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Flag qubits have recently been proposed in syndrome extraction circuits to detect high-weight errors arising
from fewer faults. The use of flag qubits allows the construction of fault-tolerant protocols with the fewest
number of ancillas known to date. In this work, we prove some critical properties of Calderbank-Shor-Steane
(CSS) codes constructed from classical cyclic codes that enable the construction of a flag fault-tolerant error
correction scheme. We then develop fault-tolerant protocols as well as a family of circuits for flag fault-tolerant
error correction and operator measurement, requiring only four ancilla qubits and applicable to cyclic CSS
codes of distance 3. The measurement protocol can be further used for logical Clifford gate implementation
via quantum gate teleportation. We also provide examples of cyclic CSS codes with large encoding rates.
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I. INTRODUCTION

Fault-tolerant quantum computation is an essential com-
ponent in building a large scale quantum computer. It en-
ables arbitrarily low logical error rates, despite all operations
(including those used to perform error correction) may be
noisy, as long as the noise strength is below a constant but
sufficiently small threshold value [1–4]. The value of the
threshold depends on several factors, including the underly-
ing quantum error correcting code, the design of the fault-
tolerant gadgets and the error correction protocol, the speed of
quantum measurements and classical processing of the error
syndromes, and the underlying physical noise. Currently, the
surface code appears to be a strong candidate for fault-tolerant
quantum computation given its high threshold value as well
as the geometric locality of the gates used in the syndrome
extraction circuits [5–9].

Meanwhile, low logical error rates requires large qubit and
gate overheads [10–12]. Therefore, a fault-tolerant protocol
that uses fewer ancilla qubits (and thus lower overheads)
is easier to realize experimentally. A fault-tolerant protocol
limits the number of physical errors in each code block arising
from a single fault. Recently, Chao and Reichardt [13,14]
showed that fault-tolerant error correction (FTEC) as well
as fault-tolerant quantum computation can be achieved using
only two extra ancilla qubits for perfect distance-3 codes.
The idea is to use flag qubits to detect high-weight errors
arising from a single fault. Furthermore, Reichardt showed
that stabilizer measurements with flag qubits for the Steane
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code can be parallelized to reduce the circuit depths [15].
In Ref. [16] FTEC protocol using very few flag qubits were
developed for several families of stabilizer codes of arbitrary
distance. For example, color codes with a hexagonal lattice
and arbitrary distance require only four ancilla qubits in the
FTEC scheme. The protocol in Ref. [16] can be used with
LDPC (low density parity check) codes to achieve constant
overhead [17–19]. Flag qubits were further used for fault-
tolerant preparation of magic states with very low overhead
compared to previous distillation schemes when Clifford gates
are noisy [20]. Last, in Ref. [21], it was shown how flag qubits
can be used to fault-tolerantly prepare GKP states.

The idea behind flag-FTEC [13] is that high-weight errors
arising from a single fault have special structure. Despite their
high weight, these errors can be alerted using few flag qubits
and distinguished by subsequent syndrome measurements.
However, there is no general theory what codes admit the flag
technique. An interesting family of quantum codes consists of
Calderbank-Shor-Steane (CSS) codes constructed from clas-
sical cyclic codes. These codes have cyclic structures, each
stabilizer generator is either X type or Z type, and some of
these codes have high encoding rates. These properties make
them a good choice for fault-tolerant quantum computation
(see Sec. VII).

In this work, we generalize the flag technique to the
family of cyclic CSS codes by exploiting the cyclic structure
in the high-weight errors arising from a single fault. We
build on the previous flag-FTEC schemes and obtain a flag-
FTEC scheme applicable to cyclic CSS codes of distance 3.
In particular, we construct circuits for measuring the error
syndromes using flag qubits which require only four ancilla
qubits (see Fig. 3). The circuit uses a particular ordering of
the controlled-NOT (CNOT) gates which is independent of the
underlying stabilizer code. Our work further expands the code
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families where flag-FTEC schemes can be used with very
few ancilla qubits. Moreover, the number of required ancilla
qubits is independent of the weights of the stabilizers being
measured. Finally, we provide a flag fault-tolerant (flag-FT)
operator measurement protocol for cyclic CSS codes, which
can be further used for Clifford gate implementation and other
applications.

The paper is organized as follows: In Sec. II we review
the basic properties of flag error correction and CSS codes.
Key definitions which are used in several parts of the paper
are introduced. We define the notion of distinguishable errors
and consecutive error sets which are key components of our
flag-FTEC scheme. We conclude the section by stating the
consecutive error lemma for general CSS codes (Lemma 1),
an important building block for constructing our flag-FTEC
scheme. In Sec. III we review basic properties of classi-
cal cyclic codes, then state the cyclic permutation lemma
(Lemma 2) and the consecutive error lemma for cyclic CSS
codes (Lemma 3). Using the lemmas, we state and prove the
error-distinguishability theorem (Theorem 2) which is the fi-
nal ingredient required to construct our flag-FTEC scheme for
CSS codes constructed from classical cyclic codes. In Sec. IV
we describe the syndrome extraction circuit used in our flag-
FTEC protocol and proceed by describing the protocol in
detail as well as explaining how it satisfies the fault-tolerance
criteria. In Sec. V we provide a flag-FT measurement protocol
for Pauli operators, and its possible applications are discussed
in Sec. VI. Examples of distance-3 cyclic CSS codes are given
in Sec. VII. Last, we discuss our results and directions for
future work in Sec. VIII.

II. FLAG ERROR CORRECTION WITH CSS CODES

CSS codes form one of the most studied families of quan-
tum codes since they have nice properties for fault-tolerant
quantum computation. It has been shown recently that the
technique of flag-FTEC can be applied to several families of
codes [13,16], but it remains open whether the techniques
can also be applied to general CSS codes. In this section,
we will analyze the idea behind flag techniques and provide
the conditions which make CSS codes suitable for flag-FTEC
in Lemma 1. This lemma will be a main ingredient for our
theorem for cyclic CSS codes in the next section.

We start this section by first defining CSS codes (readers
who are familiar with quantum error correcting codes in the
stabilizer formalism may skip the following paragraphs to the
end of Theorem 1). CSS codes are constructed from classical
binary linear codes [22] as follows: An [n, k, d] classical
linear code C encodes k bits in n and has distance d (the
minimum Hamming weight of the codewords). It corrects up
to t = �(d − 1)/2� errors. The code is defined by the parity
check matrix H which consists of n − k independent rows that
are orthogonal to every codeword. The dual code C⊥ of C
consists of codewords that are orthogonal to all codewords in
C. Note that C⊥ is generated by H , that is, each codeword in
C⊥ is a linear combination of rows of H .

A quantum [[n, k, d]] stabilizer code [23,24] encodes k
logical qubits in n physical qubits. It is the simultaneous
+1 eigenspace of n − k commuting, independent, Pauli op-
erators. These Pauli operators multiplicatively generate a

group called the stabilizer group for the code, and the Pauli
operators are called the stabilizer generators. The code has
distance d (see Ref. [23]), and it can correct errors acting
on up to t = �(d − 1)/2� qubits. Let I, X,Y, Z denote the
single-qubit Pauli operators. A Pauli operator P on n qubits,
given by P = ⊗n

i=1 X xi Zzi up to a phase, has a symplec-
tic representation σ (P) which is the 2n-bit string σ (P) =
(x1, . . . , xn|z1, . . . , zn). The symplectic representation of a
stabilizer code is an (n − k) × 2n binary matrix where the ith
row is the symplectic representation of the ith generator. The
CSS codes first proposed in Refs. [25,26] can be defined in
the stabilizer formalism as follows:

Definition 1. CSS code.
An [[n, k, d]] stabilizer code is a CSS code if the generators

can be chosen such that the code has symplectic representation(
A | 0
0 | B

)
, (1)

where A is an rx × n matrix and B is an rz × n matrix for some
rx and rz with rx + rz = n − k. A and B are called X and Z
stabilizer matrices.

In other words, a CSS code is a stabilizer code whose
generators can be chosen to be either tensor products of I
and X or of I and Z . The generators of X type and Z type
are called X and Z stabilizers, respectively. With this choice
of generators, the X errors and Z errors can be detected
separately.

Theorem 1. CSS code construction [24].
Let Cx be an [n, kx, dx] classical linear code with parity

check matrix Hx and Cz be an [n, kz, dz] classical linear code
with parity check matrix Hz. Suppose that HT

x Hz = 0, or
equivalently, C⊥

x ⊆ Cz. Then the following binary matrix
(

Hx | 0
0 | Hz

)
(2)

is the symplectic representation of an [[n, k, d]] stabilizer code
C with k = kx + kz − n and d � min{dx, dz}.

In an EC protocol, the syndrome measurement corresponds
to the measurement of all stabilizer generators. Consider an
[[n, k, d]] CSS code which can correct errors of maximum
weight t = �(d − 1)/2�. Each generator is either X -type or Z-
type stabilizer, and it acts nontrivially on m qubits where m ∈
{1, · · · , n}. We can assume that, up to qubit permutations,
the stabilizer being measured is of the form I⊗n−m ⊗ X ⊗m or
I⊗n−m ⊗ Z⊗m. The ideal circuits for measuring weight-m X
stabilizers and weight-m Z stabilizers are shown in Fig. 1.

However, the EC protocol involving the aforementioned
circuit has a drawback. Suppose the circuit is not perfect, and
each location (a state preparation step, a gate, or a measure-
ment) can have a fault. Suppose that v � t faults happen. In
some cases, these v faults can result in an error of weight
greater than t in the output state of the circuit, which may not
be correctable anymore. This circuit spreads errors and is not
generally suitable for building EC protocols with an important
property called fault tolerance [27], defined as follows:

Definition 2. Fault-tolerant error correction [27].
For t = �(d − 1)/2�, an error correction protocol using a

distance-d stabilizer code C is t -fault-tolerant if the following
two conditions are satisfied:
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FIG. 1. (a) The ideal circuit for measuring a weight-m Z stabi-
lizer. Only the qubits with nontrivial support on the stabilizer being
measured are shown. The measurement is performed on the eigenba-
sis of Z operator (i.e., the computational basis), and the measurement
results 0 and 1 correspond to the +1 and −1 eigenvalues of Z . The
circuit for measuring the X stabilizers is obtain by replacing the CNOT

gates with the gates is shown in panel (b).

(1) For an input codeword with error of weight v1, if
v2 faults occur during the protocol with v1 + v2 � t , ideally
decoding the output state gives the same codeword as ideally
decoding the input state.

(2) For v faults during the protocol with v � t , no matter
how many errors are present in the input state, the output state
differs from a codeword by an error of at most weight v.

An error on the input state might have weight > t , which
means that it is incorrectable. Anyhow, if the number of faults
is v � t , the second condition in Definition 2 requires that
the state after correction must differ from any valid codeword
by an error of weight � v. (One possible way to construct
a FTEC protocol satisfying both conditions in Definition 2
is using the minimal weight correction, defined later in
Definition 9.)

Ideally decoding is equivalent to performing fault-free
error correction. The conditions above are simultaneously
required in order to ensure that low-weight errors do
not spread and become incorrectable as well as to pre-
vent errors from accumulating between different error
correction rounds.

Generally, FTEC protocols may require many ancilla
qubits to avoid the spread of errors within a code block.
Chao and Reichardt introduced the idea of flag qubits in
Ref. [13] to reduce the number of ancilla qubits being used
in FTEC. They also provided some circuit constructions for
fault-tolerant extraction of syndromes for various distance-3
perfect stabilizer codes using only two ancilla qubits. To see
how the flag-FTEC works, let us examine the circuit shown in
Fig. 2 which is modified from the circuit in Fig. 1(a).

A flag qubit is introduced in Fig. 2 to detect a fault that can
lead to data error of weight >1. If any pair of higher-weight
errors detected by the flag qubit are either equivalent (up to
multiplication of some stabilizer) or have different syndromes,
it is possible to construct a flag-FTEC protocol which corrects
higher weight errors (that arise from a single fault) using

FIG. 2. A circuit obtained from Fig. 1(a) by including a flag
qubit prepared in the |+〉 state. The measurement of flag qubit is
performed on the eigenbasis of X operator. If a single fault produces
an error of weight >1 on the data qubit, the outcome of the flag-qubit
measurement will be −1, otherwise it will be +1.

information from the flag qubit and subsequent syndrome
measurements.

The idea of flag-FTEC is further developed in Ref. [16],
and the general conditions for flag-FTEC applicable to stabi-
lizer codes of arbitrary distance are provided. In particular, the
flag-FTEC condition for a stabilizer code which can correct up
to one error is as follows:

Definition 3. Flag-1 FTEC condition [16].
Consider a stabilizer code generated by {g1, . . . , gn−k}

which can correct up to one error. Let E (gi ) be the set of
all possible errors arising from any single fault that can
cause a circuit for measuring gi to flag. For every generator
gi, all pairs of errors in E (gi ) must either have different
syndromes or be equivalent up to multiplication of some
stabilizer.

Showing that a code along with appropriate syndrome ex-
traction circuits satisfy the general conditions for flag-FTEC
can be quite challenging. Reference [16] provides a sufficient
condition which implies the general flag-FTEC conditions,
and a FTEC protocol using flag qubits and applicable to
stabilizer codes of arbitrary distance satisfying such condition
was developed. This sufficient condition can be much easier
to verify, and several code families were shown to satisfy the
general flag-FTEC conditions. However, not all CSS codes
satisfy this sufficient condition.

As was shown in Ref. [13], for codes which do not satisfy
the sufficient condition in Ref. [16], errors are spread in
the measurement circuits in a way that depends on which
stabilizer generators are measured, and also on the ordering
of the CNOT gates used in the measurement circuits for these
generators. Therefore, these specific designs in the protocol
may affect the fulfillment of the flag-FTEC conditions. With
an appropriate permutation of the CNOT gates of the syndrome
extraction circuits, Chao and Reichardt proved that the family
of [[2r − 1, 2r − 1 − 2r, 3]] quantum Hamming codes satisfied
the flag-1 FTEC condition. In this work, we prove some
properties of cyclic CSS codes and show that it is possible
to construct syndrome extraction circuits which satisfy the
flag-1 FTEC condition in Definition 3 for cyclic CSS codes
of distance 3.

Reference [16] develops the notation of t-flag circuits and
shows that any flag-FTEC protocol will require the use of
them. We generalize their definition as follows:
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Definition 4. t-flag circuit.
Let C be an [[n, k, d]] stabilizer code with generators

g1, g2 . . . , gn−k , P be a weight-m Pauli operator which com-
mutes with all gi, and C(P) be a circuit that implements a
projective measurement of P in the absence of faults. We say
that C(P) is a t -flag circuit if all of the following holds:

(1) The circuit does not flag without faults and
(2) The circuit flags whenever a set of v � t faults in C(P)

leads to an error E on the output with minQ[wt(EQ)] > v

where the minimization is over Q ∈ 〈P, g1, . . . , gn−k〉, the
group generated multiplicatively by P and the stabilizer gen-
erators gi.

In this paper, we will use certain properties of cyclic
CSS codes to develop a flag-FTEC protocol. In particular, a
single fault in the syndrome extraction circuits of CSS codes
produces errors with special properties which allow us to
distinguish consecutive errors. To proceed with the analysis,
we introduce some useful definitions and lemmas. We start by
the definition of distinguishable errors as follows:

Definition 5. Distinguishable errors.
Let C be an [[n, k, d]] stabilizer code and let E1 and E2

be n-qubit Pauli errors with syndromes s(E1) and s(E2). We
say that E1 and E2 are distinguishable by C if s(E1) 
= s(E2).
Otherwise we say that they are indistinguishable. In addition,
if any pair of errors from an error set E are distinguishable by
C, we says that E is distinguishable by C.

The circuit in Fig. 2 is a one-flag circuit since it will flag
(the flag-qubit measurement outcome is −1) if there is a single
fault causing data error of weight >1. From the flag-FTEC
condition in Definition 3, our goal is to distinguish all possible
higher-weight errors by subsequent stabilizer measurements.
Note that the set of higher-weight errors depends on the choice
of generators and the permutation of CNOT gates, and only
some choices and permutations will lead to a distinguishable
error set. Some CSS codes that satisfy the sufficient condition
in Ref. [16] can be used in a flag-FTEC protocol.1 However,
whether flag-FTEC techniques can be applied to general CSS
codes is still unknown.

Observe that permuting the CNOT gates in the measurement
circuit is equivalent to permuting columns of the stabilizer
matrices. In order to find CSS code families such that flag-
FTEC techniques can be used, we will consider fixing the
CNOT gates of syndrome extraction circuits in the normal
permutation (i.e., applying CNOT gates from top to bottom as
in Fig. 2).2 Subsequently, we will find conditions that need to
be satisfied by the X and Z stabilizer matrices.

Assume that a faulty CNOT gate can cause a two-qubit
error of the form P1 ⊗ P2 where P1, P2 ∈ {I, X,Y, Z} are Pauli
errors on the control and the target qubits, respectively. Con-
sider a circuit for measuring stabilizers of the form I⊗n−m ⊗
Z⊗m with the normal permutation of CNOT gates as in Fig. 2
where m ∈ {1, . . . , n}. A single fault at a CNOT location can
result in the following types of errors:

1Note that for such codes, the order of the CNOT gates in a t-flag
circuit is not important.

2Note that for some specific codes, it is certainly possible to
find circuits with fewer ancilla qubits by choosing an appropriate
permutation of the CNOT gates.

(a) If an error from a faulty CNOT gate is of the form P1 ⊗
P2 where P1 ∈ {I, X,Y, Z} and P2 ∈ {I, X }, then the data error
is of weight �1 and the flag outcome is +1.

(b) If an error from a faulty CNOT gate is P1 ⊗ P2

where P1 = I and P2 ∈ {Y, Z}, the data error is of the form
I⊗n−m+c ⊗ Z⊗m−c where c ∈ {1, . . . , m}. In the cases where
the data error has weight >1, the flag outcome is −1.

(c) If an error from a faulty CNOT is P1 ⊗ P2 where
P1 ∈ {X,Y, Z} and P2 ∈ {Y, Z}, the data error is of the form
I⊗n−m+c−1 ⊗ P1 ⊗ Z⊗m−c where c ∈ {1, . . . , m}. In the cases
where the data error has weight >1, the flag outcome is −1.

Data errors of the form (b) or (c) arise due to the propaga-
tion of Z errors from the target to control qubit of CNOT gates.
In addition, if a faulty CNOT gate causes the error Z ⊗ Z , this
can be viewed as an error I ⊗ Z caused by the preceding CNOT

gate. Let E+ and E− be sets of errors corresponding to the flag
outcome +1 and −1, respectively. Consider an [[n, k, d]] CSS
code C constructed from two classical codes Cx and Cz as in
Theorem 1. It is obvious that E+ is distinguishable by C if
d � 3. The distinguishability of errors of the form (b) in E−
depend on the classical code Cx. Also, any error of the form (c)
in E− can be considered as a product of an error of the form (b)
and a weight-1 X -type error. Therefore, if the distance of Cz

is dz � 3 and the code Cx can distinguish all errors in the the
form (b), then E− is distinguishable by C. The same argument
can also be applied to circuits for measuring X stabilizers.

We can see that the ability of the code to distinguish errors
of the form (b) is crucial in a flag-FTEC protocol. In order
to develop a flag-FTEC protocol for cyclic CSS codes, the
following definitions will be very useful:

Definition 6. Left cyclic shift.
Let P = P1 ⊗ · · · ⊗ Pn be an n-qubit Pauli operator and l ∈

{0, 1, . . . , n − 1}. The l-qubit left cyclic shift of the operator
P, denoted by L(P, l ), is defined as

L(P, 0) = P, (3)

L(P, l ) = Pl+1 ⊗ · · · ⊗ Pn ⊗ P1 ⊗ · · · ⊗ Pl for l 
= 0.

(4)

Definition 7. Consecutive error set.
Let n be the number of qubits and l ∈ {0, 1, . . . , n − 1}. A

consecutive-X error set Ex
l,n and a consecutive-Z error set E z

l,n
are sets of the form

Ex
l,n = {L(I⊗n−p ⊗ X ⊗p, l ) : p ∈ {0, 1, . . . , n − 1}}, (5)

E z
l,n = {L(I⊗n−p ⊗ Z⊗p, l ) : p ∈ {0, 1, . . . , n − 1}}. (6)

A consecutive error product set EP
l,n is defined as

EP
l,n = {

Ex · Ez : Ex ∈ Ex
l,n, Ez ∈ E z

l,n

}
. (7)

In order to distinguish all errors in each consecutive error
set, the X and Z stabilizer matrices must satisfy the conditions
in the following lemma:
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Lemma 1. Consecutive error lemma (general CSS version).
Let C be a CSS code constructed from the classical cyclic

codes Cx and Cz following Theorem 1 with parity check
matrices Hx and Hz of the form

Hx =

⎛
⎜⎝

x1,1 x1,2 . . . x1,n

x2,1 x2,2 . . . x2,n

. . . . . .

xrx,1 xrx,2 . . . xrx,n

⎞
⎟⎠, (8)

Hz =

⎛
⎜⎝

z1,1 z1,2 . . . z1,n

z2,1 z2,2 . . . z2,n

. . . . . .

zrz,1 zrz,2 . . . zrz,n

⎞
⎟⎠, (9)

and let Ex
0,n, E z

0,n, and EP
0,n be consecutive-X error set,

consecutive-Z error set, and consecutive error product set,
respectively. Then,

(1) E z
0,n is distinguishable by C iff for all p, q ∈

{0, . . . , n−1} such that p > q, there exists i ∈ {1, . . . , rx} such
that xi,n−p+1 ⊕ · · · ⊕ xi,n−q = 1.

(2) Ex
0,n is distinguishable by C iff for all p, q ∈

{0, . . . , n−1} such that p > q, there exists i ∈ {1, . . . , rz} such
that zi,n−p+1 ⊕ · · · ⊕ zi,n−q = 1.

(3) EP
0,n is distinguishable by C iff both E z

0,n and Ex
0,n are

distinguishable by C.
Proof idea. Consider a consecutive-Z error of the form

Ep = I⊗n−p ⊗ Z⊗p. The outcome from the measurement of
the ith X -type generator can be written as a sum of the last
p elements of the ith row of Hx. Since two errors Ep, Eq are
distinguishable iff their syndromes are not equal, the condition
in statement 1 must hold. The proof of statement 2 is similar
to that of statement 1, except that the consecutive errors are
of X -type. Statement 3 comes from the fact that CSS codes
can detect X -type and Z-type errors separately. A full proof of
Lemma 1 is given in Appendix.

Note that consecutive error sets in Lemma 1 are defined
on n qubits. In particular, for any subset of m out of n qubits,
the consecutive error sets defined on this subset are distin-
guishable iff the submatrices of Hx and Hz corresponding to
measurements on these m qubits satisfy similar conditions. In
the next section, we will show that the cyclic symmetry of
cyclic CSS codes can simplify the conditions in Lemma 1.

III. CYCLIC CSS CODES AND ERROR
DISTINGUISHABILITY

In Sec. II the conditions for distinguishing errors in the
consecutive error sets are given in the consecutive error lemma
for general CSS codes (Lemma 1). Notice that there are some
sufficient conditions for distinguishability in statements 1 and
2 that are similar, different only by some qubit shift. It is
possible to simplify Lemma 1 if the CSS code has cyclic
symmetry. In this section we begin by stating the definition of
classical cyclic codes and outlining some of their properties.
Afterwards, the cyclic permutation lemma (Lemma 2) and the
consecutive error lemma for cyclic CSS codes (Lemma 3)
will be provided, and the error-distinguishability theorem
(Theorem 2) which is the main theorem in this work will
be proved.

Definition 8. Classical cyclic code [22].
Let C be a classical binary linear code of length n. C

is cyclic if any cyclic shift of a codeword is also a code-
word, i.e., if (c1, c2, . . . , cn) is in a codeword, then so is
(cn, c1, . . . , cn−1).

Let C be a classical cyclic code of length n. There exists a
unique generator polynomial g(x) = ∑α

i=0 gixi which is also
a unique monic polynomial of minimal degree in C such that
C is generated by the generator matrix

⎛
⎜⎝

g0 g1 g2 . . . gα 0 . . . 0
0 g0 g1 . . . gα−1 gα . . . 0
. . . . . .

0 . . . g0 . . . . . . gα

⎞
⎟⎠. (10)

The polynomial h(x) = (xn − 1)/g(x) = ∑β

i=0 hixi is called
the check polynomial of C. The parity check matrix of C is

⎛
⎜⎝

hβ hβ−1 . . . h1 h0 0 . . . 0
0 hβ . . . h2 h1 h0 . . . 0
. . . . . .

0 . . . hβ . . . . . . h0

⎞
⎟⎠. (11)

It is known that any classical Hamming code can be made
cyclic [22]. Thus, a cyclic CSS code can be constructed from
permuting columns of a quantum Hamming code’s stabilizer
matrices. In Ref. [28] it was shown how to construct a cyclic
CSS code from two classical cyclic codes.

By the symmetries of a cyclic code, we can show in the
following lemma that the left cyclic shift of operators in the
generating set also generates the same code.

Lemma 2. Cyclic permutation lemma.
Let C be a CSS code constructed from the classi-

cal cyclic codes Cx and Cz following Theorem 1. Sup-
pose that the stabilizer group of C can be generated by
{g1, g2, . . . , gn−k}, then the stabilizer group of C can also
be generated by {L(g1, l ),L(g2, l ), . . . ,L(gn−k, l )} for any
l ∈ {0, 1, . . . , n − 1}.

Proof idea. X -type (or Z-type) generators correspond to
the parity check matrix of Cx (or Cz) which generates C⊥

x (or
C⊥

z ). Since the dual code of a cyclic code is also cyclic, a set
of cyclic permutations of generators also generates the same
code. A full proof of Lemma 2 is given in Appendix.

In the previous section, the consecutive error lemma for
general CSS codes (Lemma 1) gives sufficient and necessary
conditions for a CSS code to be able to distinguish all errors
in the consecutive error sets. The conditions can be simplified
by using the symmetry of cyclic codes as follows:

Lemma 3. Consecutive error lemma (cyclic CSS version).
Let C be a CSS code constructed from the classical cyclic

codes Cx and Cz (following Theorem 1) with parity check
matrices Hx and Hz,

Hx =

⎛
⎜⎝

x1,1 x1,2 . . . x1,n

x2,1 x2,2 . . . x2,n

. . . . . .

xrx,1 xrx,2 . . . xrx,n

⎞
⎟⎠, (12)

Hz =

⎛
⎜⎝

z1,1 z1,2 . . . z1,n

z2,1 z2,2 . . . z2,n

. . . . . .

zrz,1 zrz,2 . . . zrz,n

⎞
⎟⎠. (13)
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Let l ∈ {0, 1, . . . , n−1}, and let Ex
l,n, E z

l,n, and EP
l,n be

consecutive-X error set, consecutive-Z error set, and consec-
utive error product set, respectively. Then,

(1) E z
l,n is distinguishable by C iff for all ux ∈ {2, . . . , n},

there exists i ∈ {1, . . . , rx} such that xi,ux ⊕ · · · ⊕ xi,n = 1.
(2) Ex

l,n is distinguishable by C iff for all uz ∈ {2, . . . , n},
there exists i ∈ {1, . . . , rz} such that zi,uz ⊕ · · · ⊕ zi,n = 1.

(3) EP
l,n is distinguishable by C iff both E z

l,n and Ex
l,n are

distinguishable by C.
Proof idea. The cyclic symmetry of Cx and Cz can simplify

Lemma 1, resulting in fewer sufficient conditions for distin-
guishability in statements 1 and 2; we can fix q in Lemma 1
to be 0 and choose u = n − p + 1. In other words, the cyclic
symmetry reduces the number of error pairs in consecutive
error sets to be distinguished. This proves the statements for
l = 0. Moreover, using Lemma 2, we can extend all state-
ments to consecutive error sets of any l ∈ {0, 1, . . . , n − 1}.
A full proof of Lemma 3 is given in Appendix.

Now we are ready to prove a main theorem in this work.
Theorem 2. Error-distinguishability theorem.
Let C be an [[n, k, d]] CSS code constructed from the

[n, kx, dx] classical cyclic code Cx and the [n, kz, dz] classical
cyclic code Cz, l ∈ {0, 1, . . . , n − 1}, and EP

l,n be a consecutive
error product set. If both dx, dz � 3, then EP

l,n is distinguish-
able by C.

Proof. Suppose by contradiction that EP
l,n is not distin-

guishable by C. Then at least one of E z
l,n and Ex

l,n is not
distinguishable by C. Similar analysis applies to either case,
so, suppose E z

l,n is not distinguishable by C. We next invoke
the consecutive error lemma for cyclic CSS codes (Lemma 3),
and to do so, let the cyclic code Cx has parity check matrix

Hx =

⎛
⎜⎝

x1,1 x1,2 . . . x1,n

x2,1 x2,2 . . . x2,n

. . . . . .

xrx,1 xrx,2 . . . xrx,n

⎞
⎟⎠, (14)

where xi1+1,( j+1) (mod n) = xi1, j for all i1 ∈ {1, . . . , rx − 1} and
j ∈ {1, . . . , n}.

By statement 1 of Lemma 3, we know that E z
l,n is indis-

tinguishable by C iff there exists ux ∈ {2, 3, ..., n} such that
xi,ux ⊕ · · · ⊕ xi,n = 0 for all i ∈ {1, · · · , rx}; i.e., there exists
a pair of errors in E z

l,n which cannot be distinguished by any
generator of C.

For i = 1, we have

x1,ux ⊕ · · · ⊕ x1,n = 0 . (15)

Using the cyclic permutation lemma (Lemma 2), we obtain
a generating set for C where each generator is the one-qubit
left cyclic shift of the old one. Applying the above to this
generator set, we have

x1,ux+1 ⊕ · · · ⊕ x1,n ⊕ x1,1 = 0. (16)

Now repeating the left cyclic shifts gives

x1,ux+2 ⊕ · · · ⊕ x1,n ⊕ x1,1 ⊕ x1,2 = 0,

...

x1,ux−1 ⊕ x1,1 ⊕ · · · ⊕ x1,n−1 = 0 . (17)

From Eqs. (15) and (16), x1,1 = x1,ux ; from Eqs. (16)
and (17), x1,2 = x1,ux+1, and so on, until we obtain x1,n =
x1,ux+(n−1) (mod n) (in other words, x1, j = x1,(ux−1+ j) (mod n) for
all j ∈ {1, . . . , n}).

Let wx = GCD(ux−1, n), the greatest common divisor of
ux−1 and n. The conditions become

x1, j = x1, j+wx = x1, j+2wx = · · · = x1, j+n−wx , (18)

for all j ∈ {1, . . . ,wx}. Repeating the above steps for all i, we
obtain

xi, j = xi, j+wx = xi, j+2wx = · · · = xi, j+n−wx , (19)

for all i ∈ {1, . . . , rx}, j ∈ {1, . . . ,wx}.
From the above, we see that any error of the form Zlx Zlx+wx

(where lx ∈ {1, . . . , n − wx}) commutes with all stabilizer
generators. Now let us consider two cases:

Case 1: At least one operator of the form Zlx Zlx+wx is not
in the stabilizer. In this case, the distance d of the code C is at
most two. Since d � min{dx, dz} (see the CSS construction in
Theorem 1), this contradicts our assumption that both dx, dz �
3.

Case 2: All operators of the form Zlx Zlx+wx are in the stabi-
lizer. In this case, there exists a set of coefficients a1, . . . , arz ∈
{0, 1} such that (gz

1)a1 · · · (gz
rz

)arz = Zlx Zlx+wx , where gz
i is the

Z-type generator corresponding to the ith row of Hz. This
means that the Z part of σ (Zlx Zlx+wx ) is a codeword in C⊥

z .
Since C⊥

z ⊆ Cx by the construction of CSS codes, we have
that the Z part of σ (Zlx Zlx+wx ) is a codeword in Cx. Because
the distance of classical codes is given by the minimum
Hamming weight of the codewords, we have that dx � 2
which contradicts our assumption that dx � 3. �

Although consecutive error product set EP
l,n is distinguish-

able by any cyclic CSS code satisfying Theorem 2, we cannot
construct an FTEC protocol using the circuit in Fig. 2 directly
since the possible errors might not be in the consecutive
form without qubit permutation. Moreover, permuting qubits
will break the cyclic symmetry and EP

l,n might no longer be
distinguishable. In the next section, we will use Theorem 2
to find a one-flag circuit for distance-3 cyclic CSS codes that
can be used in a fault-tolerant protocol satisfying both FTEC
conditions in Definition 2. We point out that since p, q in the
consecutive error lemma for general CSS codes (Lemma 1)
are chosen to be in the set {0, . . . , n − 1}, if a cyclic CSS code
can correct errors of weight � t , then the flag circuits should
be designed such that if there are � t faults during the FTEC
protocol, an error of weight n cannot occur.

IV. FAULT-TOLERANT ERROR CORRECTION
PROTOCOL FOR DISTANCE-3 CYCLIC CSS CODES

Fault-tolerant error correction is one of the most important
building blocks for fault-tolerant quantum computation. In
this section, a flag-FTEC protocol for distance-3 cyclic CSS
codes is developed.3 A one-flag circuit for cyclic CSS codes
of distance 3 which is required for the flag-FTEC protocol

3Note that our protocol and circuit can also be applied to higher
distance codes if we only consider correcting errors introduced by at
most one fault.

012342-6



FLAG FAULT-TOLERANT ERROR CORRECTION, … PHYSICAL REVIEW A 101, 012342 (2020)

FIG. 3. Illustration of a one-flag circuit applicable to distance-3 cyclic CSS codes. The circuit measures stabilizers of the form Z⊗a1 ⊗
I⊗b1 ⊗ Z⊗a2 ⊗ I⊗b2 ⊗ · · · ⊗ Z⊗am ⊗ I⊗bm . The flag qubits are represented by the labels f1, . . . , fm. Information from the flag outcomes along
with the protocol given in Sec. IV enable the construction of a flag-FTEC protocol which satisfies both FTEC conditions in Definition 2. (For
grayscale version, red CNOT gates are CNOT gates connecting between a data qubit and qubit m0. The orange, blue, and green CNOT gates have
control qubits f0, fi for odd i, and fi for even i, respectively).

is provided in Fig. 3 (see Definition 4 for the definition of
a t-flag circuit). Here we adapt the idea of localizing circuit
faults from Ref. [13].

Suppose that the stabilizer generator being measured is of
the form

P = Z⊗a1 ⊗ I⊗b1 ⊗ Z⊗a2 ⊗ I⊗b2 ⊗ · · · ⊗ Z⊗am ⊗ I⊗bm ,

where ai > 0 and bi � 0 are integers. The ith subblock con-
sists of ai qubits, which are from the

∑i−1
j=1(a j + b j ) + 1th

qubit to the
∑i−1

j=1(a j + b j ) + aith qubit.
Notice that the blue, green and orange CNOT gates in the

circuit of Fig. 3 always come in pairs. This is to ensure that
when fault-free, the circuit implements a projective measure-
ment of the stabilizer without flagging. In what follows, we
will refer to the first blue, green or orange CNOT of a pair as an
opening CNOT and the second blue, green or orange CNOT as a
closing CNOT. Given these definitions, we have the following
claim:

Claim 1. Fault-flag relations.
During the measurement of P = Z⊗a1 ⊗ I⊗b1 ⊗ Z⊗a2 ⊗

I⊗b2 ⊗ · · · ⊗ Z⊗am ⊗ I⊗bm using the circuit in Fig. 3, the fol-
lowing can occur:

(1) If there are no faults, none of the fi ancilla qubits will
flag.

(2) A fault at a CNOT location resulting in a ZZ error is
equivalent to the prior CNOT failing resulting in an IZ error
(here Z acts on the target qubit).

(3) Suppose that a fault occurs on one of the red CNOTs
and causes a Z error on the ancilla m0. If the fault occurs on
subblock ai where i � 1, only the ancillas f0 and fi will flag.

(4) Suppose that a fault occurs on a blue or green CNOT.
Let the control qubit be the ancilla fi. If it is the opening CNOT

and causes a Z error on ancilla m0, the ancillas f0, fi, and
fi−1 will flag. If it is the closing CNOT and causes a Z error
on the ancilla m0, the ancillas f0 and fi+1 will flag. However
if the fault occurs on a blue or green CNOTs at the boundary,4

if the opening CNOT of f1 is faulty, f0 and f1 will flag, and if
the closing CNOT of fm is faulty, only f0 will flag.

(5) A fault occurring at an orange CNOT gate will not
cause a data qubit error (since a Z spreading to all qubits
is equivalent to the stabilizer being measured). Furthermore,
only the ancilla f0 can flag in this case (depending on whether
the error was of the form IZ or ZZ and also whether it
occurred on the opening or closing orange CNOT).

From the above claim, one can verify that a single fault
resulting in a data qubit error E with minQ[wt(EQ)] > 1
where Q ∈ 〈P, g1, . . . , gn−k〉 will always cause at least one
flag qubit to flag (see the conditions to be held for a t-flag
circuit in Definition 4). Thus the circuit in Fig. 3 is a one-flag
circuit. Note that an analogous claim can be made for X -type
stabilizers.

4By boundary we are referring to either the first blue CNOT after the
first subblock or the last green CNOT after the mth subblock.
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Before describing the FTEC protocol, we require one more
definition:

Definition 9. Minimum weight correction.
Given the syndrome s = s(E ) of an error E , we let Emin(s)

be a minimal weight correction of E .
Note that many errors can lead to the same syndrome. In

particular, errors corresponding to the same syndrome differ
by some multiplication of stabilizers or logical operators.
If error E is correctable, applying Emin(s) can correct such
error as we expected. However, if E is not correctable [i.e.,
wt(E ) > t], applying Emin(s) will project the codeword back
to the coding subspace, but the resulting codeword may differ
from the original codeword by some logical operation. This
property of minimal weight correction is required so that
the FTEC protocol satisfy the second FTEC condition in
Definition 2.

Using the error-distinguishability theorem (Theorem 2),
the fault-flag relations (Claim 1), and the definition of min-
imum weight correction (Definition 9), we now describe
a FTEC protocol that satisfies the FTEC conditions in
Definition 2 for distance-3 cyclic CSS codes using a pro-
cedure adapted from Ref. [16]. In what follows, we define
s(r) = (s(r)

x |s(r)
z ) to be the syndrome obtained during round r

(either using flag or nonflag circuits), where s(r)
x and s(r)

z are
the syndromes obtained from X -type and Z-type stabilizers,
respectively.

FTEC Protocol:
Let C be an [[n, k, d]] cyclic CSS code satisfying The-

orem 2 with stabilizer group S = 〈g1, . . . , gn−k〉. Let C(gi )
be the one-flag circuit of Fig. 3 for stabilizer gi. Repeat
the syndrome measurement (measurement of all stabilizer
generators) using the one-flag circuits until one of the fol-
lowing conditions is satisfied, then perform its corresponding
operations:

(1) If the syndrome is repeated twice in a row and there
are no flags, apply Emin(s(1) ).

(2) If there are no flags and the syndromes s(1) and s(2)

differ, repeat the syndrome measurement using nonflagged
circuits. Apply the correction Emin(s(3) ).

(3) If f0 does not flag but fi flags (with i � 1) during round
one, stop. Repeat the syndrome measurement using nonflag
circuits and apply Emin(s(2) ). If there are no flags in the first
round but in round two fi flags and f0 does not flag, stop.
Apply Emin(s(1) ).

(4) If f0 flags at round r anytime during the protocol, stop
and do one of the following:

(a) If fi does not flag for all i � 1, repeat the syndrome
measurement using nonflag circuits. Apply Emin(s(r+1)).

(b) If there is only one i such that fi flags (with i �
1), apply I⊗c ⊗ Z⊗ai+1 ⊗ I⊗bi+1 ⊗ · · · ⊗ Z⊗am ⊗ I⊗bm to the
data if the stabilizer being measured is a Z stabilizer or
I⊗c ⊗ X ⊗ai+1 ⊗ I⊗bi+1 ⊗ · · · ⊗ X ⊗am ⊗ I⊗bm if it is an X
stabilizer, where c = ∑i

j=1(a j + b j ). Repeat the syndrome
measurement using nonflag circuits yielding syndrome
s(r+1) = (s(r+1)

x |s(r+1)
z ).

(i) If the stabilizer being measured is a Z stabilizer
and there is an element Ez in E z

l,n where l = n − c +
bi that satisfies s(Ez ) = s(r+1)

x , apply Ez followed by
Emin(s(r+1)

z ). Otherwise, apply Emin(s(r+1)).

(ii) If the stabilizer being measured is an X stabilizer
and there is an element Ex in Ex

l,n where l = n − c +
bi that satisfies s(Ex ) = s(r+1)

z , apply Ex followed by
Emin(s(r+1)

x ). Otherwise, apply Emin(s(r+1)).
(c) If there is an i such that fi and fi+1 flag, perform the

same sequence operations as in 4(b).
To see that the above protocol satisfies the FTEC condi-

tions in Definition 2, we will assume that there is at most
one fault during the protocol. If a fault in any of the CNOT

gates introduces a Z error on ancilla m0, then f0 and at least
one fi (with i � 1) will flag (unless the first orange CNOT

introduces an error of the form ZZ or the last orange CNOT

introduces an error of the form IZ which in both cases, there
will be no data qubit error). If there is only one flag during
round one, either f0 or fi, then the fault could either have
been caused by a measurement error, idle qubit error on the
ancilla f0 or fi, or an error on the control qubit of the CNOT

gate interacting with f0 or fi. However in all three cases,
the error could not have spread to the data. By repeating the
syndrome measurement and applying Emin(s(2) ), both criteria
of Definition 2 will be satisfied. Note that if fi flags during
round two, then the syndrome obtained during round one
corresponds to the data qubit error (since there could not have
been a measurement error giving the wrong syndrome during
the first round), so correcting using s(1) will again satisfy both
criteria in Definition 2.

Next, let us consider the case where none of the fi ancillas
flag. By the circuit construction, a single fault can introduce
an error E with wt(E ) � 1. If the same syndrome is repeated
twice in a row, then applying Emin(s(1)) can result in a data er-
ror of weight at most one. If s(1) 
= s(2), then a fault occurred in
either the first or second round. Thus repeating the syndrome
measurement a third time and applying Emin(s(3)) will remove
the data errors or project the code back to the coding subspace.

Next we consider the case where a fault happens on a red
CNOT introducing a Z error on the ancilla m0 and a P error
on the data qubit where P ∈ {I, X,Y, Z}. If the fault occurs
on the ith subblock, then f0 will flag and there will be only
one i � 1 such that fi flags. Applying I⊗c ⊗ Z⊗ai+1 ⊗ I⊗bi+1 ⊗
· · · ⊗ Z⊗am ⊗ I⊗bm where c = ∑i

j=1(a j + b j ) to the data if the
stabilizer being measured is a Z stabilizer (or I⊗c ⊗ X ⊗ai+1 ⊗
I⊗bi+1 ⊗ · · · ⊗ X ⊗am ⊗ I⊗bm if it is an X stabilizer) guarantees
that the resulting error is a product of Z-type error from E z

l,n
and an X -type error of weight at most 1 (or a product of X -
type error from Ex

l,n and a Z-type error of weight at most 1).
By the error-distinguishability theorem (Theorem 2), errors
in the set E z

l,n (or Ex
l,n) can be distinguished. Thus applying

the correction in 4(b) of the protocol will remove the error if
there are no input errors. However, if there is an input error,
then applying Emin(s(r+1)) will project the code back to the
coding subspace.

Last, if a fault occurs on a blue or green CNOT, then
from the fault-flag relations (Claim 1) either the case in
4(b) or 4(c) will be satisfied. However in both cases, the Z
error will spread to the data in the same way. Hence the
correction proposed in 4(c) will satisfy the FTEC criteria of
Definition 2.

A list of possible faults during the flag-FTEC protocol and
corresponding correction procedures is given in Table I.
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TABLE I. Possible faults during the flag-FTEC protocol in
Sec. IV and their corresponding correction procedures. We assume
that the number of faults v2 is at most 1.

Type of faults Correction procedure

No fault 1
Qubit or measurement fault on m0 1 or 2
Qubit or measurement fault on f0 1 or 4(a)
Qubit or measurement fault on fi 1 or 3
Red CNOT fault with I or X error on 2

on the target qubit
Red CNOT fault with Y or Z error 4(b)

on the target qubit
Blue or green CNOT fault with I or X 1 or 2 or 3

error on the target qubit
Blue or green CNOT fault with Y or Z 4(b) or 4(c)

error on the target qubit
Orange CNOT fault with I or X 1 or 2 or 4(a)

error on the target qubit
Orange CNOT fault with Y or Z 2 or 4(a)

error on the target qubit

V. FAULT-TOLERANT MEASUREMENT PROTOCOL FOR
DISTANCE-3 CYCLIC CSS CODES

Besides FTEC, there are other important components for
fault-tolerant computation: FT state preparation, FT measure-
ment, and FT quantum gate implementation. In this section,
we provide a flag-FT measurement protocol for distance-3
cyclic CSS codes. The measurement protocol plays an im-
portant role in fault-tolerant quantum computation on cyclic
CSS codes since it can also be used as a subroutine for FT
state preparation, FT quantum gate implementation, and other
techniques, described later in Sec. VI.

The flag-FT protocol provided in this section is similar to
the flag-FTEC protocol in Sec. IV except that the idea of con-
secutive error correction is developed so that it is applicable
not only to stabilizer measurements but also to measurements
of any Pauli operator commuting with all generators. We
begin by introducing the definition of fault-tolerant nonde-
structive measurement adapted from Ref. [27] as follows:

Definition 10. Fault-tolerant nondestructive measurement.
For t = �(d − 1)/2�, a nondestructive measurement proto-

col using a distance-d stabilizer code C is t-fault-tolerant if
the following two conditions are satisfied:

(1) For an input codeword with error of weight v1, if
v2 faults occur during the measurement protocol with v1 +
v2 � t , ideally decoding the output state after measurement
gives the same state as ideally decoding the input state and
then performing ideal nondestructive measurement. The result
obtained from measuring the input codeword is the same
as that of an ideal measurement on the ideally decoded
input state.

(2) For an input codeword with error of weight v1, if v2

faults occur during the measurement protocol with v1 + v2 �
t , the output state differs from a codeword by an error of at
most weight v1 + v2.

[Here we need to modify Definition 10 from the usual
definition of fault-tolerant (destructive) measurement since

FIG. 4. Quantum gates for measuring Y operator where Rπ/4 =
diag(1, i).

we would like to obtain both measurement result and post-
measurement state. These ingredients are important in the
applications discussed in Sec. VI.]

Suppose that the operator being measured P commutes
with all generators and is of the form

P = P⊗a1
1 ⊗ I⊗b1 ⊗ P⊗a2

2 ⊗ I⊗b2 ⊗ · · · ⊗ P⊗am
m ⊗ I⊗bm ,

(20)

where ai > 0 and bi � 0 are integers and Pi ∈ {X,Y, Z}. The
ith subblock consists of ai qubits acted on by P⊗ai

i . A one-flag
circuit for operator measurement is similar to the circuit given
in Fig. 3, while the measurements of Z , X , and Y operators
correspond to CNOT gates, the gates shown in Fig. 1(b), and
the gates shown in Fig. 4. With the slight modification where
CNOT gates are replaced by the gates for measuring Pi ∈
{X,Y, Z}, one can verify that the fault-flag relations (Claim 1)
is also applicable in this setting.

Using the error-distinguishability theorem (Theorem 2)
and the fault-flag relations (Claim 1), we now describe a flag-
FT measurement protocol that satisfies the FT nondestructive
measurement conditions in Definition 10 for distance-3 cyclic
CSS codes. Here we define m(r1 ) to be the measurement result
obtained from operator measurement (using either flag or
nonflag circuits) during round r1, and define s(r2 ) = (s(r2 )

x |s(r2 )
z )

to be the syndrome obtained from syndrome measurement
(using either flag or nonflag circuits) during round r2 of error
correction. The protocol is as follows:

Flag-FT Operator Measurement Protocol:
Let C be an [[n, k, d]] cyclic CSS code satisfying The-

orem 2. Let C(P) be the one-flag circuit of Fig. 3 for
measuring a Pauli operator P of the form

P = P⊗a1
1 ⊗ I⊗b1 ⊗ P⊗a2

2 ⊗ I⊗b2 ⊗ · · · ⊗ P⊗am
m ⊗ I⊗bm ,

(21)

where P commutes with all generators of C. Repeat the
measurement of P using the one-flag circuits until one of the
following conditions is satisfied, then perform its correspond-
ing operations:

(1) If first two operator measurement results coincide
(m(1) = m(2) ) and there are no flags, perform the syndrome
measurement twice using one-flag circuits for flag-FTEC.

(a) If s(1) = s(2) = 0 and there are no flags during both
syndrome measurement rounds, output m(1).

(b) If s(1) 
= s(2) or at least one-flag qubit flags during
the syndrome measurement, apply the correction described
by the flag-FTEC protocol of Sec. IV, then output m(1).

(c) If s(1) = s(2) 
= 0 and there are no flags during the
syndrome measurement, apply the correction Emin(s(1) ).
Repeat the operator measurement using a nonflag circuit,
then output m(3).
(2) If m(1) 
= m(2) and there are no flags, perform one

syndrome measurement round using nonflag circuits for error
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correction and apply Emin(s(1) ). Repeat the operator measure-
ment using a nonflag circuit, then output m(3).

(3) If f0 does not flag but fi flags (with i � 1) during round
one, stop. Repeat the operator measurement using a nonflag
circuit then output m(2). If there are no flags during round one
but fi flags and f0 does not flag during round two, output m(1).

(4) If f0 flags at round r1 anytime during the protocol, stop
and do one of the followings:

(a) If fi does not flag for all i � 1, repeat the operator
measurement using a nonflag circuit and output m(r1+1).

(b) If there is only one i such that fi flags (with i �
1), apply I⊗c ⊗ P⊗ai+1

i+1 ⊗ I⊗bi+1 ⊗ · · · ⊗ P⊗am
m ⊗ I⊗bm to the

data, where c = ∑i
j=1 a j + b j . Perform the syndrome

measurement using nonflag circuits for error correction
yielding syndrome s(r2 ) = (s(r2 )

x |s(r2 )
z ).

(i) If Pi = Z , apply Ez ∈ E z
l,n that satisfies s(Ez ) =

s(r2 )
x where l = n − c + bi, followed by Emin(s(r2 )

z ).
(ii) If Pi = X , apply Ex ∈ Ex

l,n that satisfies s(Ex ) =
s(r2 )

z where l = n − c + bi, followed by Emin(s(r2 )
x ).

(iii) If Pi = Y , apply E ∈ EP
l,n that satisfies s(E ) =

s(r2 ) where l = n − c + bi.
Afterwards, repeat the operator measurement using a

nonflag circuit, then output m(r1+1).
(c) If there is an i such that fi and fi+1 flag, perform the

same sequence of operations as in 4(b).
To see that both criteria for FT nondestructive measure-

ment in Definition 10 are satisfied, we will assume that the
weight of an input error v1 and the number of faults during
the protocol v2 satisfy v1 + v2 � 1. Similar to the FTEC
protocol, f0 and at least one fi (with i � 1) will flag whenever
a fault in any CNOT gate causes Z error on m0. If there is
no flags, a single fault can introduce error of weight at most
one. If the measurement result is repeated twice, then there
is no fault in the circuits. However, the measurement result
might be incorrect due to the input error. By performing
full syndrome measurement twice with flag circuits, we can
determine from s(1) and s(2) whether these is no input error,
there is a fault during syndrome measurement, or there is an
input error of weight 1. The procedure in 1(a), 1(b), and 1(c)
can correct possible errors and output the right operator mea-
surement result with corresponding codeword after projective
measurement.

Now let us consider the case that there is no flags but
m(1) 
= m(2). This is the case where a fault occurred in either
the first or second round. Therefore, performing error cor-
rection and repeating the operator measurement can give the
correct result.

Next, consider the case that there is only one flag, either f0

or fi with i � 1. The fault could be a measurement error, idle
qubit error on the ancilla f0 or fi, or an error on the control
qubit of the CNOT gate interacting with f0 or fi. Repeating the
operator measurement can give the right result. Note that if fi

flags during round two, then the result obtained during round
one corresponds to the right outcome.

Now let us consider the case where a fault happens on a
red CNOT introducing a Z error on the ancilla m0 and a P̃
error on the data qubit where P̃ ∈ {I, X,Y, Z}. If the fault
occurs on the ith subblock, then f0 and only one fi with i �

TABLE II. Possible faults during the flag-FT operator measure-
ment protocol in Sec. V and their corresponding correction proce-
dures. Here we assume that the number of input errors v1 and the
number of faults v2 satisfy v1 + v2 � 1.

Type of faults Correction procedure

No fault during operator measurement
No input error, no fault during 1(a)
syndrome measurement

No input error, one fault during 1(b) or 1(c)
syndrome measurement

Weight-1 input error, no fault 1(c)
syndrome measurement

One fault during operator measurement
Qubit or measurement fault on m0 2
Qubit or measurement fault on f0 4(a)
Qubit or measurement fault on fi 3
Red CNOT fault with I or X error 2
on the target qubit

Red CNOT fault with Y or Z error 4(b)
on the target qubit

Blue or green CNOT fault with I or X error 1(a), 2, or 3
on the target qubit

Blue or green CNOT fault with Y or Z error 4(b) or 4(c)
on the target qubit

Orange CNOT fault with I or X error 1(a), 2, or 4(a)
on the target qubit

Orange CNOT fault with Y or Z error 2 or 4(a)
on the target qubit

1 will flag. Applying I⊗c ⊗ P⊗ai+1
i+1 ⊗ I⊗bi+1 ⊗ · · · ⊗ P⊗am

m ⊗
I⊗bm to the data guarantees that the resulting error is in the
form I⊗c−ai−bi ⊗ I⊗c−1 ⊗ P̃ ⊗ P⊗ai−c

i ⊗ I⊗bi ⊗ I⊗n−c (where
c = ∑i

j=1 a j + b j). If Pi = Z (or Pi = X ), the resulting error
is a product of consecutive error in E z

l,n (or Ex
l,n) and X -type

error (or Z-type error) of weight one, where l = n − c + bi.
If Pi = Y , the resulting error is a consecutive error in EP

l,n.
By the error-distinguishability theorem (Theorem 2), errors in
Ex

l,n, E z
l,n, and EP

l,n are distinguishable. Therefore, performing
a full syndrome measurement followed by appropriate error
correction as in 4(b) will remove the error, and repeating the
operator measurement gives the correct outcome. The case
that a fault occurs on a blue or green CNOT corresponds to
either 4(b) or 4(c), and the same correction procedure can be
applied.

A list of possible faults during the flag-FT operator mea-
surement protocol and corresponding correction procedures is
given in Table II.

The flag-FT measurement protocol described above is for
a measurement of an operator commuting with all generators
which acts in one code block. Surprisingly, the protocol also
works for an operator acting on two or more code blocks. The
measurement of such operator can be done by treating parts
of the operator acting on different code blocks as operators
from different subblocks. For example, let Cp and Cq be cyclic
CSS codes of distance 3 satisfying Theorem 2, and let P and
Q be Pauli operators acting on Cp and Cq, respectively. The
measurement of P ⊗ Q on the code Cp ⊗ Cq can be done by
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using a one-flag circuit given in Fig. 3, where P and Q are
treated as operators from the different subblocks. Observe that
if f0 flags and at least one fi flags [the 4(b) or 4(c) case],
the resulting error after appropriate operation will become a
consecutive error on either first or second code blocks. Since
Cp and Cq are both cyclic, we can determine the error by
performing subsequent syndrome measurement on only Cp

or Cq, depending on the subblock in which the fault occurs.
After that, the correct measurement result can be obtained by
a subsequent operator measurement.

VI. APPLICATIONS OF FAULT-TOLERANT OPERATOR
MEASUREMENT PROTOCOL

A measurement of an operator commuting with all gener-
ators can be used as a subroutine in numerous quantum in-
formation processing techniques such as state preparation and
quantum gate implementation. Since the fault-tolerant mea-
surement protocol described in Sec. V is applicable on two
or more code blocks, information processing between code
blocks is possible. In this section we briefly describe some
important techniques which make fault-tolerant computation
on cyclic CSS codes possible, including logical Einstein-
Podolsky-Rosen (EPR) state preparation, teleportation, and
quantum computation on logical qubits. Readers who are
familiar with Clifford gate implementations via quantum gate
teleportation may skip this section. The purpose of this section
is to justify that all related techniques can be done in a
fault-tolerant way on logical qubits using our measurement
protocol.

Let us consider an EPR state |00〉+|11〉√
2

. This is a +1
eigenstate of operators X ⊗ X and Z ⊗ Z . Let Cp and Cq

be [[n1, k1, d1]] and [[n2, k2, d2]] cyclic CSS codes satisfying
Theorem 2 with stabilizer generating sets {gp

i1
} and {gq

i2
},

respectively. Suppose that we want to prepare a state

|0̄〉p,i|0̄〉q, j + |1̄〉p,i|1̄〉q, j√
2

, (22)

which is an EPR state between the ith logical qubit of Cp

and the jth logical qubit of Cq. This can be done by per-
forming projective measurements with respect to stabilizer
generators {gp

i1
⊗ I, I ⊗ gq

i2
} and logical operators X̄p,i ⊗ X̄q, j

and Z̄p,i ⊗ Z̄q, j on a totally mixed state, where X̄p,i and X̄q, j

(or Z̄p,i and Z̄q, j) are logical X (or logical Z) operators on ith
logical qubit of Cp and jth logical qubit of Cq, respectively.
Since the measurement protocol described in Sec. V is a
fault-tolerant protocol, the state in Eq. (22) can be prepared
in a fault-tolerant way.

In conventional quantum teleportation, an EPR state and
Bell measurement are required. Here we will examine a
process for fault-tolerant quantum teleportation of logical
data between two code blocks. The scheme for logical qubit
teleportation is shown in Fig. 5. Suppose that we would
like to teleport the ith logical qubit of Cp to the jth logical

qubit of Cq, first an EPR state |0̄〉q, j |0̄〉q, j+|1̄〉q, j |1̄〉q, j√
2

prepared
on Cq ⊗ Cq is required. The logical qubit teleportation can
be done by performing a Bell measurement with respect to
X̄p,i ⊗ X̄q, j and Z̄p,i ⊗ Z̄q, j between Cp and the first block of
Cq. The teleported logical qubit can be obtained in the second

FIG. 5. Schemes for teleportation and Clifford gate implementa-
tion on cyclic CSS codes. A bold line represents a block of code,
while a double line represents classical information. (a) The ith
logical qubit of Cp is teleported to the jth logical qubit of Cq. (b) A
logical Hadamard gate H̄i is performed on the ith logical qubit of Cp

via quantum gate teleportation.

block of Cq by operating an appropriate logical Pauli operator
P̄q, j depending on the Bell measurement result. Note that
the Bell measurement can be done fault-tolerantly using the
measurement protocol in Sec. V, and logical Pauli operators
are transversal (therefore, fault-tolerant). Thus, fault-tolerant
teleportation between two code blocks can be achieved.

Now let us consider fault-tolerant computation on cyclic
CSS codes. It is known that for any error correcting code,
by the Eastin-Knill theorem [29], at least one logical gate
in a universal gate set cannot be implemented transversely.
For such gates, other fault-tolerant techniques must be per-
formed, which can require a significant amount of resources.
Fortunately, fault-tolerant implementations of logical Clifford
gates on distance-3 cyclic CSS codes can be achieved via
quantum gate teleportation (see Ref. [30] for the details of
quantum gate teleportation). For example, suppose that we
would like to perform a logical Hadamard gate H̄i on the code
Cp. This can be achieved by preparing a codeword which is
an eigenstate of X̄i ⊗ Z̄i and Z̄i ⊗ X̄i on Cp ⊗ Cp, perform-
ing logical qubit teleportation, and operating a logical Pauli
operator H̄p,iP̄p,iH̄p,i depending on the result from the Bell
measurement in qubit teleportation as illustrated in Fig. 5(b).
Also, logical Rπ/4 = diag(1,i) and logical CNOT gates on any
logical qubits can be performed in a similar way. The Clifford
group can be generated by {H, Rπ/4, CNOT} [31,32]. Thus, our
scheme is applicable to any Clifford operation. It is known that
universal quantum computation can be achieved by Clifford
gates and any other gate not in the Clifford group [33].
However, performing logical non-Clifford gates will require
different techniques such as the ones presented in Ref. [20].
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TABLE III. A choice of logical operators for the [[30, 14, 3]] code.

X̄1 X1X11X21 Z̄1 Z1Z11Z21

X̄2 X2X12X22 Z̄2 Z2Z12Z22

X̄3 X3X13X23 Z̄3 Z3Z13Z23

X̄4 X4X14X24 Z̄4 Z4Z14Z24

X̄5 X5X15X25 Z̄5 Z5Z15Z25

X̄6 X6X16X26 Z̄6 Z6Z16Z26

X̄7 X7X17X27 Z̄7 Z7Z17Z27

X̄8 X8X18X28 Z̄8 Z8Z18Z28

X̄9 X9X19X29 Z̄9 Z9Z19Z29

X̄10 X10X20X30 Z̄10 Z10Z20Z30

X̄11 X1X7X9X11X17X19 Z̄11 Z11Z17Z19Z21Z27Z29

X̄12 X2X8X10X12X18X20 Z̄12 Z12Z18Z20Z22Z28Z30

X̄13 X11X17X19X21X27X29 Z̄13 Z1Z7Z9Z11Z17Z19

X̄14 X12X18X20X22X28X30 Z̄14 Z2Z8Z10Z12Z18Z20

VII. EXAMPLES OF CYCLIC CSS CODES

In this section, some examples of cyclic CSS codes sat-
isfying the error-distinguishability theorem (Theorem 2) are
given. A first example is the [[7, 1, 3]] quantum Hamming
code. This code is constructed from a classical [7,4,3] Ham-
ming code (with Cx = Cz). A check polynomial of the [7,4,3]
Hamming code in cyclic form is

h(x) = 1 + x2 + x3 + x4. (23)

In fact, any classical Hamming code can be made
cyclic [22]. Thus, any CSS code constructed from a classical
[2r − 1, 2r − 1 − r, 3] Hamming code with Cx = Cz satisfies
Theorem 2, and can be used in the flag-FTEC protocol and
the flag-FT measurement protocol described in this work.

Another example of cyclic CSS codes satisfying Theo-
rem 2 is the [[30, 14, 3]] code constructed from a classical
[30,22,3] cyclic code with a check polynomial

h(x) = 1 + x2 + x4 + x6 + x10 + x14 + x16 + x22. (24)

The [30,22,3] code and other classical codes satisfying C⊥ ⊆
C are given in Table 1 of Ref. [28]. (A method of finding
the check polynomial of a classical cyclic code is discussed
in Ref. [22]). One possible choice of logical operators for
the [[30, 14, 3]] code is given in Table III. The advantages
of the [[30, 14, 3]] code are that its encoding rate is high
(k/n = 14/30), and the logical operators of the first 10 logical
qubits have a simple form, which make them easily accessible.

VIII. DISCUSSION AND CONCLUSION

In this work we used the symmetries of CSS codes con-
structed from classical cyclic codes to prove that errors written
in consecutive form (as in Definition 7) can be distinguished.
From these properties, we can obtain a one-flag circuit along
with a flag-FTEC protocol which satisfies the criteria of FTEC
in Definition 2 when there is at most one fault. The one-flag
circuit requires only four ancilla qubits. This number does
not grow as the block length gets larger, making our proto-
col advantageous in the implementation where resources are
limited. We note that not all cyclic CSS codes are Hamming
codes and therefore the methods in Ref. [13] (which apply

to perfect codes) cannot be directly applied, thus providing
further motivation for our work.

In general, cyclic CSS codes do not satisfy the suffi-
cient condition required for flag fault-tolerance presented in
Ref. [16] (one example is the family of Hamming codes
which can be made cyclic). Nevertheless, using the techniques
presented in this paper, a flag-FTEC protocol can still be
achieved.

Furthermore, we have shown how logical Pauli operators
of cyclic CSS codes can be measured in a fault-tolerant way
using the flag techniques discussed in Sec. V. The flag-FT
operator measurement protocol satisfies the criteria of FT
nondestructive measurement in Definition 10 when there is
at most one fault. We then showed in Sec. VI how one
can perform quantum gate teleportation in a fault-tolerant
way to implement logical Clifford operators on any given
logical qubit for codes which encode multiple logical qubits.
Examples of cyclic CSS codes with large encoding rates are
provided in Sec. VII.

Note that for all CSS codes, the stabilizer generators being
measured are of the form I⊗n−m ⊗ X ⊗m or I⊗n−m ⊗ Z⊗m up
to qubit permutations. Thus data qubit errors arising from
faulty CNOT gates will be expressed in consecutive form. The
errors of this form are distinguishable iff the submatrices of
the X and Z stabilizers satisfy the consecutive error lemma
for general CSS codes (Lemma 1). In our work, we use
the symmetry of the cyclic codes to simplify Lemma 1 and
obtain the consecutive error lemma for cyclic CSS codes
(Lemma 3). We believe that Lemma 1 can be simplified by
using symmetries found in other families of quantum codes.
With appropriate t-flag circuits and operations depending on
the flag measurement outcome, this may lead to new flag
fault-tolerant protocols.

Another interesting avenue is finding noncyclic quantum
codes for which a version of the error-distinguishability theo-
rem (Theorem 2) can be applied. We note that for such codes,
the same one-flag circuit as in Fig. 3 along with the flag-FTEC
protocol of Sec. IV and the flag-FT measurement protocol of
Sec. V can be used. The reason is that the key property used by
these schemes is based on the distinguishability of consecutive
errors.

Note that there are quantum cyclic codes which are not
CSS codes for which flag fault-tolerant schemes are still
possible. For instance, a flag-FTEC protocol for the [[5, 1, 3]]
code was devised in Ref. [13]. We believe that it could be
interesting to generalize the ideas presented in this work
to non-CSS cyclic quantum codes. However, we leave this
problem for future work.

The flag fault-tolerant protocols for cyclic CSS codes
presented in this work are based on the assumption that the
qubit measurement and state preparation must be fast since
we reuse some flag qubits in the protocols (as we can see in
Fig. 3). If we do not reuse flag qubits, however, the number of
required ancillas will be m + 2 for an operator being measured
of the form P = P⊗a1

1 ⊗ I⊗b1 ⊗ P⊗a2
2 ⊗ I⊗b2 ⊗ · · · ⊗ P⊗am

m ⊗
I⊗bm instead of 4.

One important feature of flag fault-tolerant protocols is that
the number of required ancillas is very small compared to
other fault-tolerant schemes. We believe that if fewer ancillas
are required, the accuracy threshold will increase since the
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number of locations will decrease in total. However, we
should point out that subsequent syndrome measurements
are also required in a flag fault-tolerant protocol and may
increase the total number of locations in the protocol. The
answer of whether the accuracy threshold for a flag fault-
tolerant protocol is greater or smaller compared to other fault-
tolerant schemes when a cyclic CSS code is being used is still
unknown. An example of simulations to obtain thresholds for
flag error correction using other code families can be found in
Ref. [16].

Last, we point out that cyclic CSS codes which satisfy
the condition in Theorem 2 are not limited to distance-3
codes. Therefore, interesting future work would be to use the
methods of Ref. [16] to obtain flag fault-tolerant schemes for
higher-distance codes. In particular, the main challenge stems
from finding t-flag circuits as in Fig. 3 for t > 1.
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APPENDIX: PROOF OF THE LEMMAS

Proof of Lemma 1. We will prove that E z
0,n is distinguish-

able by C iff for all p, q ∈ {0, 1, ..., n − 1} such that p > q,
there exists i ∈ {1, . . . , rx} such that xi,n−p+1 ⊕ · · · ⊕ xi,n−q =
1. Consider errors Ep = I⊗n−p ⊗ Z⊗p and Eq = I⊗n−q ⊗
Z⊗q where p, q ∈ {0, 1, . . . , n − 1}, p > q. Let s(Ep), s(Eq) ∈
Zr

2 be error syndromes corresponding to errors Ep and
Eq, respectively. By the definition of distinguishable errors
(Definition 5), Ep and Eq are distinguishable by C iff s(Ep) 
=
s(Eq), i.e., there exists i ∈ {1, 2, . . . , rx} such that s(Ep)i 
=
s(Eq)i [here i corresponds to the ith component of s(Ep) and
S(Eq)]. From the parity check matrix Hx, the ith component
of s(Ep) and s(Eq) is given by

s(Ep)i = xi,n−p+1 ⊕ xi,n−p+2 ⊕ · · · ⊕ xi,n, (A1)

s(Eq)i = xi,n−q+1 ⊕ xi,n−q+2 ⊕ · · · ⊕ xi,n. (A2)

From Eqs. (A1) and (A2), we have that

s(Ep)i 
= s(Eq)i ⇔ s(Ep)i ⊕ s(Eq)i = 1

⇔ xi,n−p+1 ⊕ · · · ⊕ xi,n−q = 1. (A3)

Thus, E z
0,n is distinguishable by C iff for all p, q ∈

{0, 1, . . . , n − 1} such that p > q, there exists i ∈
{1, 2, . . . , rx} such that

xi,n−p+1 ⊕ · · · ⊕ xi,n−q = 1. (A4)

The proof of the statement for Ex
0,n is similar.

Now we will proof that EP
0,n is distinguishable by C iff

both E z
0,n and Ex

0,n are distinguishable by C. Let Xp = I⊗n−p ⊗

X ⊗p and Zq = I⊗n−q ⊗ Z⊗q, where p, q ∈ {0, . . . , n − 1}.
Observe that any element of EP

0,n is of the form Ep,q =
Xp · Zq where Xp ∈ Ex

0,n and Zq ∈ E z
0,n. The syndrome of

Ep,q is s(Ep,q) = (s(Xp)|s(Zq)). If EP
0,n is distinguishable by

C, i.e., s(Ep1,q1 ) 
= s(Ep2,q2 ) for all choices of p1, p2, q1, q2

such that (p1, q1) 
= (p2, q2), then we have that any pair
of Xp1 and Xp2 and any pair of Zq1 and Zq2 are distin-
guishable. Conversely, if any pair of Xp1 and Xp2 and any
pair of Zq1 and Zq2 are distinguishable, then any pair of
Ep1,q1 and Ep2,q2 will have different syndromes. This implies
statement 3.

Proof of Lemma 2. Suppose that the stabilizer group of
C can be generated by {g1, g2, . . . , gn−k}. Since C is a CSS
code, we will first assume that the generators gi’s are either X
type or Z type, denoted as gx

i or gz
i . Let Hx and Hz be X and Z

stabilizer matrices of the code C in symplectic representation,
and let C⊥

x and C⊥
z be the classical codes generated by

Hx and Hz, respectively. Observe that any element of C in
symplectic representation is of the form (x|z) where x ∈ C⊥

x
and z ∈ C⊥

z . For any choice of l ∈ {0, 1, . . . , n − 1}, let H̃x

(or H̃z) be the parity check matrix corresponding to L(gx
i , l )’s

(or L(gz
i, l )’s). We find that the code C̃⊥

x generated by H̃x

(or C̃⊥
z generated by H̃z) differs from C⊥

x (or C⊥
z ) by an

l-step left cyclic permutation. However, since C⊥
x and C⊥

z

are cyclic codes, we have that C̃⊥
x = C⊥

x and C̃⊥
z = C⊥

z .
Therefore, {L(gx

1 , l ), . . . ,L(gx
rx
, l ),L(gz

1, l ), . . . ,L(gz
rz
, l )}

and {gx
1 , . . . , gx

rx
, gz

1, . . . , gz
rz
} generate the same stabilizer

group for any l ∈ {0, 1, . . . , n − 1}.
In general, some generators of the stabilizer group of C

might be neither X type nor Z type. The following transfor-
mations of the generators preserve the stabilizer group, and
the last set of generators is the cyclic shifts of the original:
(1) Transform the given generators to either X type or Z type.
This corresponds to appropriate reversible row operations on
the binary symplectic representation of C to obtain the block
diagonal form,

(
A | 0
0 | B

)
. (A5)

(2) Cyclic shifts of these resulting generators also generate the
same stabilizer group. (3) Reversing the transformation in step
(1) [now applied to the generators after step (2)] preserves the
stabilizer group. The resulting generators are cyclic shifts of
the original.

Proof of Lemma 3. First we will prove that E z
0,n is dis-

tinguishable by C iff for all ux ∈ {2, 3, . . . , n}, there exists
i ∈ {1, . . . , rx} such that xi,ux ⊕ · · · ⊕ xi,n = 1. Applying the
consecutive error lemma for general CSS codes (Lemma 1),
we would like to prove that for all p, q ∈ {0, . . . , n − 1} such
that p > q, there exists i ∈ {1, . . . , rx} such that xi,n−p+1 ⊕
· · · ⊕ xi,n−q = 1 iff for all ux ∈ {2, 3, . . . , n}, there exist i′ ∈
{1, . . . , rx} such that xi′,ux ⊕ · · · ⊕ xi′,n = 1.

(⇒) By choosing q = 0 and p = n − u + 1, the proof is
trivial.

(⇐) Assume by contradiction that there exists a pair
of p, q ∈ {0, 1, . . . , n−1} with p > q such that xi,n−p+1 ⊕
· · · ⊕ xi,n−q = 0 for all i; i.e., there exists a pair of errors
Ep = I⊗n−p ⊗ Z⊗p and Eq = I⊗n−q ⊗ Z⊗q which cannot be
distinguished by any generator of C. Let C be generated by
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{g1, . . . , gr}. By the cyclic permutation lemma (Lemma 2),
we can construct a different generator set {g̃1, . . . , g̃r} of
C where g̃i = L(gi, q) for all i. Let the X part of σ (g̃i )
be (x̃i,1, . . . , x̃i,n) = (xi,q+1, . . . , xi,n, xi,1, . . . , xi,q ). Note that
x̃n−p+1 = xi,n−(p−q)+1 and x̃n−q = xi,n. The assumption im-
plies that Ep and Eq cannot be distinguished by any g̃i as well.
This gives

x̃i,n−p+1 ⊕ · · · ⊕ x̃i,n−q = 0, (A6)

or equivalently,

xi,n−(p−q)+1 ⊕ · · · ⊕ xi,n = 0. (A7)

Let ux = n − (p − q) + 1. Therefore, there exists ux ∈
{2, 3, . . . , n} such that xi,ux ⊕ · · · ⊕ xi,n = 0 for all i.

The proof of statement for Ex
0,n is similar to the proof of

statement for E z
0,n, while the proof of statement for EP

0,n is
similar to the proof of statement 3 in Lemma 1.

We already proved statements for E z
0,n, Ex

0,n, and EP
0,n. We

will generalize the statements to E z
l,n, Ex

l,n, and EP
l,n for any

l ∈ {0, . . . , n − 1}. Let C̃ by a cyclic CSS code generated by
{L(gx

1, l ), . . . ,L(gx
rx
, l ),L(gz

1, l ), . . . ,L(gz
rz
, l )}. Observe that

by qubit reordering, EP
l,n is distinguishable by C̃ iff EP

0,n is
distinguishable by C. Since C̃ and C are the same code by
the cyclic permutation lemma (Lemma 2), we have that EP

l,n

is distinguishable by C for any l ∈ {0, . . . , n − 1} iff EP
0,n

is distinguishable by C. The proof is also applied to E z
l,n

and Ex
l,n.

[1] P. W. Shor, Fault-tolerant quantum computation, in Proceedings
of the 37th Annual Symposium on Foundations of Computer Sci-
ence (IEEE Computer Society Press, Los Alamitos, California,
1996), pp. 56–65.

[2] D. Aharonov and M. Ben-Or, Fault-tolerant quantum compu-
tation with constant error, in Proceedings of the Twenty-ninth
Annual ACM Symposium on Theory of Computing (ACM, New
York, 1997), pp. 176–188.

[3] J. Preskill, Reliable quantum computers, Proc. R. Soc. London
A 454, 385 (1998).

[4] E. Knill, R. Laflamme, and W. H. Zurek, Threshold accuracy
for quantum computation, arXiv:quant-ph/9610011 (1996).

[5] E. Dennis, A. Kitaev, A. Landhal, and J. Preskill, Topological
quantum memory, J. Math. Phys. 43, 4452 (2002).

[6] R. Raussendorf and J. Harrington, Fault-Tolerant Quantum
Computation with High Threshold in Two Dimensions, Phys.
Rev. Lett. 98, 190504 (2007).

[7] A. G. Fowler, M. Mariantoni, J. M. Martinis, and A. N. Cleland,
Surface codes: Towards practical large-scale quantum computa-
tion, Phys. Rev. A 86, 032324 (2012).

[8] Y. Tomita and K. M. Svore, Low-distance surface codes under
realistic quantum noise, Phys. Rev. A 90, 062320 (2014).

[9] A. G. Fowler, A. C. Whiteside, A. L. McInnes, and A. Rabbani,
Topological Code Autotune, Phys. Rev. X 2, 041003 (2012).

[10] A. Paetznick and B. W. Reichardt, Fault-tolerant ancilla prepa-
ration and noise threshold lower bounds for the 23-qubit Golay
code, Quantum Info. Comput. 12, 1034 (2012).

[11] C. Chamberland, T. Jochym-O’Connor, and R. Laflamme,
Overhead analysis of universal concatenated quantum codes,
Phys. Rev. A 95, 022313 (2017).

[12] R. Takagi, T. J. Yoder, and I. L. Chuang, Error rates and
resource overheads of encoded three-qubit gates, Phys. Rev. A
96, 042302 (2017).

[13] R. Chao and B. W. Reichardt, Quantum Error Correction with
Only Two Extra Qubits, Phys. Rev. Lett. 121, 050502 (2018).

[14] R. Chao and B. W. Reichardt, Fault-tolerant quantum computa-
tion with few qubits, npj Quantum Inf. 4, 42 (2018).

[15] B. W. Reichardt, Fault-tolerant quantum error correction for
Steane’s seven-qubit color code with few or no extra qubits,
arXiv:1804.06995 (2018).

[16] C. Chamberland and M. E. Beverland, Flag fault-tolerant error
correction with arbitrary distance codes, Quantum 2, 53 (2018).

[17] A. A. Kovalev and L. P. Pryadko, Fault tolerance of quantum
low-density parity check codes with sublinear distance scaling,
Phys. Rev. A 87, 020304(R) (2013).

[18] D. Gottesman, Fault-tolerant quantum computation with con-
stant overhead, Quantum Inf. Comput. 14, 1338 (2014).

[19] J. P. Tillich and G. Zémor, Quantum LDPC codes with positive
rate and minimum distance proportional to the square root of
the blocklength, IEEE Trans. Inf. Theory 60, 1193 (2014).

[20] C. Chamberland and A. W. Cross, Fault-tolerant magic state
preparation with flag qubits, Quantum 3, 143 (2019).

[21] Y. Shi, C. Chamberland, and A. W. Cross, Fault-tolerant prepa-
ration of approximate GKP states, New J. Phys. 21, 093007
(2019).

[22] F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-
Correcting Codes (North-Holland, New York, 1977).

[23] D. Gottesman, Class of quantum error-correcting codes satu-
rating the quantum Hamming bound, Phys. Rev. A 54, 1862
(1996).

[24] D. Gottesman, Stabilizer codes and quantum error correction,
Ph.D. thesis, California Institute of Technology, 1997.

[25] A. R. Calderbank and P. W. Shor, Good quantum error-
correcting codes exist, Phys. Rev. A 54, 1098 (1996).

[26] A. W. Steane, Multiple-particle interference and quantum error
correction, Proc. R. Soc. London 452, 2551 (1996).

[27] P. Aliferis, D. Gottesman, and J. Preskill, Quantum accuracy
threshold for concatenated distance-3 codes, Quantum Inf.
Comput. 6, 97 (2006).

[28] R. Li and X. Li, Quantum codes constructed from binary cyclic
codes, Intl. J. Quantum Inform. 02, 265 (2004).

[29] B. Eastin and E. Knill, Restrictions on Transversal Encoded
Quantum Gate Sets, Phys. Rev. Lett. 102, 110502 (2009).

[30] D. Gottesman and I. L. Chuang, Demonstrating the viability of
universal quantum computation using teleportation and single-
qubit operations, Nature (London) 402, 390 (1999).

[31] A. R. Calderbank, E. M. Rains, P. W. Shor, and N. J. A. Sloane,
Quantum Error Correction and Orthogonal Geometry, Phys.
Rev. Lett. 78, 405 (1997).

[32] D. Gottesman, Theory of fault-tolerant quantum computation,
Phys. Rev. A 57, 127 (1998).

[33] G. Nebe, E. M. Rains, and N. J. Sloane, The invariants
of the Clifford groups, Designs Codes Cryptogr. 24, 99
(2001).

012342-14

https://doi.org/10.1098/rspa.1998.0167
https://doi.org/10.1098/rspa.1998.0167
https://doi.org/10.1098/rspa.1998.0167
https://doi.org/10.1098/rspa.1998.0167
http://arxiv.org/abs/arXiv:quant-ph/9610011
https://doi.org/10.1063/1.1499754
https://doi.org/10.1063/1.1499754
https://doi.org/10.1063/1.1499754
https://doi.org/10.1063/1.1499754
https://doi.org/10.1103/PhysRevLett.98.190504
https://doi.org/10.1103/PhysRevLett.98.190504
https://doi.org/10.1103/PhysRevLett.98.190504
https://doi.org/10.1103/PhysRevLett.98.190504
https://doi.org/10.1103/PhysRevA.86.032324
https://doi.org/10.1103/PhysRevA.86.032324
https://doi.org/10.1103/PhysRevA.86.032324
https://doi.org/10.1103/PhysRevA.86.032324
https://doi.org/10.1103/PhysRevA.90.062320
https://doi.org/10.1103/PhysRevA.90.062320
https://doi.org/10.1103/PhysRevA.90.062320
https://doi.org/10.1103/PhysRevA.90.062320
https://doi.org/10.1103/PhysRevX.2.041003
https://doi.org/10.1103/PhysRevX.2.041003
https://doi.org/10.1103/PhysRevX.2.041003
https://doi.org/10.1103/PhysRevX.2.041003
https://doi.org/10.1103/PhysRevA.95.022313
https://doi.org/10.1103/PhysRevA.95.022313
https://doi.org/10.1103/PhysRevA.95.022313
https://doi.org/10.1103/PhysRevA.95.022313
https://doi.org/10.1103/PhysRevA.96.042302
https://doi.org/10.1103/PhysRevA.96.042302
https://doi.org/10.1103/PhysRevA.96.042302
https://doi.org/10.1103/PhysRevA.96.042302
https://doi.org/10.1103/PhysRevLett.121.050502
https://doi.org/10.1103/PhysRevLett.121.050502
https://doi.org/10.1103/PhysRevLett.121.050502
https://doi.org/10.1103/PhysRevLett.121.050502
https://doi.org/10.1038/s41534-018-0085-z
https://doi.org/10.1038/s41534-018-0085-z
https://doi.org/10.1038/s41534-018-0085-z
https://doi.org/10.1038/s41534-018-0085-z
http://arxiv.org/abs/arXiv:1804.06995
https://doi.org/10.22331/q-2018-02-08-53
https://doi.org/10.22331/q-2018-02-08-53
https://doi.org/10.22331/q-2018-02-08-53
https://doi.org/10.22331/q-2018-02-08-53
https://doi.org/10.1103/PhysRevA.87.020304
https://doi.org/10.1103/PhysRevA.87.020304
https://doi.org/10.1103/PhysRevA.87.020304
https://doi.org/10.1103/PhysRevA.87.020304
https://doi.org/10.1109/TIT.2013.2292061
https://doi.org/10.1109/TIT.2013.2292061
https://doi.org/10.1109/TIT.2013.2292061
https://doi.org/10.1109/TIT.2013.2292061
https://doi.org/10.22331/q-2019-05-20-143
https://doi.org/10.22331/q-2019-05-20-143
https://doi.org/10.22331/q-2019-05-20-143
https://doi.org/10.22331/q-2019-05-20-143
https://doi.org/10.1088/1367-2630/ab3a62
https://doi.org/10.1088/1367-2630/ab3a62
https://doi.org/10.1088/1367-2630/ab3a62
https://doi.org/10.1088/1367-2630/ab3a62
https://doi.org/10.1103/PhysRevA.54.1862
https://doi.org/10.1103/PhysRevA.54.1862
https://doi.org/10.1103/PhysRevA.54.1862
https://doi.org/10.1103/PhysRevA.54.1862
https://doi.org/10.1103/PhysRevA.54.1098
https://doi.org/10.1103/PhysRevA.54.1098
https://doi.org/10.1103/PhysRevA.54.1098
https://doi.org/10.1103/PhysRevA.54.1098
https://doi.org/10.1098/rspa.1996.0136
https://doi.org/10.1098/rspa.1996.0136
https://doi.org/10.1098/rspa.1996.0136
https://doi.org/10.1098/rspa.1996.0136
https://doi.org/10.1142/S0219749904000213
https://doi.org/10.1142/S0219749904000213
https://doi.org/10.1142/S0219749904000213
https://doi.org/10.1142/S0219749904000213
https://doi.org/10.1103/PhysRevLett.102.110502
https://doi.org/10.1103/PhysRevLett.102.110502
https://doi.org/10.1103/PhysRevLett.102.110502
https://doi.org/10.1103/PhysRevLett.102.110502
https://doi.org/10.1038/46503
https://doi.org/10.1038/46503
https://doi.org/10.1038/46503
https://doi.org/10.1038/46503
https://doi.org/10.1103/PhysRevLett.78.405
https://doi.org/10.1103/PhysRevLett.78.405
https://doi.org/10.1103/PhysRevLett.78.405
https://doi.org/10.1103/PhysRevLett.78.405
https://doi.org/10.1103/PhysRevA.57.127
https://doi.org/10.1103/PhysRevA.57.127
https://doi.org/10.1103/PhysRevA.57.127
https://doi.org/10.1103/PhysRevA.57.127
https://doi.org/10.1023/A:1011233615437
https://doi.org/10.1023/A:1011233615437
https://doi.org/10.1023/A:1011233615437
https://doi.org/10.1023/A:1011233615437

