidelities F1 and F2 vs the systematic errors rate η with
red astroid line and blue triangular line, respectively.
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FIG. 7. Fidelities F1 and F2 vs the error rate of frequency match-
ing μ with red astroid line and blue triangular line, respectively.

by N neutral atoms with Rydberg states and refine the total
Hamiltonian into

Heff (t ) =
N∑

m=1

�m(t )|(m − 1)r〉〈mr|, (34)

where |mr〉 denotes the collection of the total state including
m Rydberg states, which can be indicated as

|mr〉 =
N∑

q1<q2<···<qm

aq1,q2,...,qm × σ+
q1

σ+
q2

. . . σ+
qm

|0〉⊗N , (35)

with σ+
q1

= |r〉q1〈0|, σ+
q2

= |r〉q2〈0|,..., σ+
qm

= |r〉qm〈0| being the
raising operators of atoms q1, q2,..., qm ({q1, q2,..., qm} ∈ {1,
2,..., N}, q1 < q2 < · · · < qm), respectively, and ap,q,...,l is the
coefficient of state σ+

q1
σ+

q2
· · · σ+

qm
|0〉⊗N . Note that when m = 1

is satisfied, the coefficient aq1 is always equal to 1/
√

N , i.e.,
|1r〉 is another expression of the N-qubit W states |Wr〉.

It is clear that Heff (t ) is (N + 1) level. In order to realize
the interconversions between the N-qubit GHZ states (|0r〉 +
|Nr〉)/

√
2 and the N-qubit W states |1r〉, an invariant I (t ) for

an (N + 1)-level system should be structured. By utilizing
i ∂I (t )

∂t − [Heff (t ), I (t )] = 0, one can get a set of equations
which will provide an expression of the Rabi frequency �m(t ).
Using these expressions and suitable boundary conditions,
we can reversely construct the Rabi frequency �m(t ) for the
interconversions between the N-qubit GHZ states and the
N-qubit W states.

For example, to realize the interconversions in a 4-qubit
system, an analogical atomic model shown in Fig. 2 is used
with expansion to four Rydberg atoms. The transition |0〉k ↔
|r〉k (now k = 1, 2, 3, 4), is driven by four time-dependent
Rabi frequencies �r1(t ), �r2(t ), �r3(t ), �r4(t ) and one time-
independent Rabi frequency �r5, whose detunings are δ1,
�2 + δ2, �3 + δ3, �4 + δ4, and �5, respectively. Also, each
two adjacent atoms own Rydberg interaction strength V .
In the interaction picture, the Hamiltonian yields (p, q, k =
1, 2, 3, 4)

H (t ) =
4∑

k=1

[�r1(t )e−iδ1t + �r2(t )e−i(δ2+�2 )t

+�r3(t )e−i(δ3+�3 )t + �r4(t )e−i(δ4+�4 )t

+�r5ei�5t ]|r〉k〈0| + H.c. +
∑
p<q

V |rr〉pq〈rr|, (36)
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FIG. 8. The physical model for realizing the interconversions between the GHZ states and the W states in a 4-qubit system, with �′
2 =

�2 + δ2, �′
3+ = �3 + δ3 + ξ , �′

3− = �3 + δ3 − ξ , �′
4+ = �4 + δ4 + ξ , and �′

4− = �4 + δ4 − ξ .

with conditions �2 = V , �3 = 2V , �4 = 3V , and {V, �5} �
{�r5, δk} � max{|�rk (t )|}. The detailed processes for de-
riving the effective Hamiltonian is analogously shown in
Appendix (3-qubit system). By choosing

δ1 = 8�2
5

�5
− 6�2

5

�5 + V
,

δ2 = −4�2
5

�5
+ 12�2

5

�5 + V
− 6�2

5

�5 + 2V
,

δ3 = − 6�2
5

�5 + V
+ 12�2

5

�5 + 2V
− 4�2

5

�5 + 3V
,

δ4 = − 6�2
5

�5 + 2V
+ 8�2

5

�5 + 3V
, (37)

the effective Hamiltonian is given by

H (4)
eff (t ) = 2�r1(t )|0r〉〈1r| +

√
6�r2(t )|1r〉〈2r|

+
√

6�r3(t )|2r〉〈3r| + 2�r4(t )|3r〉〈4r| + H.c.,

(38)

with |0r〉 = |0000〉, |1r〉 = (|000r〉 + |00r0〉 + |0r00〉 +
|r000〉)/2, |2r〉 = (|r00r〉 + |r0r0〉+|rr00〉+|0rr0〉+|0r0r〉
+ |00rr〉)/

√
6 and |4r〉 = |rrrr〉. It is clear that |1r〉

is a 4-qubit W state, and a 4-qubit GHZ state reads
[(|0r〉 + |4r〉)/

√
2]. For realizing interconversions between

them, a five-level invariant I (t ) should be construct. However,
such an invariant is hard to find. We therefore change the
effective Hamiltonian H (4)

eff (t ) in Eq. (38) to

H (4)′
eff (t ) = 2�r1(t )|0r〉〈1r| +

√
6�r2(t )|1r〉〈2r|

+ [
√

6�r3(t )(eiξ t − e−iξ t )]|2r〉〈3r|
+ [2�r4(t )(eiξ t + e−iξ t )]|3r〉〈4r| + H.c., (39)

with additional detuning ξ � max{|�rk (t )|}. Observe that the
original Hamiltonian corresponding to such H (4)′

eff (t ) can be
achieved via adjusting the detuning of �r3(t ) as �3 + δ3 − ξ

and the detuning of �r4(t ) as �4 + δ4 − ξ , besides adding
two extra Rabi frequencies −�r3(t ) and �r4(t ) with detunings
�3 + δ3 + ξ and �4 + δ4 + ξ , respectively.

For the sake of easy understanding, a figure for detailing
the physical model corresponding to the modified original
Hamiltonian is shown in Fig. 8. The modified effective Hamil-
tonian H (4)′

eff (t ) in Eq. (39) can be further calculated by second-
order perturbation theory and refined like

H (4)′′
eff (t ) = 2�r1(t )|0r〉〈1r| +

√
6�r2(t )|1r〉〈2r|

+
[

4
√

6�r3(t )�r4(t )

ξ

]
|2r〉〈4r| + H.c., (40)

which is now a four-level effective Hamiltonian [�rk (t ) being
real]. Therefore, the results in Sec. III are still valid. Since
one can convert a 4-qubit W state into a 4-qubit GHZ state by
choosing

�r1(t ) = −i�1(t )/2, �r2(t ) = �2(t )/
√

6,

�r3(t ) = �r4(t ) =
√

ξ�3(t )

4
√

6
, (41)

a = 0.42π, b = 0.7069,

as well as choosing

�r1(t ) = −i�1(t )/2, �r2(t ) = �2(t )/
√

6,

�r3(t ) = −�r4(t ) =
√

−ξ�3(t )

4
√

6
, (42)

a = 0.42π, b = −0.7069,

to covert a 4-qubit GHZ state to a 4-qubit W state, with the
expressions of �1(t ), �2(t ) and �3(t ) shown in Eqs. (18,
26). The fidelities for such interconversions are indicated
in Fig. 9. With considering a group of parameters such as
T = 20 μs, �r5 = 25 MHz, V = 175 MHz, ξ = 5 MHz, and
�5 = 1.25 GHz [49], the fidelities for both conversions are
close to 99%, apparently showing the feasibility of the present
protocol in a multiparticle (N � 4) system.
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FIG. 9. (a) Fidelity F (4)
1 vs t/T for converting the 4-qubit W states into 4-qubit GHZ states. (b) Fidelity F (4)

2 (converting the 4-qubit GHZ
states into 4-qubit W states) vs t/T . Observe that compared with Figs. 3(c) and 3(d), some oscillations arise in Figs. 9(a) and 9(b). Such a
phenomenon is caused by the incomplete satisfaction of condition �5 � �5, however, slightly reducing the final fidelities. By choosing the
parameters T = 20 μs, �r5 = 25 MHz, V = 175 MHz, ξ = 5 MHz, and �5 = 1.25 GHz, we obtain F (4)

1 = 98.91% and F (4)
2 = 99.18%. For

raising these fidelities, one can increase the value of �5, i.e., more strictly satisfying condition �5 � �5, nevertheless leading to the difficulty
of the experiment.

VI. CONCLUSION

In summary, we have presented a protocol for the determin-
istic interconversions (one step) between GHZ and W states
in an atomic system. We use the Rydberg interactions among
three neutral atoms with Rydberg states to build nonlocal
operations for realizing the interconversions. The effective
Hamiltonian of the physical model can be finally simplified as
a four-level Hamiltonian with basis {|000〉, |Wr〉, |W ′

r 〉, |rrr〉}.
Next, the Lie algebra is used to structure a LR invariant, and
we afterwards exploit the invariant to design appropriate Rabi
frequencies of the effective Hamiltonian for the interconver-
sions. In order to check the correctness and feasibility of the
protocol, we carry out numerical simulations by taking the
thermal noise, dephasing, spontaneous emission, systematic
errors, and frequency mismatching into account. By consider-
ing a group of experimentally feasible parameters such as V =
2π× 50 MHz, �r4 = 23.56 MHz, �4 = 2π × 150 MHz,
T = 17.83 μs, max[�r1(t )] = 0.31 MHz, max[�r2(t )] =
0.11 MHz, max[�r3(t )] = 0.19 MHz, � = 1.2 kHz, n̄ = 0.2,
and γ = 1 kHz, we can obtain the fidelity F1 of conversion
|Wr〉 → |GHZr〉 as F1 = 91.12% and the fidelity F2 of con-
version |GHZr〉 → |Wr〉 as F2 = 91.18%. This means both
fidelities F1 and F2 are robust against the decoherence. Be-
sides, the influence of the systematic error on Rabi frequency
�rk (t ) and the frequency mismatching is also discussed.
When the coefficient of the systematic errors η reaches 10%,
the fidelities F1 and F2 are still higher than 97%. When
the error rate μ of frequency matching is 1%, the fidelities
F1 and F2 are higher than 95%. In a word, the protocol
is stable against spontaneous emission of the Rydberg state
|r〉k , the thermal noise, the dephasing, the systematic errors
on Rabi frequency �rk (t ), and the frequency mismatching,
that is, the protocol is experimentally feasible. Moreover, we
briefly expand the protocol to a multiparticle (N � 4) system
and give detailed processes for the interconversions between
the 4-qubit GHZ states and the 4-qubit W states with high
fidelities.

Compared with two representative works [34,35] about
converting the W states into the GHZ states based on an
atomic system, our protocol has the following advantages:

(i) Protocol [35] is probabilistic with maximally 75% suc-
cess probability. In the present protocol, the success probabil-
ities are 100%.

(ii) The conversions in both protocols [34,35] are irre-
versible from the W states to the GHZ states, which may be
limited when one needs to convert the GHZ states into the W
states. In the present protocol, the conversions are two-way
and both ways have high fidelities. Ergo, the protocol might
be more flexible in some situations.

Therefore, the present protocol may be helpful for con-
versions between entanglements and can further improve the
efficiency of some quantum information tasks. We hope the
protocol can soon be realized experimentally.
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APPENDIX: DETAILED PROOF FROM EQ. (1) TO EQ. (2)

By using second-order perturbation theory, the effective
Hamiltonian He1(t ) can be preliminarily calculated as

He1(t ) = He10 + He1i(t ),

He10 = −3
�2

r4

�4
|000〉〈000| + 3�2

r4

�4 + 2V
|rrr〉〈rrr|

+ 3

(
�2

r4

�4 + V
− �2

r4

�4 + 2V

)
|W ′

r 〉〈W ′
r |

+ 3

(
�2

r4

�4
− �2

r4

�4 + V

)
|Wr〉〈Wr |

+ �2
r4

�4 + V
(−|00r〉〈00r| − |0r0〉〈0r0|

− |r00〉〈r00| + |rr0〉〈rr0|
+ |r0r〉〈r0r| + |0rr〉〈0rr|),
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FIG. 10. Sketch map of deriving the effective Hamiltonian.

He1i(t ) =
√

3�r1(t )eiδ1t |000〉〈Wr |
+

√
3�r3(t )eiδ3t |W ′

r 〉〈rrr|
+�r2(t )eiδ2t (|00r〉〈0rr| + |00r〉〈r0r|
+ |0r0〉〈0rr| + |0r0〉〈rr0|
+ |r00〉〈r0r| + |r00〉〈rr0|) + H.c., (A1)

with |Wr〉= 1√
3
(|00r〉+ |0r0〉+ |r00〉) and |W ′

r 〉 = 1√
3
(|rr0〉 +

|r0r〉 + |0rr〉). Here, He10 is a time-independent
Hamiltonian and much larger than the time-dependent
Hamiltonian He1i(t ). Note that in Eq. (A1), He1i(t ) contains
higher-order terms such as 2e−2iδ1t�r1(t )2/V , which
have been neglected due to the condition {V, �4} �
{�r4, δ1, δ2, δ3} � max{|�r1(t )|, |�r2(t )|, |�r3(t )|}.

We afterwards move into a rotating frame with respect to
eiHe10t and obtain

H ′
e1i(t ) =

√
3�r1(t )eiδ1t eiλ1t |000〉〈Wr |

+
√

3�r3(t )eiδ3t eiλ2t |W ′
r 〉〈rrr|

+�r2(t )eiδ2t (eiλ3t + 2eiλ4t )|Wr〉〈W ′
r |

−�r2(t )eiδ2t eiλ3t (|00r〉〈rr0| + |0r0〉〈r0r|
+ |r00〉〈0rr|) + H.c., (A2)

with

λ1 = −6�2
r4

�4
+ 4�2

r4

�4 + V
, λ2 = 4�2

r4

�4 + V
− 6�2

r4

�4 + 2V
,

λ3 = − 2�2
r4

�4 + V
, λ4 = 3�2

r4

�4
− 8�2

r4

�4 + V
+ 3�2

r4

�4 + 2V
.

(A3)

Here we want to construct an effective Hamiltonian with
a form such as He(t ) = �e1(t )|000〉〈Wr | + �e2(t )|Wr〉〈W ′

r | +
�e1(t )|W ′

r 〉〈rrr| + H.c., which can be utilized to achieve the
interconversions between the GHZ states and the W states.
Hence, the values of δ1, δ2, and δ3 should be adjusted to
eliminate some unwanted terms in Eq. (A2), that is, choosing
δ1 = −λ1, δ2 = −λ4, and δ3 = −λ2, yielding

He1i(t )′ =
√

3�r1(t )|000〉〈Wr | +
√

3�r3(t )|W ′
r 〉〈rrr|

+�r2(t )[ei(λ3−λ4 )t + 2]|Wr〉〈W ′
r |

−�r2(t )ei(λ3−λ4 )t (|00r〉〈rr0|
+ |0r0〉〈r0r| + |r00〉〈0rr|) + H.c. (A4)

By exploiting the large detuning condition {δ1, δ2, δ3} �
max{|�r1(t )|, |�r2(t )|, |�r3(t )|}, i.e., {|λ1|, |λ4|, |λ2|} �
max{|�r1(t )|, |�r2(t )|, |�r3(t )|}, the terms with high-
frequency oscillations can be neglected and the effective
Hamiltonian will be finally derived as

Heff (t ) =
√

3�r1(t )|000〉〈Wr | +
√

3�r3(t )|W ′
r 〉〈rrr|

+ 2�r2(t )|Wr〉〈W ′
r | + H.c. (A5)

In a word, such a course of reducing the original Hamilto-
nian is shown in Fig. 10.
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Koashi, and N. Imoto, Phys. Rev. Lett. 102, 130502 (2009).
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